CDS 202 Practice Final Examination

François Gay-Balmaz, March, 2010

Attempt four of the following six questions.

The exam time limit is three hours; no aids are permitted.

The exam has two sheets printed on both sides

Print Your Name:

 \leftarrow Note!

The 4 questions to be graded:

 \leftarrow Note!

You may freely use the following properties as needed. Here α and β are differential forms and X,Y,Z are vector fields on a manifold M. (In the exam, all manifolds, vector fields, and differential forms are assumed to be smooth and the manifolds are finite dimensional.)

- (a) $\pounds_X(\alpha \wedge \beta) = (\pounds_X \alpha) \wedge \beta + \alpha \wedge (\pounds_X \beta)$
- **(b)** $\pounds_{[X,Y]}\alpha = \pounds_X \pounds_Y \alpha \pounds_Y \pounds_X \alpha$
- (c) $\mathbf{i}_X(\alpha \wedge \beta) = (\mathbf{i}_X \alpha) \wedge \beta + (-1)^k \alpha \wedge (\mathbf{i}_X \beta)$, where α is a k-form.
- (d) $\pounds_X \alpha = \mathbf{di}_X \alpha + \mathbf{i}_X \mathbf{d} \alpha$
- (e) $\mathbf{i}_{[X,Y]}\beta = \pounds_X\mathbf{i}_Y\beta \mathbf{i}_Y\pounds_X\beta$
- (f) For γ a one-form,

$$\mathbf{d}\gamma(X,Y) = X[\gamma(Y)] - Y[\gamma(X)] - \gamma([X,Y])$$

(g) For ω a two-form,

$$\mathbf{d}\omega(X,Y,Z) = X[\omega(Y,Z)] - Y[\omega(X,Z)] + Z[\omega(X,Y)]$$
$$-\omega([X,Y],Z) - \omega([Z,X],Y) - \omega([Y,Z],X)$$

(h) For a one form α and a vector field X,

$$(\pounds_X \alpha)_i = X^j \frac{\partial \alpha_i}{\partial x^j} + \alpha_j \frac{\partial X^j}{\partial x^i}$$

1. Consider the following vector fields X, Y, the one form α and the three form μ on \mathbb{R}^3 :

$$X = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$$

$$Y = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$$

$$\alpha = y dx - x dy + z dz$$

$$\mu = dx \wedge dy \wedge dz$$

- (a) Compute the exterior derivative $d\alpha$ and the interior product $\mathbf{i}_X\alpha$.
- (b) Compute the Lie derivative $\pounds_X \alpha$
- (c) Describe the flows F_t of X and G_t of Y geometrically.
- (d) Compute

$$\left. \frac{d}{dt} \right|_{t=0} F_t^* \mu \text{ and } \left. \frac{d}{dt} \right|_{t=0} G_t^* \alpha$$

- (e) Compute $\frac{d}{dt}\Big|_{t=0} F_t^* Y$.
- **2.** Let M be the ellipsoidal shell in \mathbb{R}^3 given by $x^2 + 4y^2 + z^2 = 1$ and let S be the partial ellipsoidal shell in \mathbb{R}^3 defined by the conditions $(x, y, z) \in M$ and $0 \le x \le 1/2$.
 - (a) Show that M is a smooth manifold.
 - (b) Argue informally that S is a smooth oriented manifold with boundary; describe a specific choice of orientation.
 - (c) Let the one form α be defined on the open set $U = \mathbb{R}^3 \setminus x$ -axis by

$$\alpha = \frac{zdy - ydz}{y^2 + z^2}$$

Compute $d\alpha$.

- (d) Let β be the pull-back of α to S. Is β closed? Is β exact?
- (e) Compute the integral of β over ∂S .

- **3.** Let S be the 3×3 diagonal matrix with diagonal entries 1, 1, -2. Let G denote the set of 3×3 real matrices A that satisfy $A^T S A = S$, where A^T denotes the transpose of A.
 - (a) Show that, with the operation of matrix multiplication, G is a Lie group.
 - (b) What is its dimension? Is G compact?
 - (c) Show that the Lie algebra \mathfrak{g} of G may be identified with the set of 3×3 matrices ξ that satisfy $\xi^T S + S \xi = 0$. What is the Lie algebra bracket?
 - (d) If α is a nonzero real number, show that the matrix

$$\xi = \begin{bmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

lies in the Lie algebra \mathfrak{g} . What is the one parameter subgroup of G that is tangent to ξ at t=0?

- (e) Let $\eta, \xi \in \mathfrak{g}$ be two matrices in \mathfrak{g} from part (c) that commute. Let D be the distribution on G obtained by left translating the two dimensional vector space $V = \operatorname{span}(\eta, \xi)$ around the group. Is D integrable?
- **4.** (a) Let X and Y be the vector fields on \mathbb{R}^3 defined by

$$X = y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y}$$
 and $Y = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$.

Show that X and Y define vector fields X_0 and Y_0 on the standard two sphere S^2 of radius one.

- i. Show that, with respect to the standard volume element on S^2 , div $X_0=0$ and div $Y_0=0$.
- ii. Calculate $[X_0, Y_0]$.
- (b) Let (M_1, μ_1) and (M_2, μ_2) be two compact volume manifolds without boundary and let X_1 be a smooth vector field on M_1 .
 - i. Explain how $(M_1 \times M_2, \mu_1 \times \mu_2)$ is a volume manifold with volume element $\mu_1 \times \mu_2$ determined in a natural way from μ_1 and μ_2 .
 - ii. Is it true that

$$\int_{M_1 \times M_2} \left(\operatorname{div}_{\mu_1} X_1 \right) \ \mu_1 \times \mu_2$$

must be zero?

- 5. (a) Let S^1 be the standard two sphere of radius one in \mathbb{R}^3 and S^R the sphere of radius R. Let $\phi: S^1 \to S^R$ be the map that takes $\mathbf{x} \in S^1$ to $R\mathbf{x} \in S^R$. Show that ϕ is an orientation preserving diffeomorphism and state the change of variables formula for this map.
 - (b) Let the vector field X on \mathbb{R}^3 be defined by

$$X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$$

and let F_t be its flow. Show that the flow defines, for each t, an orientation preserving diffeomorphism of S^1 to a sphere of another radius R(t).

(c) Let f(x, y, z, t) be a time dependent function on \mathbb{R}^3 and also use the notation f to denote its restriction to a sphere. Let μ_R denote the standard area form on S^R . Find an expression for

$$\frac{d}{dt} \int_{S^{R(t)}} f \mu_{R(t)}$$

where R(t) is as in part (b) and check your calculation explicitly for the function f that is identically one.

- **6.** (a) Consider the distribution on $\mathbb{R}^3 \setminus \{0\}$ that is given at the point (x, y, z) by the set of vectors $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ satisfying 6ax + 2by + 10cz = 0. Is this distribution integrable? If so, find the corresponding integrable manifolds.
 - (b) Let ω be a closed two form on a manifold M and let X be a vector field with a flow F_t satisfying $F_t^*\omega = \omega$. Show that the distribution defined (at each point) to be the kernel of the one-form $\mathbf{i}_X\omega$ is integrable.
 - (c) Denote coordinates on \mathbb{R}^{2n} by (q^i, p_i) , where i ranges between 1 and n and define the two-form ω by $\omega = dq^i \wedge dp_i$ (where a sum on i is understood). Let H(q,p) be a given function and let X be the vector field such that $\mathbf{i}_X \omega = \mathbf{d}H$. Show that the conditions of part (b) hold and determine the foliation in this case.