CDS 202 Practice Final Examination

François Gay-Balmaz, March, 2010
Attempt four of the following six questions.
The exam time limit is three hours; no aids are permitted.
The exam has two sheets printed on both sides

Print Your Name:

\leftarrow Note!
\leftarrow Note!

You may freely use the following properties as needed. Here α and β are differential forms and X, Y, Z are vector fields on a manifold M. (In the exam, all manifolds, vector fields, and differential forms are assumed to be smooth and the manifolds are finite dimensional.)
(a) $£_{X}(\alpha \wedge \beta)=\left(£_{X} \alpha\right) \wedge \beta+\alpha \wedge\left(£_{X} \beta\right)$
(b) $£_{[X, Y]} \alpha=£_{X} £_{Y} \alpha-£_{Y} £_{X} \alpha$
(c) $\mathbf{i}_{X}(\alpha \wedge \beta)=\left(\mathbf{i}_{X} \alpha\right) \wedge \beta+(-1)^{k} \alpha \wedge\left(\mathbf{i}_{X} \beta\right)$, where α is a k-form.
(d) $£_{X} \alpha=\mathbf{d i}_{X} \alpha+\mathbf{i}_{X} \mathbf{d} \alpha$
(e) $\mathbf{i}_{[X, Y]} \beta=£_{X} \mathbf{i}_{Y} \beta-\mathbf{i}_{Y} £_{X} \beta$
(f) For γ a one-form,

$$
\mathbf{d} \gamma(X, Y)=X[\gamma(Y)]-Y[\gamma(X)]-\gamma([X, Y])
$$

(g) For ω a two-form,

$$
\begin{aligned}
\mathbf{d} \omega(X, Y, Z)= & X[\omega(Y, Z)]-Y[\omega(X, Z)]+Z[\omega(X, Y)] \\
& -\omega([X, Y], Z)-\omega([Z, X], Y)-\omega([Y, Z], X)
\end{aligned}
$$

(h) For a one form α and a vector field X,

$$
\left(£_{X} \alpha\right)_{i}=X^{j} \frac{\partial \alpha_{i}}{\partial x^{j}}+\alpha_{j} \frac{\partial X^{j}}{\partial x^{i}}
$$

1. Consider the following vector fields X, Y, the one form α and the three form μ on \mathbb{R}^{3} :

$$
\begin{aligned}
X & =-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}+z \frac{\partial}{\partial z} \\
Y & =x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z} \\
\alpha & =y d x-x d y+z d z \\
\mu & =d x \wedge d y \wedge d z
\end{aligned}
$$

(a) Compute the exterior derivative $d \alpha$ and the interior product $\mathbf{i}_{X} \alpha$.
(b) Compute the Lie derivative $£_{X}{ }^{\alpha}$
(c) Describe the flows F_{t} of X and G_{t} of Y geometrically.
(d) Compute

$$
\left.\frac{d}{d t}\right|_{t=0} F_{t}^{*} \mu \text { and }\left.\frac{d}{d t}\right|_{t=0} G_{t}^{*} \alpha
$$

(e) Compute $\left.\frac{d}{d t}\right|_{t=0} F_{t}^{*} Y$.
2. Let M be the ellipsoidal shell in \mathbb{R}^{3} given by $x^{2}+4 y^{2}+z^{2}=1$ and let S be the partial ellipsoidal shell in \mathbb{R}^{3} defined by the conditions $(x, y, z) \in M$ and $0 \leq x \leq 1 / 2$.
(a) Show that M is a smooth manifold.
(b) Argue informally that S is a smooth oriented manifold with boundary; describe a specific choice of orientation.
(c) Let the one form α be defined on the open set $U=\mathbb{R}^{3} \backslash x$-axis by

$$
\alpha=\frac{z d y-y d z}{y^{2}+z^{2}}
$$

Compute $\mathbf{d} \alpha$.
(d) Let β be the pull-back of α to S. Is β closed? Is β exact?
(e) Compute the integral of β over ∂S.
3. Let S be the 3×3 diagonal matrix with diagonal entries $1,1,-2$. Let G denote the set of 3×3 real matrices A that satisfy $A^{T} S A=S$, where A^{T} denotes the transpose of A.
(a) Show that, with the operation of matrix multiplication, G is a Lie group.
(b) What is its dimension? Is G compact?
(c) Show that the Lie algebra \mathfrak{g} of G may be identified with the set of 3×3 matrices ξ that satisfy $\xi^{T} S+S \xi=0$. What is the Lie algebra bracket?
(d) If α is a nonzero real number, show that the matrix

$$
\xi=\left[\begin{array}{ccc}
0 & \alpha & 0 \\
-\alpha & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

lies in the Lie algebra \mathfrak{g}. What is the one parameter subgroup of G that is tangent to ξ at $t=0$?
(e) Let $\eta, \xi \in \mathfrak{g}$ be two matrices in \mathfrak{g} from part (c) that commute. Let D be the distribution on G obtained by left translating the two dimensional vector space $V=\operatorname{span}(\eta, \xi)$ around the group. Is D integrable?
4. (a) Let X and Y be the vector fields on \mathbb{R}^{3} defined by

$$
X=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y} \quad \text { and } \quad Y=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y} .
$$

Show that X and Y define vector fields X_{0} and Y_{0} on the standard two sphere S^{2} of radius one.
i. Show that, with respect to the standard volume element on S^{2}, $\operatorname{div} X_{0}=0$ and $\operatorname{div} Y_{0}=0$.
ii. Calculate $\left[X_{0}, Y_{0}\right]$.
(b) Let $\left(M_{1}, \mu_{1}\right)$ and $\left(M_{2}, \mu_{2}\right)$ be two compact volume manifolds without boundary and let X_{1} be a smooth vector field on M_{1}.
i. Explain how ($M_{1} \times M_{2}, \mu_{1} \times \mu_{2}$) is a volume manifold with volume element $\mu_{1} \times \mu_{2}$ determined in a natural way from μ_{1} and μ_{2}.
ii. Is it true that

$$
\int_{M_{1} \times M_{2}}\left(\operatorname{div}_{\mu_{1}} X_{1}\right) \mu_{1} \times \mu_{2}
$$

must be zero?
5. (a) Let S^{1} be the standard two sphere of radius one in \mathbb{R}^{3} and S^{R} the sphere of radius R. Let $\phi: S^{1} \rightarrow S^{R}$ be the map that takes $\mathrm{x} \in S^{1}$ to $R \mathbf{x} \in S^{R}$. Show that ϕ is an orientation preserving diffeomorphism and state the change of variables formula for this map.
(b) Let the vector field X on \mathbb{R}^{3} be defined by

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}
$$

and let F_{t} be its flow. Show that the flow defines, for each t, an orientation preserving diffeomorphism of S^{1} to a sphere of another radius $R(t)$.
(c) Let $f(x, y, z, t)$ be a time dependent function on \mathbb{R}^{3} and also use the notation f to denote its restriction to a sphere. Let μ_{R} denote the standard area form on S^{R}. Find an expression for

$$
\frac{d}{d t} \int_{S^{R(t)}} f \mu_{R(t)}
$$

where $R(t)$ is as in part (b) and check your calculation explicitly for the function f that is identically one.
6. (a) Consider the distribution on $\mathbb{R}^{3} \backslash\{0\}$ that is given at the point (x, y, z) by the set of vectors $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ satisfying $6 a x+2 b y+10 c z=0$. Is this distribution integrable? If so, find the corresponding integrable manifolds.
(b) Let ω be a closed two form on a manifold M and let X be a vector field with a flow F_{t} satisfying $F_{t}^{*} \omega=\omega$. Show that the distribution defined (at each point) to be the kernel of the one-form $\mathbf{i}_{X} \omega$ is integrable.
(c) Denote coordinates on $\mathbb{R}^{2 n}$ by $\left(q^{i}, p_{i}\right)$, where i ranges between 1 and n and define the two-form ω by $\omega=d q^{i} \wedge d p_{i}$ (where a sum on i is understood). Let $H(q, p)$ be a given function and let X be the vector field such that $\mathbf{i}_{X} \omega=\mathbf{d} H$. Show that the conditions of part (b) hold and determine the foliation in this case.

