CDS 202 Winter 2005 Final Exam

Problem 1 (Scribe: Nawaf Bou-Rabee)
(a) Let M be an n-manifold and X and Y be vector fields on M. Suppose that α is a closed k-form on M and that $\mathbf{i}_{Y} \alpha=0$. Is it true that

$$
\mathbf{i}_{[X, Y]}=-\mathbf{i}_{Y} \mathbf{d i}_{X} \alpha ?
$$

(b) Let the vector fields X and Y on \mathbb{R}^{3} be given by

$$
\begin{aligned}
X & =\frac{\partial}{\partial x}-z \frac{\partial}{\partial y}+y \frac{\partial}{\partial z} \\
Y & =x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}
\end{aligned}
$$

Compute the flows of F_{t} of X and G_{t} of Y.
(c) Compute $[X, Y]$.
(d) Let $\alpha=x d y+y d x$ adn compute

$$
\left.\frac{d}{d t}\right|_{t=0} F_{t}^{*} \alpha \quad \text { and }\left.\quad \frac{d}{d t}\right|_{t=0} G_{t}^{*} \alpha
$$

(e) Is the identity in part (a) valid for Y in (b) and α in (d)?

Solution for (a) Yes this result follows from identity (e), $\mathbf{i}_{Y} \alpha=0$ and α being closed.

$$
\begin{aligned}
\mathbf{i}_{[X, Y]} & =£_{X} \mathbf{i}_{Y} \alpha-\mathbf{i}_{Y} £_{X} \alpha \\
& =-\mathbf{i}_{Y} £_{X} \alpha \quad \text { since } \mathbf{i}_{Y} \alpha=0 \\
& =-\mathbf{i}_{Y}\left(\mathbf{d i}_{X} \alpha+\mathbf{i}_{X} \mathbf{d} \alpha\right) \\
& =-\mathbf{i}_{Y} \mathbf{d i}_{X} \alpha \quad \text { since } \alpha \text { is closed }
\end{aligned}
$$

Solution for (b) The ode associated with X follows:

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

with solution:

$$
F_{t}\left(x_{0}, y_{0}, z_{0}\right)=\left(t+x_{0}, \cos t y_{0}-\sin t z_{0}, \sin t y_{0}+\cos t z_{0}\right)
$$

Similarly the ode associated with Y follows:

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

with solution:

$$
G_{t}\left(x_{0}, y_{0}, z_{0}\right)=\left(e^{t} x_{0}, e^{-t} y_{0}, e^{t} z_{0}\right)
$$

Solution for (c) This is straightforward.

$$
\begin{aligned}
{[X, Y]=} & X[Y]-Y[X] \\
= & \left(\frac{\partial}{\partial x}-z \frac{\partial}{\partial y}+y \frac{\partial}{\partial z}\right)\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) \\
& -\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right)\left(\frac{\partial}{\partial x}-z \frac{\partial}{\partial y}+y \frac{\partial}{\partial z}\right) \\
= & \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial z}+2 z \frac{\partial}{\partial y}
\end{aligned}
$$

Solution for (d) This follows from the Lie derivative formula and Cartan's magic formula.

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} F_{t}^{*} \alpha & =£_{X} \alpha \\
& =\mathbf{d i}_{X} \alpha+\mathbf{i}_{X} \mathbf{d} \alpha \\
& =\mathbf{d i}_{X} \alpha \quad \text { since } \alpha \text { is closed } \\
& =\mathbf{d}(y-z x) \\
& =\mathbf{d} y-x \mathbf{d} z-z \mathbf{d} x
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} G_{t}^{*} \alpha & =£_{Y} \alpha \\
& =\operatorname{di}_{Y} \alpha \\
& =\mathbf{d}(x y-y x) \\
& =0
\end{aligned}
$$

Solution for (e) Yes since α is closed and $\mathbf{i}_{Y} \alpha=0$.

Problem 2 (Scribe: Nawaf Bou-Rabee)
Let M be the "partial ellipsoid" in \mathbb{R}^{3} defined by the conditions

$$
4 x^{2}+y^{2}+z^{2}=4 \quad \text { and } \quad-1 \leq x \leq 0
$$

(a) Show that the full ellipsoid $4 x^{2}+y^{2}+z^{2}=4$ is a smooth manifold.
(b) Argue informally that M is a smooth oriented manifold with boundary; describe a specific choice of orientation.
(c) Let the one form α be defined on the open set $U=\mathbb{R}^{3} \backslash$ x-axis by

$$
\alpha=\frac{y d z-z d y}{y^{2}+z^{2}} .
$$

Compute $\mathbf{d} \alpha$ on U.
(d) Let β be the pull-back of α to the set V consisting of M minus the point $(-1,0,0)$. Is β closed? exact? Compute the integral $\int_{\partial M} \beta$. Is Stokes' theorem violated? Explain.
(e) Let the vector field on \mathbb{R}^{3} defined by

$$
X=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y} .
$$

Show that X defines a vector field on M. Show that, with respect to the standard volume element on $M, \operatorname{div} Y=0$.
(f) Compute the Lie derivate $£_{Y} \beta$ on V.

Solution for (a) To see this directly apply the submersion theorem as follows. Let f : $\mathbb{R}^{3} \rightarrow \mathbb{R}$ be given by:

$$
f(x, y, z)=4 x^{2}+y^{2}+z^{2}
$$

Note that

$$
D f(x, y, z) \cdot\left(v_{1}, v_{2}, v_{3}\right)=(8 x, 2 y, 2 z) \cdot\left(v_{1}, v_{2}, v_{3}\right)
$$

$D f(x, y, z)$ is onto since,

$$
(8 x, 2 y, 2 z) \cdot\left(v_{1}, v_{2}, v_{3}\right)=c
$$

has a solution given by $(2 x, y, z) /\left(2\left(4 x^{2}+y^{2}+z^{2}\right)\right) c$ provided $x, y, z \neq 0$. Therefore f is a submersion and by submersion theorem $f^{-1}(4)$ is a submanifold of \mathbb{R}^{3}.

Or use the following diffeomorphism from S^{2} to the ellipsoid given by $f(x, y, z)=$ $(2 x, y, z)$. Therefore, the ellipsoid is a manifold because S^{2} is a manifold.

Solution for (b) One way to orient the manfiold is by using the outwarding point normal which is continuous on the manifold and induces a counterclockwise rotation on the boundary about the x-axis.

Solution for (c) We did this direct calculation in class (cf. lecture 14): $d \alpha=0$.

Solution for (d) i^{*} commutes with \mathbf{d} because i is smooth and therefore $\beta=i^{*} \alpha$ is closed since

$$
\mathbf{d} \beta=\mathbf{d} i^{*} \alpha=i^{*} \mathbf{d} \alpha=0
$$

because α is closed from part (c).
However, β is not exact since on the one hand if it was exact $\beta=d \gamma$ and therefore $\int_{C} \beta=\int_{C} d \gamma=0$ for any closed curve C; on the other hand, as shown below $\int_{\partial M} \beta=-2 \pi$. This contradiction arises because the region which β is defined is not contractible.

The integral is computed by transforming to polar coordinates to obtain

$$
\int_{\partial M} \beta=-\int_{0}^{2 \pi} d \theta=-2 \pi .
$$

Stokes' theorem is not violated since the integrand is not defined on all of M.
Solution for (e) $\quad X$ is a vector field on M since it is parallel to M, i.e., $X[f]=0$.
Moreover, the flow of X is a pure rotation about the x-axis which is volume-preserving on \mathbb{R}^{3}, and hence, Y (its restriction to M) is area-preserving. Therefore $\operatorname{div} Y=0$.

Solution for (f)

$$
\begin{aligned}
£_{Y} \beta & =\operatorname{di}_{Y} \beta+\mathbf{i}_{Y} \mathbf{d} \beta \quad \text { by Cartan } \\
& =\operatorname{di}_{Y} \beta \quad \text { since } \beta \text { is closed } \\
& =d\left(\frac{y^{2}+z^{2}}{y^{2}+z^{2}}\right) \\
& =d(1)=0
\end{aligned}
$$

Problem 3 (Scribe: Nawaf Bou-Rabee)
Let G denote the set of 4×4 real matrices that have the block form

$$
\left[\begin{array}{cc}
A & a \\
0 & 1
\end{array}\right]
$$

where A is a 3×3 orthogonal matrix of determinant 1 and where $a \in \mathbb{R}^{3}$.
(a) Show that, with the operation of matrix multiplication, G is a Lie group that is isomorphic to the group of transformations of \mathbb{R}^{3} to itself of the form $T_{A, a}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$; $x \mapsto A x+a$.
(b) Show that the Lie algebra of G, \mathfrak{g} may be identified with the set of 4×4 matrix of the form $\left[\begin{array}{ll}\hat{x} & y \\ 0 & 0\end{array}\right]$, where \hat{x} is the 3×3 skew matrix associated with $x \in \mathbb{R}^{3}$ (satisfying $\hat{x} \cdot u=x \times u$ for all vectors $\left.u \in \mathbb{R}^{3}\right)$. Describe the Lie bracket operation.
(c) Let $\xi \in \mathfrak{g}$ and $\eta_{1}, \eta_{2} \in \mathfrak{g}$ be defined by choosing for $\xi, x=(0,0,1), a=0$ and for η_{1}, $x=0, a=(1,0,0)$ and for $\eta_{2}, x=0, a=(0,1,0)$. Let $V \subset \mathfrak{g}$ be the vector subspace spanned by ξ, η_{1}, η_{2}. Let D be the distribution on G obtained by left translating V around the group. Is D integrable?
(d) Let $f: G \rightarrow \mathbb{R}$ be defined by $f(K)=\operatorname{trace}\left(K^{T} K\right)$ for $K \in G$. Show that f is a smooth function and calculate its derivative at the identity element of G.

Solution for (a) G is a manifold since $G \sim S O(3) \times \mathbb{R}^{3}$ and $S O(3), \mathbb{R}^{3}$ are manifolds. G is also a group since 1) G is closed under matrix multiplication

$$
\left[\begin{array}{cc}
A_{1} & a_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
A_{2} & a_{2} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
A_{1} A_{2} & A_{1} a_{2}+a_{1} \\
0 & 1
\end{array}\right] \in G \quad \text { since } A_{1} A_{2} \in S O(3) \text { and } A_{1} a_{2}+a_{1} \in \mathbb{R}^{3}
$$

2) G contains an identity element given explicitly by:

$$
e=\left[\begin{array}{ll}
I & 0 \\
0 & 1
\end{array}\right]
$$

and 3) G contains an inverse given explicity by:

$$
\left[\begin{array}{cc}
A^{-1} & -A^{-1} a \\
0 & 1
\end{array}\right]
$$

Moreover, G is isomorphic to $T_{A, a}$ since the map $f: G \mapsto T_{A, a}$ is clearly bijective and preserves the group structure because

$$
\begin{aligned}
f\left(A_{1}, a_{1}\right) f\left(A_{2}, a_{2}\right) & =T_{A_{1}, a_{1}} T_{A_{2}, a_{2}} \\
& =T_{A_{1} A_{2}, A_{1} a_{2}+a_{1}} \\
& =f\left(\left(A_{1} A_{2}, A_{1} a_{2}+1_{1}\right)\right) \\
& =f\left(\left(A_{1}, a_{1}\right) \cdot\left(A_{2}, a_{2}\right)\right)
\end{aligned}
$$

and the same is true for the inverse of f.
Solution for (b) The tangent space at the identity of G is simply

$$
\mathfrak{g}=T_{e} G=T_{e}\left(S O(3) \times \mathbb{R}^{3}\right)=s o(3) \times \mathbb{R}^{3}
$$

which may be identified with 4×4 matrices of the desired form. Since \mathfrak{g} is a Lie subalgebra of $\mathfrak{g l}(4)$ the Lie bracket operation is the matrix commutator given explicitly by

$$
\begin{aligned}
{[(\hat{x}, u),(\hat{y}, v)] } & =\left[\begin{array}{ll}
\hat{x} & u \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\hat{y} & v \\
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
\hat{y} & v \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\hat{x} & u \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\hat{x} \hat{y}-\hat{y} \hat{x} & \hat{x} v-\hat{y} u \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Solution for (c) D is integrable since it is involutive as the following reveals. Observe that

$$
X_{\xi}, X_{\eta_{1}}, \text { and } X_{\eta_{2}} \in D
$$

by definition. Also note that

$$
\left[\xi, \eta_{1}\right]=\eta_{2}, \quad\left[\xi, \eta_{2}\right]=-\eta_{1}, \quad\left[\eta_{1}, \eta_{2}\right]=0
$$

Therefore,

$$
\left.X_{\left[\xi, \eta_{1}\right]}=X_{\eta_{2}}, X_{\left[\xi, \eta_{2}\right]}=X_{-\eta_{1}}, \text { and } X_{\left[\eta_{1}\right.}, \eta_{2}\right]=0 \in D
$$

Hence D is involutive and by Frobenius' theorem D is integrable.
Solution for (d) f is smooth since it is the composition of the trace and matrix multiplication on G which are each smooth operations. Its derivative is given by:

$$
D f(K) \cdot \delta=2 \operatorname{trace}\left(\delta^{T} K\right)
$$

which vanishes at the identity

$$
D f(e) \cdot \delta=2 \operatorname{trace}(\delta)=0
$$

since $D f: T G \rightarrow \mathbb{R}$ and elements of $T_{e} G$ have zero trace.

Problem 4 (Scribe: Nawaf Bou-Rabee)
Let $M=S^{2}$ be the standard two sphere in \mathbb{R}^{3} defined by $x^{2}+y^{2}+z^{1}=1$. Let X be the vector field on \mathbb{R}^{3} defined by:

$$
X=z y \frac{\partial}{\partial x}+z x \frac{\partial}{\partial y}-2 x y \frac{\partial}{\partial z} .
$$

(a) Show that X defines a vector field, that we shall call Y, on M.
(b) Show that the flows of both Y and X are complete.
(c) Let C be the circle defined by $x^{2}+y^{2}=1$ and $z=0$. Let $C_{t}=F_{t}(C)$, where F_{t} is the flow of Y. Show that C_{t} is a smooth one dimensional submanifold of M.
(d) Let ω be the one form on \mathbb{R}^{3} defined by $\omega=y d x-x d y+x y d z$. Let γ be the pull-back of ω from \mathbb{R}^{3} to M. Express $\mathbf{d} \gamma$ as the pull-back of a two form on \mathbb{R}^{3} to S^{2}.
(e) Compute

$$
\left.\frac{d}{d t}\right|_{t=0} \int_{C_{t}} \omega .
$$

Solution for (a) Y is parallel to M since $X[f]=0$.
Solution for (b) Y and X are C^{∞} vector fields and evolve on spheres of fixed radius for all time. Since the flows generated by Y and X evolve on compact level-sets, Y and X are complete by a basic theorem from the class (Proposition 4.1.19).

Solution for (c) The flow of Y is a diffeomorphism on M since Y is complete, and therefore C and C_{t} are diffeomorphic. It follows that C_{t} is a smooth one-dimensional submanifold since C is.

Solution for (d)

$$
\mathbf{d} \gamma=i^{*} \mathbf{d} \omega=\mathbf{d} i^{*} \omega=i^{*}(2 d y \wedge d x+y d x \wedge d z+x d y \wedge d z)
$$

Solution for (e)

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \int_{C_{t}} \omega & =\left.\frac{d}{d t}\right|_{t=0} \int_{C} F_{t}^{*} \omega \\
& =\int_{C} £_{Y} \omega \\
& =\int_{C} \operatorname{di}_{Y} \omega+\mathbf{i}_{Y} d \omega \\
& =\int_{C} \mathbf{d}\left(\mathbf{i}_{Y} \omega\right) \quad \text { since } d \omega=0 \text { because } \omega \text { is a one-form on a one-manifold } C \\
& =0 \quad \text { since } C \text { is a closed curve }
\end{aligned}
$$

Problem 5 (Scribe: Ling Shi)
(a) Let the tensor h on \mathbb{R}^{3} be defined by

$$
h=x d x \otimes d x-y z d x \otimes d z
$$

Let the vectors u and v be based at the point $(1,1,1)$ and have components given by $u=(1,-1,0)$ and $v=(0,-1,2)$. Compute $h(u, v)$.
(b) Let the vector field X be defined by

$$
X=x \frac{\partial}{\partial x}-z \frac{\partial}{\partial y}+y \frac{\partial}{\partial z} .
$$

Show that the flow F_{t} of X is defined for all time.
(c) Compute

$$
\left.\frac{d}{d t}\right|_{t=0} F_{t}^{*}(h \otimes d x)
$$

Solution for (a) As

$$
h(u, v)=\cdot\langle d x, u\rangle \cdot\langle d x, v\rangle-\langle d x, u\rangle \cdot\langle d z, v\rangle,
$$

and we have

$$
\langle d x, u\rangle=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]^{\prime}=1,\langle d x, v\rangle=0,\langle d z, v\rangle=2,
$$

we obtain

$$
h(u, v)=0-2=-2 .
$$

Solution for (b) We can write the system in ODE form as

$$
\begin{aligned}
\dot{x} & =x \\
\dot{y} & =-z \\
\dot{z} & =y
\end{aligned}
$$

and hence we can easily find the flow to be:

$$
F_{t}\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{0} e^{t}, y_{0} \cos t-z_{0} \sin t, y_{0} \sin t+z_{0} \cos t\right)
$$

which is clearly defined for all t.

Solution for (c) By the Lie-derivative formula,

$$
\left.\frac{d}{d t}\right|_{t=0} F_{t}^{*}(h \otimes d x)=\mathfrak{L}_{X}(h \otimes d x)
$$

It is easy to compute the following:

$$
\mathfrak{L}_{X} x=x, \mathfrak{L}_{X} d x=d x, \mathfrak{L}_{X} d z=d y, \mathfrak{L}_{X} y z=-z^{2}+y^{2} .
$$

Hence we obtain

$$
\mathfrak{L}_{X}(h \otimes d x)=4 x d x \otimes d x \otimes d x+\left(z^{2}-2 y z-y^{2}\right) d x \otimes d z \otimes d x-y z d x \otimes d y \otimes d x .
$$

Problem 6 (Scribe: Ling Shi)

(a) (i) Let M be a smooth connected, oriented n-manifold with boundary and $f: M \rightarrow$ N a smooth map to a k-manifold $N, k \geq n$. Suppose that α is a closed $n-1$-form on N and let $\beta=f^{*} \alpha$. Show that $\int_{\partial M} \beta=0$.
(ii) For β as in (a), show that $\mathbf{d} \beta$ must vanish somewhere in M.
(b) (i) Let S^{3} denote the three sphere, the subset of \mathbb{R}^{4} (with coordinates denoted $(w, x, y, z))$ defined by $w^{2}+x^{2}+y^{2}+z^{2}=1$. Show that S^{3} is a smooth manifold and describe its tangent space at a point (w, x, y, z).
(ii) Let β be the oneform on \mathbb{R}^{4} defined by

$$
\beta=x d w+w d x+w d z+z d w+y d z+z d y
$$

and let γ be the pull-back of β to S^{3} by the inclusion map $i: S^{3} \rightarrow \mathbb{R}^{4}$. Show that γ is closed.
(iii) Let D be defined as the set of all tangent vectors u to S^{3} that satisfy $\langle\gamma, u\rangle=0$. Identity an open set U of S^{3} on which D is a distribution (3-dimensional at each point of $U)$. Is D integrable on U ?

Solution for (a) (i)

$$
\int_{\partial M} \beta=\int_{M} d \beta=\int_{M} d f^{*} \alpha=\int_{M} f^{*} d \alpha=0 .
$$

Note that the first equality is from Stoke's Theorem and the last one follows from the fact that α is closed and hence $d \alpha=0$.

Solution for (a) (ii) As $\beta=f^{*} \alpha$ and f is smooth, α is a form and hence β is smooth. From (i),

$$
\int_{M} d \beta=0
$$

hence either $d \beta=0$ all over M or $d \beta$ has both positive and negative parts, hence by the continuity of $d \beta$, we conclude that $d \beta$ must vanish somewhere.

Solution for (b) (i) Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be defined by $f(x)=\|x\|^{2}$. Then it's clear that $S^{3}=f^{-1}(1)$. The derivative of f is surjective onto \mathbb{R} as $D f(x) \cdot v=2 x^{T} v$, and for any $a \in \mathbb{R}$, let $v=\frac{a x}{2\|x\|^{2}}$, we have $2 x^{T} v=a$. Therefore by the submersion theorem, S^{3} is a smooth manifold and the tangent space at a point $x \in S^{3}$ is given by

$$
T_{x} S^{3}=\operatorname{ker} D f(x)=\left\{v \in \mathbb{R}^{4}: x^{T} v=0\right\}
$$

which is a three dimensional hyperplane in \mathbb{R}^{4}.

Solution for (b) (ii) It's easy to compute that $d \beta=0$ and hence $d \gamma=d i^{*} \beta=i^{*} d \beta=0$, hence γ is closed.

Solution for (b) (iii) D is the set of all tangent vectors u to S^{3} such that $\langle\gamma, u\rangle=0$ which means that for any vector field X and Y in $D, i_{X} \gamma=i_{Y} \gamma=0$. One needs to check that the kernel of γ is two dimensional at each point of an open set U in S^{3}, to ensure that D is a distribution on that set.

Thus we have

$$
\begin{aligned}
i_{[X, Y]} \gamma & =\mathfrak{L}_{X} i_{Y} \gamma-i_{Y} \mathfrak{L}_{X} \gamma \\
& =-i_{Y} \mathfrak{L}_{X} \gamma \\
& =-i_{Y}\left(d i_{X} \gamma+i_{X} d \gamma\right) \\
& =0
\end{aligned}
$$

Hence $[X, Y] \in D$, i.e. D is involutive, and by Frobenious' Theorem, D is integrable.

