CDS 202 Final Examination

J. Marsden, March, 2003

Attempt five of the following six questions.
This exam has four pages including this cover page.
The exam time limit is three hours; no aids are permitted.
The exam must be turned in by noon on Friday, March 21.

Print Your Name:

The 5 questions to be graded:
You may freely use the following properties as needed. Here α and β are differential forms and X, Y, Z are vector fields on a manifold M. (In the exam, all manifolds, vector fields, and differential forms are assumed to be smooth and the manifolds are finite dimensional.)
(a) $£_{X}(\alpha \wedge \beta)=\left(£_{X} \alpha\right) \wedge \beta+\alpha \wedge\left(£_{X} \beta\right)$
(b) $£_{[X, Y]} \alpha=£_{X} £_{Y} \alpha-£_{Y} £_{X} \alpha$
(c) $\mathbf{i}_{X}(\alpha \wedge \beta)=\left(\mathbf{i}_{X} \alpha\right) \wedge \beta+(-1)^{k} \alpha \wedge\left(\mathbf{i}_{X} \beta\right)$, where α is a k-form.
(d) $£_{X} \alpha=\operatorname{di}_{X} \alpha+\mathbf{i}_{X} \mathbf{d} \alpha$
(e) $\mathbf{i}_{[X, Y]} \beta=£_{X} \mathbf{i}_{Y} \beta-\mathbf{i}_{Y} £_{X} \beta$
(f) For γ a one-form,

$$
\mathbf{d} \gamma(X, Y)=X[\gamma(Y)]-Y[\gamma(X)]-\gamma([X, Y])
$$

(g) For ω a two-form,

$$
\begin{aligned}
\mathrm{d} \omega(X, Y, Z)= & X[\omega(Y, Z)]-Y[\omega(X, Z)]+Z[\omega(X, Y) \\
& -\omega([X, Y], Z)-\omega([Z, X], Y)-\omega([Y, Z], X)
\end{aligned}
$$

(h) For a one form α and a vector field X,

$$
\left(£_{X} \alpha\right)_{i}=X^{j} \frac{\partial \alpha_{i}}{\partial x^{j}}+\alpha_{j} \frac{\partial X^{j}}{\partial x^{i}}
$$

1. (a) Let M be an n-manifold and suppose that X is a vector field on M and μ is a volume form on M. Show that

$$
£_{X} \mathbf{i}_{X} \mu=\mathbf{i}_{X} £_{X} \mu
$$

(b) Let the vector field X on \mathbb{R}^{3} be given by

$$
X=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+\frac{\partial}{\partial z} .
$$

Compute the flow F_{t} of X.
(c) Letting $\mu=d x \wedge d y \wedge d z$, and letting F_{t} be the flow found in (b), compute $F_{t}^{*} \mu$.
(d) Consider the two form ω on \mathbb{R}^{3} given by $\omega=\mathbf{i}_{X}(d x \wedge d y \wedge d z)$, where X is the vector field given in (b). Compute $£_{X} \omega$.
(e) Show that the standard volume form μ on the unit two sphere in \mathbb{R}^{3} is closed but is not exact.
2. Let $M=C^{2}$ be the cylinder with boundary in \mathbb{R}^{3} defined by the conditions $x^{2}+y^{2}=1$ and $0 \leq z \leq 1$. Let α be the one form on \mathbb{R}^{3} minus the z-axis defined by

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}+d f
$$

where $f(x, y, z)=\exp \left(x^{2}+y^{2}\right)$. Also, let the vector field X on \mathbb{R}^{3} be given by

$$
X=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+\frac{\partial}{\partial z}
$$

(a) Compute $\mathbf{d} \alpha$ and relate your result to the computation of the curl of a certain vector field in \mathbb{R}^{3}.
(b) Let $i: M \rightarrow \mathbb{R}^{3}$ be the inclusion and let $\beta=i^{*} \alpha$. Is β closed? exact? Compute the integral $\int_{\partial M} \beta$.
(c) In what sense does X define a vector field Y on M ?
(d) Compute the function $g=\mathbf{i}_{X} \alpha$.
(e) Compute $£_{Y} \beta$.
3. Let G denote the set of 3×3 real matrices A satisfying the condition $A K A^{T}=K$, where K is the 3×3 diagonal matrix with diagonal entries $1,2,-2$.
(a) Show that G is a Lie group; determine its Lie algebra \mathfrak{g}, and find the dimension of G.
(b) Find, explicitly, two elements ξ and η in the Lie algebra \mathfrak{g} such that the Lie bracket $[\xi, \eta]$ is not in the span of ξ and η.
(c) Let X_{ξ} and X_{η} be the left invariant vector fields on G equaling ξ and η at the identity and let D be the distribution that is spanned by X_{ξ} and X_{η}. Is D and integrable distribution?
(d) Let $f: G \rightarrow \mathbb{R}$ be defined by $f(A)=\operatorname{trace} A$. Show that f is a smooth function and compute the derivative of f at the identity element of G.
4. Let M be the hyperboloid with boundary in \mathbb{R}^{3} defined by the conditions $x^{2}+y^{2}-z^{2}=1$ and $-1 \leq z \leq 1$. Let $S=\partial M$ be its boundary.
(a) Give M and S consistent orientations; illustrate with a figure.
(b) Let α be a smooth closed one form defined on \mathbb{R}^{3} minus the z-axis and write α as

$$
\alpha=P d x+Q d y+R d z
$$

Write out what it means for α to be closed in terms of P, Q, R. Let β be the pull back of α to M. Show that β is closed. Must it be exact?
(c) Let $f: M \rightarrow \mathbb{R}$ be a given smooth real valued function. Show that for β as above,

$$
\int_{M} \mathbf{d} f \wedge \beta=\int_{S} f \beta
$$

(d) Let γ be a smooth closed two-form on \mathbb{R}^{3} minus the origin. Show that the integral of γ over the unit two sphere S^{2} defined by $x^{2}+$ $y^{2}+z^{2}=1$ equals the integral of γ over the two sphere of radius 2 defined by $x^{2}+y^{2}+z^{2}=4$.
5. (a) Let X be a complete smooth vector field on \mathbb{R}^{3} with flow F_{t}. Let S^{2} be the unit sphere in \mathbb{R}^{3} and let $S_{t}^{2}=F_{t}\left(S^{2}\right)$. Let β be a smooth two form on \mathbb{R}^{3}. Show that

$$
\int_{S^{2}} \mathbf{i}_{X} \mathbf{d} \beta=\left.\frac{d}{d t}\right|_{t=0} \int_{S_{t}^{2}} \beta
$$

(b) Let X be the vector field on \mathbb{R}^{3} defined by

$$
X=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+\frac{\partial}{\partial z},
$$

and let g denote the tensor field

$$
g=d x \otimes d x+\left(x^{2}+y^{2}\right) d x \otimes d y+d y \otimes d y
$$

i. Compute the interior product $\mathbf{i}_{X} g$.
ii. Compute the Lie derivative $£_{X} g$.
6. Let the one form β on \mathbb{R}^{3} be written as $\beta=P d x+Q d y+R d z$ and suppose that β is nonzero at every point. Let D be the pointwise twodimensional distribution defined at the point (x, y, z) to be the set of vectors with components (u, v, w) such that

$$
P u+Q v+R w=0
$$

(a) Find necessary and sufficient conditions involving the two-form $\mathbf{d} \beta$ for D to be integrable. Give an explicit example of such a β.
(b) Let X be a vector field such that $£_{X} \beta=0$. Show that, in an appropriate sense, the distribution D is invariant under the flow F_{t} of X.
(c) Let Y and Z be two (complete) linearly independent vector fields taking values in D and suppose that D is integrable. Let F_{t} be the flow of Y and let $c(s), 0<s<1$ be an integral curve of Z. Let S be the the collection of points of the form $F_{t}(c(s))$ for $0<t<1$ and $0<s<1$. Show that S is an integral manifold of D.

