
CDS 202 - Geometry of Nonlinear Systems
Winter 2003

Solution for Sample Final Exam (Winter 2002 Final)
March 14, 2003 ; Updated March 14, 4 p.m

This contains solutions to most of the 2002 Final. Solutions for 1, 2(a), 3 and 4 are from this year’s
scribe. In addition there are scanned solutions for all problems except Problem 2. These are from a student’s
solution from last year.

Problem 1 (Solution scribe : Ather Gattami, Winter 2003)

(i) Let’s first calculate the Lie-derivative for each component:

£X(g11) = x
∂

∂
g11 + y

∂

∂y
g11 = 4x2 + 0 = 4x2

£X(g12) = x
∂

∂x
x + 0 = x

£X(g21) = x

£X(g22) = 0 + y
∂

∂y
(1 + y2) = 2y2

£X(dx) = d£X(x) = dx

£X(dy) = d£X(y) = d(0 + y
∂

∂y
y) = dy

Hence,

g = (8x2 + 2)dx ⊗ dx + 3xdx ⊗ dy + 3xdy ⊗ dx + (4y2 + 2)dy ⊗ dy

(ii) The vector field is (X1, X2) = (x, y). The flow Ft is the solution to the system of equations
{

ẋ = x
ẏ = y

.

Thus, Ft = (xet, yet).

(iii) According to the Lie-derivative theorem, the expression to be calculated is simply £X(g).

Problem 2 - Part a (Solution scribe : Tosin Otitoju, Winter 2003)

Solution for (i)

α = − y
x2+y2 dx + x

x2+y2 dy + dz

Let

F1(x, y, z) = − y
x2+y2 ; F2(x, y, z) = x

x2+y2 ; F3(x, y, z) = 1
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Then

α = F1 dx + F2 dy + F3 dz

Taking the exterior derivative:

dα = d(F1 dx) + d(F2 dy) + d(F3 dz)
= dF1 ∧ dx + dF2 ∧ dy + dF3 ∧ dz

= (∂F2
∂x − ∂F1

∂y )dx ∧ dy + (∂F3
∂x − ∂F1

∂z )dx ∧ dz + (∂F3
∂y − ∂F2

∂z )dy ∧ dz

= 0

Since the Curl F = (∂F2
∂x − ∂F1

∂y ) i + (∂F3
∂x − ∂F1

∂z ) j + (∂F3
∂y − ∂F2

∂z ) k

Then it is clear that Curl F = 0.

Solution for (ii) β = i∗α

dβ = d(i∗α) = i∗(dα) = 0

so β is closed.

Problem 3 (Solution Scribe Jonathan Pritchard, Winter 2003)
Let O(4) denote the set of 4 × 4 real orthogonal matrices.

(a) Show that O(4) is a manifold and a Lie group; what is its dimension? Is it connected?

(b) Show that its Lie algebra consists of 4 × 4 skew matrices

(c) Let ξ and η be the Lie algebra elements

ξ =




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 ; η =




0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


 .

Compute the Lie algebra bracket [ξ, η].

(d) Let Xξ and Xη be the left invariant fields on O(4) equaling ξ and η at the identity and let D be the
distribution that is spanned by Xξ and Xη. Is D integrable?

Solution for (a) Consider GL(n, R), which we know is a Lie group. We seek to show that O(4) is a closed
subgroup of GL(n, R). If successful we know that O(4) is then a regular Lie subgroup and so a manifold and
a Lie group in its own right.

First recall the definition of O(4) in term of the standard inner product of matrices. For A, B ∈ O(4),

< Ax, Ay >=< x, y >,∀x, y ∈ R
4

We note that the standard matrix product AB lies within O(4)

< ABx, ABy >=< Bx, By >=< x, y >

and so conclude that O(4) forms a group under standard matrix multiplication.
To show that O(4) is closed consider the smoothly convergent sequence

An → A.
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If An ∈ O(4) satisfies
< Anx, Any >=< x, y >,

then by continuity of < ·, · > we must have

< Ax, Ay >=< x, y > .

From this we conclude that A ∈ O(4) and so O(4) is closed.
Invoking the deep property that a closed subgroup of a Lie group is a Lie subgroup we have that O(4) is

a Lie Group and so a manifold.

Alternative solution to (a) Work to show that O(4) is a Lie group directly from the definition. We
must show

(i) O(4) is a group

(ii) O(4) is a manifold

(iii) The group operation is smooth

We have already shown that O(4) is a group. In order to show (ii) we seek to invoke the submersion theorem
to show that O(4) is a submanifold and so a manifold. First we show that O(4) is the level set of some
function.

Define O(4) = {A ∈ 4 × 4 matrices |AAT = I}. Consider then the function

f : GL(4, R) → Sym(4, R), f(A) = AAT − I,

where Sym(n, R) is the set of real, symmetric 4× 4 matrices. We then have that O(4) = f−1(0), a level set.
Next we must show that f(A) is a submersion. The tangent map is

Df(A) · B = ABT + BAT .

To show that this is surjective ∀A ∈ O(4) we need C ∈ Sym(4, R) s.t. ABT + BAT = C. Notice that a
solution is

B =
CA

2
.

So TAf is surjective, f is a submersion and so by the Submersion Theorem O(4) is a manifold.
Finally we recall that standard matrix multiplication is a bilinear mapping

GL(n, R) × GL(n, R) → GL; A, B �→ AB.

This is a smooth mapping so the restriction of this mapping to O(4) is also smooth.
The Lie algebra of O(4) consists of skew-symmetric 4 × 4 matrices. The dimension is the number of

independent components of these matrices.

dim =
4(4 − 1)

2
= 6

O(4) is not connected. Considering the determinant map we see that det(A) = ±1. Examples of A
for these two cases are the identity and the identity with the sign of one diagonal element flipped. The
determinant map is continuous so if it takes only two discrete values by invocation of the intermediate value
theorem we see that O(4) must contain two disconnected parts.
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Solution for (b) Consider the tangent space at the identity. For a curve, A(t) through the identity
(A(0)=I) we have by the definition of O(4)

A(t)A(t)T = I.

We take the derivative of this along the curve

dA

dt
AT + A

dAT

dt
= 0.

Now evaluate at t=0
dA

dt
I + I

dAT

dt
= 0.

So at the identity
dA

dt
= −dAT

dt
.

Hence dA/dt|t=0 must be skew-symmetric. As O(4) is a manifold these curves passing through the identity
must represent the tangent space and so we conclude that the Lie Algebra of O(4) is skew-symmetric.

Alternative solution for (b) Using the function f(A) from (a) and the submersion theorem we have
that the tangent space at the identity is given by

TIO(4) = TIf
−1(0)

= kerTIf.

Evaluating this we see that
ker(Df) = ker(ABT + BAT ).

Setting A = I the right hand side becomes

ker(B + BT ).

So B and thus the Lie Algebra must be skew-symmetric.

Solution for (c) The Lie bracket in GL(n, R) is the matrix commutator, this is preserved under restriction
to O(4). So the Lie bracket is

[ξ, η] = ξη − ηξ.

Evaluating this yields

[ξ, η] =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 .

Solution for (d) First note that at each point dim D=2, ie the span of two vectors. To get a good
distribution we require that Xξ and Xη are linearly independent at each point. This is clearly true at the
identity, elsewhere we may apply a left translation to obtain the vectors at a new point. Left translation
is a diffeomorphism mapping basis to basis. It must be the case then that the two vectors are linearly
independent everywhere in O(4).

Now we seek to apply Frobenius’ theorem which states that the distribution will be integrable if it is
involutive. D is involutive if

∀X, Y ∈ D, [X, Y ] ∈ D.
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Check the two vector fields we’re given which span D and note that it will be enough to check at the identity
by the above argument. At the identity

[Xξ, Xη] = [ξ, η],

but from the result of (c) this is not expressible as a linear combination of ξ and η. Hence we conclude that
D is neither involutive nor integrable.

Problem 4 (Solution Scribe Melvin E. Flores, Winter 2003)
Let H denote the upper hemisphere in R

3 defined by

H = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1 and z ≥ 0}

and let S = ∂H be its boundary.

a) Give H and S consistent orientations; illustrate with a figure.

For this recall the picture drawn in class the boundary going counterclockwise and the normal vector
point outward from the surface.

b) Let α and β be one forms on H and let X be a vector field on H. Is it true that

∫
H

(£Xα) ∧ β − ∫
∂H

(iXα) ∧ β =
∫
H

(£Xβ) ∧ α − ∫
∂H

(iXβ) ∧ α?

Combining terms under common integrals:

∫
H

(£Xα) ∧ β − ∫
H

(£Xβ) ∧ α
?=

∫
∂H

(iXα) ∧ β − ∫
∂H

(iXβ) ∧ α

∫
H

(£Xα) ∧ β − (£Xβ) ∧ α
?=

∫
∂H

(iXα) ∧ β − (iXβ) ∧ α

Using α ∧ β = (−1)klβ ∧ α on the terms (£Xβ) ∧ α and (iXβ) ∧ α we can re-write the integral as
follows:

∫
H

(£Xα) ∧ β + α ∧ (£Xβ) ?=
∫

∂H

(iXα) ∧ β − α ∧ (iXβ)

Note that

(£Xα) ∧ β + α ∧ (£Xβ) = £X(α ∧ β) and (iXα) ∧ β − α ∧ (iXβ) = iX(α ∧ β)

Therefore, we can re-write the integrals more compactly as follows:

∫
H

£X(α ∧ β) ?=
∫

∂H

iX(α ∧ β)

Using Cartan’s magic formula £Xγ = diXγ + iXdγ we can write the integral on the left as follows:

∫
H

£X(α ∧ β) =
∫
H

diX(α ∧ β) +
∫
H

iXd(α ∧ β)

Note that the last term on the right is zero because the manifold in consideration here is two-
dimensional, (α ∧ β) is a two form and d(α ∧ β) is a three-form. Consequently we have that
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∫
H

£X(α ∧ β) =
∫
H

diX(α ∧ β)

Using Stokes’ theorem

∫
H

£X(α ∧ β) =
∫
H

diX(α ∧ β) =
∫

∂H

iX(α ∧ β)

therefore, the relation

∫
H

£X(α ∧ β) =
∫

∂H

iX(α ∧ β)

is true.

c) Let α be the one form on R
3 defined by

α = x dy−y dx
x2+y2 + dz

a let β be α pulled back to H. Compute

∫
H

dβ

The one form α is not continuously differentiable in the region of interest so we may question its
integrability. One solution

Let β = i∗α then

∫
H

dβ =
∫
H

d(i∗α)

Since i∗ ◦ d = d ◦ i∗

∫
H

dβ =
∫
H

d(i∗α) =
∫
H

i∗(dα)

Since dα = 0 from Problem 2 - Part a then

∫
H

dβ =
∫
H

d(i∗α) =
∫
H

i∗(dα) = 0

The other interpretation of
∫

H dβ gives the answer 2π :
∫

H

dβ =
∫

∂H

β =
∫

C

xdy − ydx

x2 + y2
= 2π

where C is the unit circle in the x-y plane. This inconsistency is a sign that something is wrong. Indeed
what is wrong is the singularity at origin.
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