CDS 202 Final Examination

J. Marsden, March, 2002

Attempt five of the following six questions.
This exam has four pages including this cover page.
The exam time limit is three hours; no aids are permitted.
The exam must be turned in by 5pm on Tuesday, March 19.

Print Your Name:

The 5 questions to be graded:
You may freely use the following properties as needed. Here α and β are differential forms and X, Y, Z are vector fields on a manifold M. (In the exam, all manifolds, vector fields, and differential forms are assumed to be smooth and the manifolds are finite dimensional.)
(a) $£_{X}(\alpha \wedge \beta)=\left(£_{X} \alpha\right) \wedge \beta+\alpha \wedge\left(£_{X} \beta\right)$
(b) $£_{[X, Y]} \alpha=£_{X} £_{Y} \alpha-£_{Y} £_{X} \alpha$
(c) $\mathbf{i}_{X}(\alpha \wedge \beta)=\left(\mathbf{i}_{X} \alpha\right) \wedge \beta+(-1)^{k} \alpha \wedge\left(\mathbf{i}_{X} \beta\right)$, where α is a k-form.
(d) $£_{X} \alpha=\operatorname{di}_{X} \alpha+\mathbf{i}_{X} \mathbf{d} \alpha$
(e) $\mathbf{i}_{[X, Y]} \beta=£_{X} \mathbf{i}_{Y} \beta-\mathbf{i}_{Y} £_{X} \beta$
(f) For γ a one-form,

$$
\mathbf{d} \gamma(X, Y)=X[\gamma(Y)]-Y[\gamma(X)]-\gamma([X, Y])
$$

(g) For ω a two-form,

$$
\begin{aligned}
\mathrm{d} \omega(X, Y, Z)= & X[\omega(Y, Z)]-Y[\omega(X, Z)]+Z[\omega(X, Y) \\
& -\omega([X, Y], Z)-\omega([Z, X], Y)-\omega([Y, Z], X)
\end{aligned}
$$

(h) For a one form α and a vector field X,

$$
\left(£_{X} \alpha\right)_{i}=X^{j} \frac{\partial \alpha_{i}}{\partial x^{j}}+\alpha_{j} \frac{\partial X^{j}}{\partial x^{i}}
$$

1. Consider the two-tensor on \mathbb{R}^{2} given by

$$
g=g_{11} d x \otimes d x+g_{12} d x \otimes d y+g_{21} d y \otimes d x+g_{22} d y \otimes d y
$$

in standard coordinates (x, y) on \mathbb{R}^{2}, where the matrix $g_{i j}$ is given by

$$
g_{i j}=\left(\begin{array}{cc}
1+2 x^{2} & x \\
x & 1+y^{2}
\end{array}\right)
$$

and the vector field X on \mathbb{R}^{2} defined by

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}
$$

(a) Compute the Lie derivative $£_{X} g$.
(b) Find the flow F_{t} of X.
(c) Compute $\left.\frac{d}{d t}\right|_{t=0} F_{t}^{*} g$.
2. (a) Let $M=S^{2}$ be the standard two sphere of radius 1 in \mathbb{R}^{3}. Let α be the one form on \mathbb{R}^{3} minus the origin defined by

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}+d z
$$

i. Compute $\mathbf{d} \alpha$ and interpret your result in standard vector calculus language.
ii. Let $i: M \rightarrow \mathbb{R}^{3}$ be the inclusion and let $\beta=i^{*} \alpha$. Is β closed? exact?
(b) Let the Lie group S^{1} act on M by rotations around the z-axis. Specifically, for $\theta \in S^{1}$, regarded as angles $\bmod 2 \pi$, the action of θ is by rotation about the z-axis through the angle θ. Let X be the infinitesimal generator corresponding to the Lie algebra element 1 and let μ be the standard volume element on M.
i. Compute X
ii. Compute $\mathbf{i}_{X} \mu$
iii. Compute $\operatorname{div}_{\mu} X$
3. Let $\mathrm{O}(4)$ denote the set of 4×4 real orthogonal matrices.
(a) Show that $\mathrm{O}(4)$ is a manifold and a Lie group; what is its dimension? is it connected?
(b) Show that its Lie algebra consists of 4×4 skew matrices
(c) Let ξ and η be the Lie algebra elements

$$
\xi=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) ; \quad \eta=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Compute the Lie algebra bracket $[\xi, \eta]$.
(d) Let X_{ξ} and X_{η} be the left invariant vector fields on $\mathrm{O}(4)$ equaling ξ and η at the identity and let D be the distribution that is spanned by X_{ξ} and X_{η}. Is D integrable?
4. Let H denote the upper hemisphere in \mathbb{R}^{3} defined by

$$
H=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1 \quad \text { and } \quad z \geq 0\right\}
$$

and let $S=\partial H$ be its boundary.
(a) Give H and S consistent orientations; illustrate with a figure.
(b) Let α and β be one forms on H and let X be a vector field on H. Is it true that

$$
\int_{H}\left(£_{X} \alpha\right) \wedge \beta-\int_{S}\left(\mathbf{i}_{X} \alpha\right) \wedge \beta=\int_{H}\left(£_{X} \beta\right) \wedge \alpha-\int_{S}\left(\mathbf{i}_{X} \beta\right) \wedge \alpha ?
$$

(c) Let α be the one form on \mathbb{R}^{3} defined by

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}+d z
$$

and let β be α pulled back to H. Compute

$$
\int_{H} \mathbf{d} \beta .
$$

5. (a) Let X be a vector field on a manifold M of dimension n and let N be a submanifold of dimension $n-1$. Suppose that X is parallel to N. Let γ be an n-form on M and let $i: N \rightarrow M$ be the embedding map. Is it true that $i^{*}\left(\mathbf{i}_{X} \gamma\right)=0$?
(b) Suppose that (M, μ) is a volume manifold with boundary and X is a divergence free vector field on M that is parallel to the boundary. For functions f, g on M, is it true that

$$
\int_{M}\left(£_{X} f\right) g \mu=-\int_{M}\left(£_{X} g\right) f \mu ?
$$

6. Let the one form β on \mathbb{R}^{3} be defined by

$$
\beta=\left(1+y^{2}\right) d x+2 x y d y+z d z
$$

and let D be the distribution defined at the point (x, y, z) to be the set of vectors with components (u, v, w) such that

$$
\left(1+y^{2}\right) u+2 y x v+z w=0
$$

(a) Compute the exterior derivative $\mathbf{d} \beta$
(b) Is the distribution D integrable? Answer this in two ways
i. By using the Frobenius theorem directly
ii. By using a property of β
(c) Find a nonzero vector field X on \mathbb{R}^{3} such that $£_{X} \beta=0$. [HINT: Try the vector field $X=(U, 0,0)$, where $U(x, y, z)=1 /\left(1+y^{2}\right)$.] Show that, in an appropriate sense, the distribution D is invariant under the flow F_{t} of X.

