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two lectures of course CDS 140b: Introduction to Dynamics
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Sigrid Leyendecker
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1 Numerics of ODEs

1.1 Introduction

P. Deuflhard and F. Bornemann: Scientific computing with ordinary differential equations.
Springer, 2002.

Consider the planar pendulum as a motivating example. One is interested in the points in
space, where the point mass m is located at a certain time, if the pendulum is released at
an initial configuration q(t0) with a certain initial velocity q̇(t0). Let q denote the angle
measured against the vertical as depicted in Figure 1. Then the trajectory q(t) ∈ Rn (in this
case n = 1) yields the evolution of this angle. With the fixed length l, the positions of the
point mass in the plane can then be computed.

Figure 1: Planar pendulum.

The evolution of the angle q(t) in the time interval [a, b] consists of infinitely many values.
Since computers can handle only finite sets of data, the solution is approximated on a time-
grid

∆ = {t0, . . . , tN |a = t0 < t1 < . . . < tN = b}

Let
τk = tk+1 − tk

denote the time-step and
τ∆ = max

0≤k<N
τk
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the maximal step-size of the mesh. A time-stepping method yields a sequence of discrete
configurations {qk}

N
k=0 that approximate the real trajectory qk ≈ q(tk).

Intuitively speaking: if the approximate solution get closer and closer to the real motion for
decreasing time-steps as in Figure 2, then the method is converging.
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Figure 2: Convergence of approximations to a reference solution for decreasing time-steps.

Two important questions on a numerical scheme:

· Does it converge?

· Does it yield realistic solutions?

Non-converging methods do not make sense. For a converging method, unrealistic behaviour
(like artificial energy gain or dissipation) improves for decreasing time-steps. However there
are methods, that yield realistic behaviour even for relatively large time-steps, e.g. the me-
chanical integrators in Section 2 and 3.

1.2 Example of an explicit one-step scheme: forward Euler

Approximate the solution x ∈ C1([a, b],Rn) of the initial value problem

x′ = f(t, x) x(t0) = x0 (1)

by the recursive iteration
xk+1 = xk + τk f(tk, xk) (2)

in this case, the derivative x′ has been replaced by a forward difference quotient

xk+1 − xk

τk
≈ x′(tk) = f(tk, xk)

It is called an explicit scheme, since knowing xk, one can directly compute xk+1. The
geometric interpretation of (2) is that during one time-interval, the curve is approximated
by the tangent at the beginning of the time-interval, see Figure 3.
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Figure 3: Geometry of forward Euler scheme.

1.3 Example of an implicit one-step scheme: backward Euler

Approximating x′ in (1) by a backward difference quotient

xk+1 − xk

τk
≈ x′(tk+1) = f(tk+1, xk+1)

yields the backward Euler scheme

xk+1 = xk + τk f(tk+1, xk+1) (3)

which is implicit since due to the presence of the unknown xk+1 on the right hand side, the
discrete equation of motion (3) has to be solved iteratively.

The term ’one-step scheme’ stems from the fact that only one time-interval [tk, tk+1] is
considered in (2) or (3) and xk+1 is computed based on the knowledge of xk. There also exist
multi-step methods as e.g. the variational integrator presented in Section 3.

1.4 Consistency, stability and convergence

Definition 1.1 A function f : [a, b] × Rn is globally Lipschitz continuous in x, if

∃L > 0 ||f(t, x1) − f(t, x2)|| ≤ L||x1 − x2|| ∀t ∈ [a, b] ∀x1, x2 ∈ R
n (4)

For a globally Lipschitz-continuous right hand side of an initial value problem, the following
existence and uniqueness theorem by Picard-Lindelöf holds.

Theorem 1.2 (Picard-Lindelöf) Let f be globally Lipschitz-continuous in x. Then, for every
x0 ∈ Rn and every t0 ∈ [a, b], there exists one and only one solution x ∈ C1([a, b],Rn) of the
initial value problem (1).

Remark 1.3 Often, the Lipschitz-condition (4) holds only locally, i.e. for x1, x2 ∈ Ω ⊂ Rn.
Then it can happen that the solution does not exist on the whole interval [a, b], but only on
a smaller time-interval [α, β] ⊂ [a, b], α ≤ t0 ≤ β.
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For the initial value problem (1), the following notation is called the evolution of the ODE

φt,t0x0 = x(t) for x(t0) = x0

It has the following properties:

· φt0,t0x0 = x0

· d

dτ
φt+τ,tx|τ=0

= f(t, x)

· φt,σφσ,sx = φt,sx

Remark 1.4 For autonomous initial value problems

x′ = f(x) x(t0) = x0

the value of the initial time plays no role and can be assumed to be zero. Here, for t ∈ [a, b],
the one-parameter family φt : Rn → Rn of transformations given by

φtx0 = φt,0x0 = x(t) for x(0) = x0

is called the phase flow of the autonomous initial value problems while the trajectory or
orbit through x0 ∈ Rn reads

γ(x0) = {φtx0|t ∈ [a, b]}

Definition 1.5 The computational process for the approximation x∆(ti) = xi is called one-
step scheme if, for all meshes ∆, it can be described by a two-term relation

· x∆(t0) = x0

· x∆(tk+1) = ψtk+1,tkx∆(tk), k = 1, . . . , N − 1

with the discrete evolution ψ being independent of the time-grid ∆.

Definition 1.6 The difference

ǫ(t, x, τ) = φt+τ,tx− ψt+τ,tx

is called consistency error of the discrete evolution ψ, and it is called consistent if

ǫ(t, x, τ) = o(τ) for τ → 0 (5)

Remark 1.7 Property (5) is equivalent to ψ having the form

ψt+τ,tx = x+ τψ(t, x, τ) with ψ(t, x, 0) = f(t, x)

By setting ψ(t, x, τ) = f(t, x) one can see that the forward Euler scheme is consistent.
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Remark 1.8 (Landau symbols) Consider the functions g, h : R → R. Then g(x) ∈ O(h(x)),
or in slightly abused notation g(x) = O(h(x)), means that h is an asymptotic upper bound
on g (up to constant factor), i.e.

∃C > 0 ∃x0 such that ∀x > x0 |g(x)| < C|h(x)|

On the other hand, g(x) ∈ o(h(x)), or in slightly abused notation g(x) = o(h(x)), means
that g is dominated by h asymptotically, i.e.

∀C > 0 ∃x0 such that ∀x > x0 |g(x)| < C|h(x)|

Thus the function h(x) grows much faster than g(x) and lim
x→∞

g(x)

h(x)
= 0.

Definition 1.9 The discrete evolution ψ has consistency order p, if the consistency error
satisfies

ǫ(t, x, τ) = O(τp+1) for τ → 0

Thus a discrete evolution with consistency order p > 0 is indeed consistent.

Definition 1.10 The vector valued mapping

ǫ∆ : ∆ → R
n ǫ∆(t) = x(t) − x∆(t)

is called the mesh error and its norm

||ǫ∆||∞ = max
t∈∆

|ǫ∆(t)|

the discretisation error .

Definition 1.11 Suppose that for any mesh ∆ on [a, b] a mesh function x∆ is given. Then
x∆ converges to the solution x ∈ C1([a, b],Rn) of the initial value problem (1) of the dis-
cretisation errors satisfy

||ǫ∆||∞ → 0 for τ → 0

The convergence is of order p if

||ǫ∆||∞ = O(τp

∆) for τ → 0

Remark 1.12 The consistency error ǫ represents the error in just one iteration, while the
mesh error ǫ∆ describes the error of the whole approximation.

Theorem 1.13 Let x ∈ C1([a, b],Rn) be the solution of the initial value problem (1) whose
right hand side f is globally Lipschitz-continuous. Further let the discrete evolution ψt+τ,t be
consistent of order p and have a globally Lipschitz-continuous increment function ψ(t, x, τ).
Then the discrete mesh function x∆ converges with order p to the trajectory x(t).

Remark 1.14 Often Lipschitz-continuity of the increment function ψ(t, x, τ) is referred to as
stability. Then

consistency of order p + stability =⇒ convergence of order p

The forward Euler scheme is convergent with order 1.
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2 Simulating Hamiltonian dynamics

B. Leimkuhler and S. Reich: Simulating Hamiltonian dynamics. Cambridge, 2004.

The forward and backward Euler schemes are discretisations of the initial value problem
in (1), the can be applied to general ODEs of that form. While they are converging time-
stepping schemes, they lack the ability to represent certain important properties of real
motion correctly.

Let q ∈ Q denote the configuration variable in the configuration manifold Q. Then velocity
q̇ ∈ TqQ belongs to the tangent space TqQ which is a linear space attached to Q at the
configuration or base point q. The Hamiltonian H : T ∗Q → R of a mechanical system is
formulated in terms of the configuration q and the conjugate momentum p ∈ T ∗

q Q whereby
T ∗

q Q represents the dual space of TqQ. In gneral, the Hamiltonian consists of the sum of
kinetic and potential energy, thus H(q, p) = 1

2m
p2 + V (q), where m denotes the mass.

First integrals In previous lectures it has been explained that a function f which Poisson-

commutes with the Hamiltonian is conserved along the Hamiltonian flow, i.e.
df

dt
= {f,H} =

0. This can also be phrased in terms of Noether’s theorem stating that the invariance of the
Hamiltonian with respect to specific manipulations of it’s arguments leads to a conserved
quantity, a so-called first integral of the motion. Considering the dynamics of mechanical
systems, the following first integrals are the most common.

invariance with respect to conservation of
time reparametrisation =⇒ Hamiltonian (total energy)
translation in space =⇒ linear momentum
rotation in space =⇒ angular momentum

Mechanical integrators are designed to inherit the conservation properties of the real motion
to the approximate trajectory. To achieve that, they exploit the structure of the underlying
ODEs.

Hamilton’s equations Collecting the configuration and momentum in the phase variable
z = (q, p) ∈ T ∗Q, Hamilton’s equations of motion read

ż = XH(z) (6)

with the Hamiltonian vector field

XH(z) = J · ∇H(z) =









∂H

∂p

−
∂H

∂q









(7)

and the symplectic matrix J =

(

0 I

−I 0

)

. Here I denotes the n× n identity matrix.
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Energy-momentum scheme The concept of discrete derivatives introduced by Gonzalez
in
O. Gonzalez: Time Integration and Discrete Hamiltonian Systems. J. Nonlinear Sci., 6,
499-467, 1996.
is based on the discretisation of (6) via

zk+1 − zk = τkXH(zk, zk+1) (8)

whereby the discrete Hamiltonian vector field XH can be viewed as an approximation of
the exact Hamiltonian vector field XH at the midpoint zk+

1

2

= 1

2
(zk+1 + zk), in particular

XH(zk, zk+1) ≈ XH(zk+
1

2

) and (7) becomes

XH(zk, zk+1) = J · DH(zk, zk+1) =

(

DpH(zk, zk+1)

−DqH(zk, zk+1)

)

Note that DqH(zk, zk+1) denotes the discrete derivative with respect to the configuration
while DpH(zk, zk+1) denotes the discrete derivative with respect to the conjugate momentum.

Definition 2.1 (Discrete derivative) A discrete derivative for a smooth function
f : T ∗Q → R is a mapping Df : T ∗Q× T ∗Q → R2n with the following properties:

(i) Directionality: Df(x, y) · (y − x) = f(y) − f(x) for all x, y ∈ T ∗Q

(ii) Consistency: Df(x, y) = Df (w) + O
(∥

∥y − x
∥

∥

)

for all x, y ∈ T ∗Q

with
∥

∥y − x
∥

∥ sufficiently small

Here w = 1

2
(x+ y) and

∥

∥ ·
∥

∥ denotes the standard Euclidian norm in R2n.

Example 2.2 (Discrete derivative) A general example of a discrete derivative is given by

Df(zk, zk+1) = Df
(

zk+ 1

2

)

+
f(zk+1) − f(zk) −Df(zk+

1

2

) · (zk+1 − zk)
∥

∥zk+1 − zk

∥

∥

2
(zk+1 − zk)

which is a second-order approximation to the exact derivative at the midpoint zk+ 1

2

=
1

2
(zk + zk+1).

Proposition 2.3 (Energy conservation) With this construction, the Hamiltonian H is con-
served along a solution sequence (zk)k∈N

of (8) in the sense that
H(zk+1) −H(zk) = 0 for all k ∈ N.

3 Geometric numerical integration

E. Hairer, C. Lubich and G. Wanner: Geometric numerical integration: structure-preserving
algorithms for ODEs. Springer, 2002.
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Euler-Lagrange equations The following variational time-stepping scheme exploits the
variational structure that leads to a specific set of ODEs, namely the Euler-Lagrange equa-
tions of motion.

original curve

varied curve

Figure 4: Variation of trajectory.

In general, the Lagrangian L : TQ → R of a mechanical system consists of the difference of
the kinetic energy and a potential, thus L(q, q̇) = m

2
q̇2 − V (q). Then a variational principle,

namely Hamilton’s principle of stationary action, states that a real trajectory is a stationary
point of the action

S(q) =

∫ b

a

L(q, q̇) dt (9)

For all variations δq(t) ∈ TQ with δq(a) = δq(b) = 0, see Figure 4,

δS = δ

∫ b

a

L(q, q̇) dt =

∫ b

a

∂L(q, q̇)

∂q
δq+

∂L(q, q̇)

∂q̇
δq̇ dt =

∫ b

a

[

∂L(q, q̇)

∂q
−

d

dt

(

∂L(q, q̇)

∂q̇

)]

δq dt

whereby integration by parts and the fact δq̇ =
d

dt
δq have been used. Thus, a trajectory is

a solution of the Euler-Lagrange equations of motion

∂L(q, q̇)

∂q
−

d

dt

(

∂L(q, q̇)

∂q̇

)

= 0 (10)

Variational integrators In the context of variational integrators, see

J.E. Marsden and M. West: Discrete mechanics and variational integrators. Acta Numerica,
357-514, 2001.

instead of discretising the equation of motion (10), the variational principle is discretised.
The Lagrangian is replaced by a discrete Lagrangian Ld : Q×Q → R which approximates
the integral of the continuous one over one time interval

Ld(qk, qk+1) ≈

∫ tk+1

tk

L(q, q̇) dt
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Examples of discrete Lagrangians read

· midpoint rule

Ld(qk, qk+1) = τkL

(

qk + qk+1

2
,
qk+1 − qk

τk

)

= τk

[

m

2

(qk+1 − qk)
2

τ 2
k

− V (qk+ 1

2

)

]

(11)

· trapezoidal rule: Newmark with γ =
1

2
and β = 0

Ld(qk, qk+1) =
τk

2
L

(

qk,
qk+1 − qk

τk

)

+
τk

2
L

(

qk+1,
qk+1 − qk

τk

)

= τk

[

m

2

(qk+1 − qk)
2

τ 2
k

−
1

2
(V (qk) + V (qk+1))

]

· explicit scheme

Ld(qk, qk+1) = τkL

(

qk,
qk+1 − qk

τk

)

= τk

[

m

2

(qk+1 − qk)
2

τ 2
k

− V (qk)

]

The action integral (9) is now approximated by a discrete action sum

Sd =

N−1
∑

k=0

Ld(qk, qk+1)

original con�guration

varied con�guration

Figure 5: Discrete variation of discrete trajectory.

A discrete variational principle states that for all discrete variation sequences {δqk}
N
n=0 with

fixed end points δq0 = δqN = 0, see Figure 5, the discrete action must be stationary, i.e.

δSd =

N−1
∑

k=0

D1Ld(qk, qk+1)δqk +D2Ld(qk, qk+1)δqk+1

= D1Ld(q0, q1)δq0 +

N−1
∑

k=1

(D2Ld(qk−1, qk) +D1Ld(qk, qk+1)) δqk +D2Ld(qN−1, qN)δqN
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This yields the discrete Euler-Lagrange time-stepping scheme

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0 (12)

for k = 1, . . . , N − 1, thus one obtains {qk}
N
k=2. (12) is a two-step scheme. For a given initial

configuration q0 and velocity q̇0, or corresponding initial conjugate momentum p0 = mq̇0,
the first unknown configuration q1 can be determined using the discrete Legendre transform

pk = −D1L(qk, qk+1)

With regard to (12), it also holds

pk = D2L(qk−1, qk)

Just as n second-order ODEs can be transformed in 2n first-order ODEs, the n-dimensional
two-step scheme can be transformed into a 2n-dimensional one-step scheme reading

pk = −D1L(qk, qk+1)
pk+1 = D2L(qk, qk+1)

that defines {(qk, pk)}
N
k=1. However, in terms of computational costs, it is usually less ex-

pensive, to solve the n-dimensional system (12) for the configurations and to determine the
conjugate momenta afterwards in a post-processing step.

Energy behaviour The discrete trajectory is not exactly energy-conserving, however, it has
good energy behaviour in the sense that the energy oscillates with small amplitudes close to
the correct value.

Symplecticity Consider two vectors ξ = (ξq, ξp), η = (ηq, ηp) ∈ R2 and the area of a
parallelogram spanned by them

ω(ξ, η) = det

(

ξq ηq

ξp ηp

)

= ξqηp − ξpηq = ξT · J · η

A linear map A : R2 → R2 is called symplectic (area preserving, see Figure 6) if

ω(ξ, η) = ω(A · ξ, A · η) ⇐⇒ AT · J ·A = J

A nonlinear map, as e.g. the discrete evolution ψ : (qk, pk) 7→ (qk+1, pk+1) corresponding
to the discrete Euler-Lagrange equations (12), is called symplectic, if its Jacobian Dψ is
symplectic, i.e.

DψT · J ·Dψ =

(

∂(qk+1, pk+1)

∂(qk, pk)

)T

· J ·
∂(qk+1, pk+1)

∂(qk, pk)
= J

Details can be found in the mentioned literature, however, a necessary condition for sym-
plecticity of an integrator is that the Jacobi-determinant of the discrete flow ψ is equal to
one along the trajectory, i.e.

detDψ = det
∂(qk+1, pk+1)

∂(qk, pk)
= 1 (13)
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Figure 6: Symplecticity (area preservation) of a linear map.

Symmetry – reversibility in time Let ρ : R2n → R2n be an invertible linear transformation,

e.g. ρ =

(

I 0
0 −I

)

which is for n = 1 the reflection at the q-axis. The evolution of an

initial value problem is reversible if it fulfills the property

ρ ◦ φt+τ,tx = φt−τ,tρ ◦ x

Figure 7: Reversible evolution.

The Hamiltonian H(q, p) = 1

2m
p2 + V (q) as well as the Lagrangian L(q, q̇) = m

2
q̇q − V (q) are

obviously invariant with respect to that transformation, H(q, p) = H(q,−p) and L(q, q̇) =
L(q,−q̇). Therefore, they have reversible flows.
An analogous property of a one-step method is that the discrete evolution is symmetric or
reversibile in time. It reads

ψtk+τk,tk ◦ ψtk+1−τk ,tk+1 = I (14)

and means that the system travels backward on exactly the same discrete trajectory if the
time-step τ is replaced by −τ .
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4 Constrained dynamics

So far, the planar pendulum has been formulated in terms of a 1-dimensional configuration
variable, the angle relative to the vertical, see Figure 1. Such a formulation, in which the
number of unknowns and therefore the dimension of the equations of motion is minimal
is called a formulation in generalised coordinates. The number of generalised coordinates
equals the number of degrees of freedom of the system. However, the pendulum could also be
formulated in terms of the Cartesian coordinates of the point mass in the plane, see Figure
8.

Figure 8: Planar pendulum in constrained coordinates.

Then the configuration q ∈ R2 is constrained by m = 1 condition

g(q) =
1

2
(||q||2 − l2) = 0

Thus the configuration is constrained to the circle S1
l of radius l. This circle is called the

constraint manifold for the pendulum. It is generally defined as

C = {q ∈ R
n|g(q) = 0}

which is n −m-dimensional. Thus for the planar pendulum in Cartesian coordinates, the
constraint manifold is the circle C = S1

l which is n−m = 2 − 1 = 1-dimensional. Likewise,
velocities are constrained to the tangent space of the constraint manifold.

TC = {(q, q̇) ∈ TQ|g(q) = 0, Dg(q) · q̇ = 0}


