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Abstract

This paper demontrates that the conditions for the existence of a
dissipation-induced heteroclinic orbit between the inverted and nonin-
verted states of a tippe top are determined by a complex version of
the equations for a simple harmonic oscillator: the modified Maxwell–
Bloch equations. A standard linear analysis reveals that the modified
Maxwell–Bloch equations describe the spectral instability of the non-
inverted state and Liapunov stability of the inverted state. Standard
nonlinear analysis based on the energy-momentum method gives neces-
sary and sufficient conditions for the existence of a dissipation-induced
connecting orbit between these relative equilibria.

1 Introduction

Tippe tops come in a variety of forms. The most common geometric form is
a cylindrical stem attached to a truncated ball, as shown in Figure 1.1. On
a flat surface, the tippe top will rest stably with its stem up. However, spun
fast enough on its blunt end, the tippe top momentarily defies gravity, inverts,
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and spins on its stem until dissipation causes it to slow down and then fall
over. This spectacular sequence of events occurs because, and in spite of,
dissipation.

(a) noninverted (b) inverted (c) heteroclinic connection

Figure 1.1: Tippe Top Relative Equilibria & Heteroclinic Orbit. The noninverted
and inverted states of the tippe top, and a still of a numerical simulation of the heteroclinic
connection between these states. For movies of numerical simulations with discussion the
reader is referred to [5].

Tippe top inversion is a tangible illustration of dissipation-induced insta-
bilities, relative equilibria, and the energy-momentum method. Tippe top
inversion can be understood by analyzing a system known as the modified
Maxwell–Bloch equations [5]. These equations are a complex version of
the simple harmonic oscillator and a generalization of a previously derived
normal form describing dissipation-induced instabilities in the neighborhood
of the 1:1 resonance [16].

Tippe top inversion has been much investigated in the literature. The
reader is referred to the works of Cohen [17], Or [33], Ebenfeld and Scheck [18],
and Bou-Rabee et al. [5] for surveys of the literature. A key observation made
by previous investigators is that one must include friction to model tippe top
inversion, and in the limit of zero and infinite friction, tippe top inversion
does not occur in the model. In the limit of zero friction, the model tippe
top is a holonomic, Hamiltonian system. In the limit of infinite friction, it
becomes a nonholonomic, Hamiltonian system [1; 4]. Thus, to analyze tippe
top inversion one does not model the system as a nonholonomic Hamiltonian
or holonomic Hamiltonian system. Rather, it is modelled as a holonomic,
dissipative Hamiltonian system.

Mechanism behind tippe top inversion. The tippe top inverts because
it is energetically favorable to do so. This can be made precise in the context
of the following mathematical model of a tippe top.



1 Introduction 354

Consider a sphere on a surface with an axisymmetric mass distribution,
such that the sphere’s center of mass is on its axis of symmetry, but not
at its geometric center. The noninverted (inverted) state of the spherical
tippe top corresponds to the gravitationally stable (unstable) state in which
the sphere is spinning about the vertical direction and the sphere’s center
of mass is below (above) the geometric center of the sphere. These states
model the noninverted and inverted states of a realistic tippe top as depicted
in Figures 1.1(a) and 1.1(b). It is assumed that the sphere is in point-contact
with the surface, and that the friction the sphere perceives is proportional
only to the velocity of this point of contact. As a consequence the noninverted
and inverted states of the spherical tippe top become steady-state phenomena,
since the contact point is stationary at these states.

Let π be the spatial angular momentum of the spherical tippe top and q
the vector connecting its center of mass to the contact point on the surface
(cf. Figure 3.1). The Jellett momentum map (or Jellett invariant), J , is
defined as

J = −π · q. (1.1)

Due to an infinitesimal symmetry of the forces the spherical tippe top perceives
with respect to the generator of rotations about q, J is conserved along the
flow of the tippe top. J is the momentum map corresponding to rotations
about q on the configuration space of the tippe top. To learn more about
momentum maps the reader is referred to [27].

With this conservation law, a simple energy argument intuitively explains
tippe top inversion. Consider the two energy states of the tippe top cor-
responding to the noninverted and inverted states. In the noninverted (in-
verted) state, the contact vector is alligned to the direction of gravity and has
smallest (largest) magnitude. Thus, the gravitational potential energy of the
noninverted state is smaller than that of the inverted state.

Yet, assuming J is some fixed value C, the rotational kinetic energy of the
noninverted state is larger than the rotational kinetic energy of the inverted
state. This is because in the inverted state the contact vector is longer, and
hence, from J = C the inverted state is spinning slower than the noninverted
state. If the initial spin rate is fast enough, this drop in rotational kinetic
energy overwhelms the increase in gravitational potential energy. In this case
the point which minimizes total energy is the inverted state. This argument
is made precise in theorem 5.2; the main result of the paper. This theorem
requires some knowledge of dissipation-induced instabilities and heteroclinic
orbits, which we review here for the reader’s convenience.

Dissipation-Induced Instabilities. In the context of this paper, dissipa-
tion is understood as an energy-decreasing nonconservative force. Dissipation
plays a key role in enabling the spherical tippe top to access different points on
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the Jellett momentum level set. The theory of dissipation-induced insta-
bilities provides a mathematical framework to study the effect of dissipation
on the stability of Hamiltonian systems. A dissipation-induced instability
describes a neutrally stable equilibrium becoming spectrally (and hence Lia-
punov) unstable with the addition of dissipation. This phenomenon is counter
to one’s intuition since one expects that dissipation stabilizes neutrally stable
equilibria. Yet, dissipation can also play a stabilizing role as evidenced in
the spherical tippe top’s inversion. To clarify these statements, the following
introduction to the theory of dissipation-induced instabilities is provided.

Let M,G,K ∈ L(Rn,Rn) and assume M is a symmetric positive-definite
matrix. The setting of the theory of dissipation-induced instabilities is a me-
chanical system with phase space TQ ∼= R2n and a quadratic Lagrangian
L : TQ → R that can be written as:

L(q, q̇) = q̇TM q̇ + q̇TGq− qTKq

For a general, smooth Lagrangian that contains terms of higher than degree
two in q and q̇, a second-order Taylor approximant about some point in TQ
puts its Lagrangian in this form. Since the only conservative forces deriv-
able from a quadratic Lagrangian are gyroscopic and potential, G and K are
necessarily skew-symmetric and symmetric matrices respectively. The corre-
sponding Euler-Lagrange equations are given by:

M q̈ +Gq̇ +Kq = 0 (1.2)

The zero solution of (1.2) is called potentially unstable if K has some negative
eigenvalues. It is called potentially stable if K is positive definite. However,
even if the zero solution is potentially unstable, due to G the system can
be spectrally (or neutrally) stable. In this case one says that the system is
gyroscopically stabilized, since G physically corresponds to gyroscopic effects.

Let C, V ∈ L(Rn,Rn) and assume C is symmetric positive-definite and
V is skew-symmetric. If the system is gyroscopically stabilized without fric-
tion, counter to our intuition about friction, adding friction proportional to
velocities destabilizes the zero-solution of:

M q̈ + Cq̇ +Gq̇ +Kq = 0. (1.3)

However, dissipation is not necessarily a destabilizing force for gyroscopically
stabilized systems. In fact, the general theory of dissipation-induced instabili-
ties is concerned with the stability of the zero-solution of the following system:

M q̈ + Cq̇ +Gq̇ +Kq + V q = 0 (1.4)

where C is symmetric positive-definite and V is skew-symmetric. To model
dissipation often one uses dissipation proportional to velocity Cq̇ and not
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proportional to position V q or positional dissipation. Although the dis-
sipation proportional to velocity is purely destabilizing for a gyroscopically
stabilized system, one can obtain stability of a gyroscopically stabilized state
if both types of dissipation are present. Also, one can obtain instability of a
potentially stable system if both types of dissipation are present.

It makes sense that the spherical tippe top exhibits both of these types
of dissipation. Recall the dissipation the top perceives is modelled as friction
proportional to the velocity of its point of contact. This type of friction is
proportional to the translational velocity of the sphere, the angular velocity of
the sphere, and the orientation of the sphere’s point of contact. The spinning
spherical tippe top exhibits positional dissipation because of the dependence
of the friction law used on the orientation of the sphere. In the paper we will
show that both types of damping need to be present in order to explain why the
spherical tippe top inverts. In this way the spherical tippe top illustrates some
important, and not widely known, consequences of the theory of dissipation-
induced instabilities.

Dissipation-induced instability theory has a long history, which goes back
to Thomson and Tait; see [38]. The central theorems in this area were subse-
quently proven by Chetayev [14] and extended in the work of Merkin [28] and
others. In its modern form, dissipation-induced instability was shown both to
be a general phenomenon for gyroscopically stabilized systems and to provide
a sharp converse to the energy momentum stability method by Bloch et al. in
[2] and [3]. The work of Krechetnikov and Marsden [24] puts this theory into
a broader context, including positional forces. The paper [24] also includes
a discussion of a number of additional examples, including the well-known
follower force problem [13], the Levitron, and radiation-induced instabilities.
For a comprehensive history and review of dissipation-induced instabilities,
including what is known in the case of PDE and for further references, the
reader is referred to [25].

Heteroclinic Orbits. A heteroclinic orbit is a path in the phase space of
a dynamical system that connects two equilibria. These equilibria need not be
static. For example, consider the orbit connecting the inverted and noninverted
states of the tippe top. Or, consider the whirling orbit which connects a
textbook spun about its unstable intermediate axis to its antipode. These
examples motivate the notion of a relative equilibria which is equivalent to
a fixed point modulo a one-parameter Lie group action. For the tippe top and
textbook relative equilibria, this action is an S1-rotation about a fixed axis. A
dissipation-induced heteroclinic orbit is a heteroclinic connection that
exists because of (and in spite of) dissipation, as in the tippe top.

Relative equilibria arise frequently in realistic rigid body and fluid systems,
and techniques to assess their stability/robustness are in demand. In this paper
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we apply the energy momentum method to ascertain the existence of a
heteroclinic connection. A cornerstone of the method is the energy momentum
mapping which we will specify for mechanical systems with phase space P
possessing a Lie group G-symmetry. Let g and g∗ be the Lie algebra and dual
of the Lie algebra of G. If E : P → R is the energy of the system, J : P → g∗

the momentum map associated to the G-symmetry, and Je a particular value
of this momentum map, the energy momentum map is given by

EJ = E + 〈J − Je, λ〉 , (1.5)

where λ ∈ g is a Lagrange multiplier. To establish Liapunov stability by the
energy momentum method, one finds critical points of EJ which correspond to
relative equilibria. Then one checks definiteness of the second variation of EJ
at these critical points in directions tangent to the momentum level set (i.e.,
for all x ∈ ker dJ ) and transverse to orbits of G. It is a natural tool to invoke
in this context given that the Jellett momentum map (cf. (1.1)) is preserved
along the flow of tippe tops. For more exposition, applications, and history
the reader is referred to [26; 27].

Organization of the Paper. §2 presents the modified Maxwell–Bloch equa-
tions and discusses their ability to reproduce tippe top inversion. §3 describes a
derivation of the governing equations for the tippe top from a variational prin-
ciple. §4 casts the linearized equations of the tippe top in the form of modified
Maxwell–Bloch equations. §5 contains a standard application of the energy
momentum method and LaSalle’s invariance principle to determine necessary
and sufficient conditions for existence of a heteroclinic connection between the
inverted and noninverted states of the tippe top. §6 provides some concluding
remarks on the energy adiabatic momentum method, the curious heteroclinic
orbit between the rattleback top’s saddle-like relative equilibria, and related
problems.

2 Modified Maxwell–Bloch Equations

This section introduces an important extension of the Maxwell–Bloch equa-
tions and studies their stability. These equations are a two-dimensional in-
stance of (1.4). They arise in the study of the linear stability of axisymmetric
rigid bodies such as the spherical tippe top.

Derivation. Consider a planar ODE of the form

q̈ = f(q, q̇), q =

[
x
y

]
.
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Linearization of these equations yields

q̈ + Aq̇ +Bq = 0

where A and B are 2× 2 real matrices. The characteristic polynomial of this
system

det

([
σ2 0
0 σ2

]
+ Aσ +B

)
= 0

shows that when A is skew-symmetric and B is symmetric the system possesses
a spectral symmetry typical of linear Hamiltonian systems, namely if σ is a
solution then so are: σ̄, 1/σ, and 1/σ̄.

We define the rotation matrix

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
as well as the identity and elementary skew-symmetric matrices in L(R2,R2)
as:

I =

[
1 0
0 1

]
, S =

[
0 −1
1 0

]
.

The necessary and sufficient condition for a 2× 2 matrix to commute with the
rotation matrix is that the matrix be a linear combination of I and S. Thus,
if this ODE is rotationally symmetric, i.e., the ODE is invariant under SO(2)
rotation, then the matrices A and B can be expressed as

A = −αS + βI, B = −γS + δI,

where α, β, γ, and δ are real scalars. Because β and γ destroy the spectral
symmetry associated to Hamiltonian systems, we call these terms nonconser-
vative.

Given the particular form of the rotationally symmetric ODE, we can write
the two-dimensional real system as a one-dimensional complex system,

z̈ + iαż + βż + iγz + δz = 0, z = x+ iy, (2.1)

which we call the modified Maxwell–Bloch equations. Observe that (2.1)
is a complexified version of (1.4) in two dimensions.

Proposition 2.1. The modified Maxwell–Bloch equations are the linearized
normal form for planar, rotationally symmetric dynamical systems.

(2.1) is the basic harmonic oscillator with the two complex terms iαż and
iγz. In physical systems iαż arises from Coriolis effects, and hence is known as
the gyroscopic term. Whereas iγz typically arises from dissipation in rotational
variables. The damping force iγz is different from the usual damping term
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proportional to velocity βż and will be referred to as complex damping. This
type of damping corresponds to the positional dissipation introduced in (1.4).
Physically the complex damping term models viscous effects caused by, for
example, motion in a fluid, while the usual damping term models internal
dissipation.

Before we describe the general stability properties of these equations, let
us consider as an illustrative example the stability of a rotating beam. One
can show that the linearized equations of the first mode of a rotating beam
can be cast in the form of (2.1). In this case α corresponds to the rotation rate
of the beam. These linearized equations are the same as the Euler-Lagrange
equations for a bead in a rotating circular plate [3]. If one ignores dissipation,
the system is potentially stable as long as the rotation rate is less than the
resonance frequency of the beam. If the rotation rate is greater than the res-
onance frequency of the beam, the system becomes gyroscopically stabilized.
As mentioned in the introduction, dissipation proportional to velocity desta-
bilizes this gyroscopically stabilized state. Typically damping in a beam is
due to internal dissipation which is proportional to velocities, and hence, this
explains why one observes a rotating beam become unstable when spun at a
rate which exceeds its resonance frequency.

Stability Criteria. The characteristic polynomial of the modified Maxwell–
Bloch equations is

λ4 + 2βλ3 + (α2 + β2 + 2δ)λ2 + 2(αγ + βδ)λ+ (γ2 + δ2) = 0.

We now write the necessary and sufficient conditions for this polynomial to be
Hurwitz [19].

Theorem 2.2. The zero solution of the modified Maxwell–Bloch equations is
Liapunov stable iff the following inequalities hold:

β > 0,

αβγ − γ2 + β2δ > 0,

α2β + β3 − αγ + βδ > 0.

The proof of this is a simple application of standard Hurwitz stability
criteria as described in, e.g., [19]. There are two especially interesting physical
cases of these inequalities:

1. When δ > 0, γ = β = 0, the system is neutrally stable with or without
the presence of the gyroscopic term. Adding usual dissipation βż makes
the neutrally stable zero solution Liapunov stable. Adding usual and
positional dissipation can stabilize or destabilize the neutrally stable zero
solution.
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2. When δ < 0, α > −4δ > 0, β = γ = 0, the system is gyroscopi-
cally, and hence neutrally, stable. Adding usual dissipation βż makes
the neutrally stable zero solution spectrally unstable since the second
inequality in theorem 2.2 can never hold. This case corresponds to the
classical dissipation-induced instability [2]. If β = 0 and γ > 0, the neu-
trally stable zero solution becomes spectrally unstable. Adding usual
and positional dissipation can stabilize or destabilize the zero solution
depending on the ratio of β to γ.

For the tippe top, we will show that dissipation in rotational variables (or
complex damping) is essential to understanding inversion. In fact, the remarks
above point out some limitations of usual damping: usual damping can only
predict instability in the case of a gyroscopically stable system and stability
in the case of a gravitationally stable system.

Consider the modified Maxwell–Bloch equations as a possible model of the
linearized behavior of the tippe top. In particular, suppose that the nonin-
verted and inverted states of the tippe top correspond to the zero solution of
(2.1). Without friction we observe a noninverted state which is gravitation-
ally stable with or without gyroscopic effects. Remark 1 above shows that
the addition of usual damping cannot destabilize this gravitationally stable,
noninverted state. The complex damping term, however, can destabilize this
state. Therefore, the complex damping term can explain why the gravitation-
ally stable tippe top becomes spectrally unstable.

Moreover, after the tippe top inverts we have a gyroscopically stabilized
inverted state. We have shown that the addition of usual damping would
make such a system spectrally unstable. Thus, usual damping cannot explain
why the tippe top spins stably in its inverted state. Remark 2 shows that
the complex and usual damping term in the right ratio can, however, stabilize
this state. Thus, the complex damping term can also explain why the tippe
top spins stably on its stem. We will revisit this analysis when we cast the
linearized equations of the tippe top in the form of the modified Maxwell–Bloch
equations.

3 Tippe Top Equations

This section contains a pedagogical derivation and analysis of the spherical
tippe top’s governing equations using a variational principle, given mainly
for the reader’s convenience. The tippe top is modelled as a sphere in point
contact with a surface. At the point of contact, the sphere is subjected to
frictional forces tangent to the surface and gravitational forces normal to the
surface. The section starts with a derivation of the equations of motion for
the system without friction. Friction proportional to the velocity of the point
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of contact of the body on the surface is added later. One can also derive these
equations using Newtonian mechanics as was done in the earlier version of our
paper [5].

In what follows we will often use the hat map to identify a 3 × 3 skew-
symmetric matrix with a vector in R3. Let so(3) denote the set of 3 × 3
skew-symmetric matrices. For a vector x = (x1, x2, x3) ∈ R3, the hat map,
ˆ: R3 → so(3), is defined as:

x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .

Let y = (y1, y2, y3) ∈ R3. The hat map is related to the cross product in the
following way:

x̂y = x× y.

Mathematical Model. The tippe top is modeled as an axisymmetric rigid
body whose external shape is a sphere of radius R and whose mass is M . The
sphere is assumed to be in point contact with a fixed plane. Let the points
Q, O, and C represent the point of contact, the geometric center, and the
center of mass of the sphere, respectively (cf. Figure 3.1). We assume the
mass distribution of the sphere is inhomogeneous, but symmetric about an
axis through the sphere’s geometric center O. Thus, the sphere’s center of
mass C is located on its axis of symmetry ξ3, but at a distance Rε above
its geometrical center O where ε is the center of mass offset (0 ≤ ε ≤ 1).
Let I1 = I2 = I and I3 be the dimensional moment of inertia of the sphere
with respect to principal axes attached to C. Since the mass distribution is
axisymmetric one can prove that I3/I ≤ 2.

Assume that one rescales position byR, time by the gravitational time-scale√
R/g, and the Lagrangian by Ig/R. Introduce the following dimensionless

parameters:

σ =
I3
I
, Fr =

Ω2R

g
, µ =

MR2

I
, ν = c

R2

I

√
R

g
,

where Ω is the magnitude of the initial angular velocity of the top and c a
strictly positive friction factor. The dimensionless parameters σ, Fr, µ, and ν
are the inertia ratio, Froude number, dimensionless mass, and friction factor,
respectively.

Lagrangian of Tippe Top. The unconstrained configuration space of the
tippe top is Q = R3 × SO(3) and its unconstrained Lagrangian is denoted
L : TQ → R. Let (x(t), ẋ(t)) ∈ R3 ×R3 denote the translational position and
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Figure 3.1: Tippe Top. We model the tippe top as a sphere with an eccentric center
of mass C, geometric center O, and point of contact Q. Vectors q and ξ3 represent the
dimensionless position of the contact point with respect to the center of mass and the unit
vector in the direction of the axis of symmetry, respectively.

velocity of the sphere. Let (R(t),ω(t)) ∈ SO(3) × R3 denote the rotational
position and spatial angular velocity of the spherical tippe top (where R(t) is
the matrix specifying the orientation of the body). Let (e1, e2, e3) denote an
inertial orthonormal frame attached to O and related to a body-fixed frame
(ξ1, ξ2, ξ3) attached to O by the formulae:

Rei = ξi, i = 1, 2, 3.

In the analysis the vectors e3 and ξ3 play an important role, and correspond
to unit vectors in the vertical direction and in the direction of the axis of
symmetry of the sphere, respectively. Let I = diag(1, 1, σ) be the standard
(dimensionless) diagonal inertia matrix of the body.

We will use the isomorphism between R3 and the Lie algebra of SO(3),
so(3), given by the hat map. In terms of this identification, the left-trivialized
Lagrangian ` : R3 × R3 × SO(3)× R3 → R is defined as

`(x, ẋ,R,ω) = L(x, ẋ,R, ω̂R).

For the tippe top, this is simply a sum of the translational kinetic energy,
rotational kinetic energy and gravitational potential energy of the sphere

`(x, ẋ,R,ω) =
µ

2
ẋTẋ︸ ︷︷ ︸

translational
kinetic energy

+
1

2
ωTω +

1

2
(σ − 1)

(
ωTξ3

)2︸ ︷︷ ︸
rotational

kinetic energy

−µxTe3︸ ︷︷ ︸
gravitational

potential energy

(3.1)



3 Tippe Top Equations 363

The dimensionless position of the contact point relative to the center of mass
is given by,

q = −e3 − εξ3. (3.2)

The sphere is subject to a holonomic constraint ϕ : R3×SO(3)→ R given by:

ϕ(x,R) = −1− εξT
3 e3 + eT

3 x = qTe3 + eT
3 x = 0. (3.3)

Notice that this constraint depends on both the translational and rotational
positions of the sphere. Physically it states that the sphere is in point-contact
with the surface whose normal is given by the unit vector e3. This vector is
opposite the direction of gravity.

Governing Conservative Equations. The phenomenon of interest, tippe
top inversion, needs to include friction, but for simplicity we will start by
examining the governing equations without friction. The equations of motion
will be determined using a Hamilton-Pontryagin description of rigid-body-type
systems [7]. This principle unifies the Hamiltonian and Lagrangian descrip-
tions of mechanics. The constrained HP action integral is given by,

s =

∫ t

0

[
`(x,v,R,ω) + 〈p, ẋ− v〉+

〈
π̂, ṘRT − ω̂

〉
+ λϕ(x,R)

]
dt.

Observe that this principle enlarges the domain of the classical action by treat-
ing the kinematic relations as constraints. The associated Lagrange multipliers
p and π are the translational and spatial angular momenta respectively.

The HP principle states that

δs = 0

where the variations are arbitrary except that the endpoints (x(0),R(0)) and
(x(T ),R(T )) are held fixed. A critical point of s satisfies:

ẋ = v,

µv̇ = (λ− µ)e3,

xTe3 = 1 + εeT
3 ξ3,

Ṙ = ω̂R,

π̇ = −λεξ3 × e3,

π = ω + (σ − 1)(ωTξ3)ξ3.

(3.4)

These equations are a differential algebraic system in terms of the fixed unit
vector e3 (corresponding to the normal to the surface) and the following un-
knowns: the sphere’s translational position x(t), translational velocity v(t),



3 Tippe Top Equations 364

rotational position R(t) (the matrix specifying the orientation of the sphere),
spatial angular velocity ω(t) and spatial angular momentum π(t).

Physically the set of equations in (3.4) make much sense. The first and
fourth equations are kinematic constraints relating the translational and spa-
tial angular velocity of the sphere to the translational and rotational positions,
respectively. The second equation is a balance of linear momentum and shows
that the only forces acting on the body are due to gravity and the surface’s nor-
mal reaction force which are proportional to µ and λ, respectively. The third
equation is the constraint that specifies that the sphere is in point-contact
with the surface. The fifth equation is a balance of angular momentum and
shows that the only torque acting on the body is due to the normal reaction
force. The sixth equation relates the spatial angular momentum to the spatial
angular velocity of the spherical tippe top.

Recall, the unit vector in the direction of the axis of symmetry is the third
column of the rotation matrix, i.e., ξ3(t) = R(t)e3. One can eliminate ω and
λ to obain a Cauchy problem which has a well-defined flow. Moreover, as a
consequence of axisymmetry, one does not need to solve for the evolution of
all three columns of R(t) to integrate the ODE in π. Instead one just needs
to solve for the evolution of the third column, ξ3, using:

ξ̇3 = ω × ξ3. (3.5)

From analyzing (3.4) one can deduce that there are two independent quantities
which are conserved under its flow as described in the following theorem.

Theorem 3.1. Let a, b be any real numbers. The following momentum map
is conserved under the flow of (3.4),

J = aπTξ3 + bπTe3.

Proof. One can deduce this conservation law from the variational principle
as a symmetry of the left-trivialized Lagrangian, i.e.,

`(x, ẋ,R,ω) = `(x, ẋ,BR,Bω)

for any B ∈ SO(3) that is a rotation about ξ3 and/or e3. Note that tacit in
this argument is that this symmetry action leaves the holonomic constraint
invariant. Alternatively, one can deduce this conservation law directly from
the equations:

d

dt
J = aπ̇Tξ3 + aπTξ̇3 + bπ̇Te3

From the fifth equation in (3.4), the first and third term in the above vanish.
From (3.5) and the sixth equation in (3.4), the second term in the above
vanishes. �
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This conservation law indicates that if initially the tippe top is spinning
in a neighborhood of its noninverted state (i.e., ξ3(0) ≈ −e3, π(0) ≈ σFre3),
then inversion, i.e., the existence of some time T such that ξ3(T ) ≈ e3, cannot
occur. Thus, one cannot obtain tippe top inversion by gyroscopic and gravi-
tational effects alone. This result suggests surface friction plays a crucial role
in producing this phenomenon.

Governing Nonconservative Equations. Let q = −e3 − εξ3 denote the
vector connecting the center of mass C to the contact point Q as shown in
Fig. 3.1. We model the surface frictional force using a sliding friction law
proportional to the velocity of the point of contact of the spherical tippe top:

VQ = ẋ + ω × q. (3.6)

The force and torque due to friction are therefore,

Ff = −νVQ, Mf = q× Ff

where ν is the dimensionless friction factor. The governing dynamical equa-
tions of the spherical tippe top with friction are given by:

ẋ = v,

µv̇ = (λ− µ)e3 + Ff ,

xTe3 = 1 + εeT
3 ξ3,

ξ̇3 = ω × ξ3,

π̇ = −λεξ3 × e3 + q× (Ff ),

π = ω + (σ − 1)(ωTξ3)ξ3.

(3.7)

These equations are a differential algebraic system in terms of the sphere’s
translational position x(t), translational velocity v(t), axis of symmetry ξ3,
angular velocity ω(t) and angular momentum π(t). These equations can be
derived from a Lagrange d’Alembert principle [27]. This principle simply ap-
pends the work done by the frictional force and its torque to the Hamilton-
Pontryagin principle. The principle is explicitly given by:

δs+

∫ t

0

FT
f δxdt+

∫ t

0

MT
f ηdt = 0

where η̂ = δRRT. With dissipation the symmetry that led to theorem 3.1 is
broken, but not completely. By an infinitesimal symmetry of the forces with
respect to the generator of rotations about the contact vector q, the Jellett
momentum map is preserved. This infinitesimal symmetry does not depend
on the precise form of Ff , but only that its moment Mf is orthogonal to q.
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Theorem 3.2 (Jellett Momentum Map). The following momentum map
is conserved under the flow of (3.7),

J = πTξ3 + επTe3.

or J = −πTq.

Proof. This proof is terse. From (3.7) it follows that

d

dt
J = π̇Tq + πTq̇

From the fifth equation in (3.7), the first term vanishes. The second term can
be written as:

πTq̇ = επTξ̇3.

From the proof of theorem 3.1, this term vanishes as well. �

This property of the flow of (3.7) simplifies the analysis of tippe top inver-
sion, since it implies that even with dissipation the system evolves on a level
set of J .

Equilibria. In the coordinates we have chosen to write down (3.7) the in-
verted and noninverted states of the spherical tippe top as illustrated in Fig. 1.1
(relative equilibria) are fixed points of the equations of motion. In particular,
all fixed points of (3.7) are translationally stationary and satisfy:

ξ̇3 = 0 =⇒ ξ3 and ω are collinear,

π̇ = 0 =⇒ ξ3 and e3 are collinear.

At fixed points the Lagrange multiplier satisfies λ = µ.
If one restricts to a level set of J , there are only two fixed points of the

equations. Set one of these fixed points to be be the noninverted state defined
by

π1 = σFre3, ξ1
3 = −e3, (3.8)

which implies J = σFr(1 − ε). The second fixed point on this level set of J
corresponds to the inverted state and satisfies:

π2 = σFr
1− ε
1 + ε

e3, ξ2
3 = e3. (3.9)
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4 Tippe Top Modified Maxwell–Bloch

For this section we will assume translation of the center of mass is negligible.
This assumption greatly simplifies the equations. Later we will confirm that
the stability criteria derived in this fashion agree with a nonlinear stability
analysis, and in particular, we will show that the position of the spherical tippe
top’s center of mass remains fixed at all extrema of the energy-momentum
map. Ignoring translational effects and eliminating ω in (3.7) one obtains the
following fully nonlinear rotational equations for the spherical tippe top:{

ξ̇3 = π × ξ3,

π̇ = −µεξ3 × e3 + νq× q× π − ν σ−1
σ

(πTξ3)q× q× ξ3.
(4.1)

Notice that these are a set of differential equations in the unit vector in the di-
rection of the axis of symmetry ξ3(t) ∈ R3 and the spatial angular momentum
of the spherical tippe top π(t) ∈ R3. In these equations e3 is a constant vector
and q is as defined in (3.2). As mentioned in the introduction, (4.1) possesses
dissipation proportional to velocity and position since the friction law used is
a function of both the angular velocity of the sphere and the contact vector q.
As can be easily checked, (4.1) has the following fixed points:

π = π0e3, ξ3 = n0e3, n2
0 = 1. (4.2)

Set Φ = ξT
3 e1 + iξT

3 e2. Linearizing (4.1) about (4.2) gives the tippe top
modified Maxwell-Bloch equations:

Φ̈ + iaΦ̇ + bΦ̇ + icΦ + dΦ = 0, (4.3)

where

a = π0, b = ν(1 + n0ε)
2, c = π0ν(1 + n0ε)/σ, d = −εµn0.

Using the stability criteria for modified Maxwell–Bloch systems (cf. theo-
rem 2.2), one can readily deduce the following.

Theorem 4.1. Consider the relative equilibria defined by (3.8) and (3.9) on
the level set J = σFr(1 − ε). The noninverted state (n0 = −1, π0 = σFr) is
Liapunov stable iff

εµ(1− ε)2 + Fr2(σ(1− ε)− 1) > 0.

The inverted state (n0 = 1, π0 = σFr1−ε
1+ε

) is Liapunov stable iff

−εµ(1 + ε)4 + Fr2(1− ε)2(σ(1 + ε)− 1) > 0.
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Proof. Assume ν is strictly positive. By theorem 2.2 the noninverted state
(n0 = −1, π0 = σFr) is stable iff{

εµ(1− ε)2 + Fr2(σ(1− ε)− 1) > 0,

εµ(1− ε) + (1− ε)5ν2 − Fr2σ + Fr2σ2(1− ε) > 0.
(4.4)

Likewise, the inverted state (n0 = 1, π0 = σFr1−ε
1+ε

) is stable iff{
−εµ(1 + ε)4 + Fr2(1− ε)2(σ(1 + ε)− 1) > 0,

−εµ(1 + ε)2 + (1 + ε)6ν2 − Fr2(1−ε)2σ
1+ε

+ Fr2(1− ε)2σ2 > 0.
(4.5)

It is easy to confirm that if the first inequalities in (4.4) and (4.5) hold then
the second inequalities hold. �

Observe that this stability criteria is independent of the magnitude of the
dimensionless friction factor ν. Can we reduce (4.3) any further? The answer
is no because of the remarks made in §2. In particular, it can be shown that,
without the usual and complex damping terms, i.e., b = 0 and c = 0 or
ν = 0, the gravitationally stable noninverted state cannot become spectrally
unstable. Moreover, the gyroscopically stabilized state can be Liapunov stable
if and only if the complex and usual damping terms are present and in the
right ratio.

5 Heteroclinic Orbit

The following nonlinear analysis for the tippe top is standard and based on the
energy-momentum method for mechanical systems with symmetry [27]. We
note that a similar global connecting argument was provided in [22].

To establish the existence of a heteroclinic orbit that describes tippe top
inversion, we will invoke LaSalle’s principle [1]. Consider a vector field χ on a
manifold P . Let V be a Lyapunov function with negative semidefinite orbital
derivative: Vt ≤ 0 for all z ∈ P . We define the set ℵ := {z ∈ P |Vt(z) = 0}.
Theorem 5.1 (LaSalle’s principle). Let z : [0,∞)→ P be an integral curve
of a vector field χ with initial condition z(0) = z0. Suppose there is a positively
invariant set (trapping region) M such that z(t) ∈M for all t ≥ 0. Then z(t)
converges to the largest subset of ℵ ∩M that is invariant under the flow of χ
for all t, positive and negative.

The energy of the tippe top is a natural candidate for a Lyapunov function,

E =
µ

2
vTv +

1

2
πTπ − 1

2

(σ − 1)

σ

(
πTξ3

)2
+ µxTe3. (5.1)

It is a sum of translational, rotational, and gravitational components. It’s
orbital derivative along the flow of (3.7) is given by

d

dt
E = −ν‖VQ‖2, (5.2)
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where ‖VQ‖ is the magnitude of the slip velocity. Integrating yields,

E(t) = E(0)−
∫ t

0

ν‖VQ‖2ds.

Observe that the energy decreases monotonically until it belongs to a set
of states of no-slip friction defining ℵ, and according to LaSalle’s principle,
reaches a trapping region within this set.

Let T ∗S denoted the constrained phase space of the tippe top. Let Je =
σFr(1 − ε) be the value of the Jellett momentum map for (3.8). Define the
energy-Jellett momentum map, EJ : T ∗S × R→ R as,

EJ = E + λ (J − Je) . (5.3)

Label the relative equilibria defined by (3.8) and (3.9) as zi and zf , respectively.
It is easy to show that there exist Lagrange multipliers, λi, λf ∈ R, such that
(zi, λi) and (zf , λf ) are critical points of EJ , i.e.,

dEJ (zi, λi) = dEJ (zf , λf ) = 0. (5.4)

In the following theorem, a heteroclinic orbit between these states is deter-
mined by LaSalle’s principle and analyzing the critical points of EJ .

Theorem 5.2 (Dissipation-Induced Heteroclinic Orbit). Label the rela-
tive equilibria on the level set J = σFr(1− ε) defined by (3.8) and (3.9) as zi
and zf , respectively. These relative equilibria are globally connected iff the in-
verted state is Liapunov stable and the noninverted state is spectrally unstable.

This theorem is based on finding conditions for which zi and zf define the
only critical points of EJ . These conditions turn out to satisfied when zi is
spectrally unstable and zf is Liapunov stable (cf. theorem 4.1). By LaSalle’s
principle the trapping region of the Liapunov stable point zf is accessed as it
is the only such set in ℵ.

Lemma 5.3 (Tippe Top Relative Equilibria). The noninverted and in-
verted states of the tippe top and their associated Lagrange multipliers, (zi, λi)
and (zf , λf ), are the only critical points of EJ if and only if:{

−εµ(1− ε)2 − Fr2(σ(1− ε)− 1) > 0,

−εµ(1 + ε)4 + Fr2(1− ε)2(σ(1 + ε)− 1) > 0.
(5.5)
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Proof. As a first step, we write EJ as an unconstrained function and introduce
additional Lagrange multipliers to constrain to T ∗S. For this purpose let
E : R12 → R and J : R12 → R be the unconstrained energy and Jellett
momentum map respectively. Let EJ : R12 → R denote the unconstrained
energy momentum map which satisfies EJ = EJ |T ∗S. Let φ : R6 → R denote
the unconstrained version of (3.3) defined as:

φ(x, ξ3) = xTe3 − 1− εξT
3 e3.

Consider the map f : R15 → R defined by

f = E + λ1(J − Je) + λ2φ+ λ3(‖ξ3‖2 − 1).

The Lagrange multipliers simultaneously constrain the critical point of the
energy to a level set of J , constrain ξ3 to S2, and ensure the surface constraint
is satisfied. A critical point of f satisfies:

df(x,v, ξ3,π, λ1, λ2, λ3) = 0.

By direct calculation one can show that these critical points satisfy,

λ2 = −µ, v = 0

and a system of five equations in the five unknowns

λ1, λ3, πTe3, πTξ3, and ξT
3 e3,

with the condition that
(
ξT

3 e3

)2 ≤ 1. If e3 and ξ3 are collinear these critical
points are defined by zi and zf . However, if e3 and ξ3 are linearly independent

then
(
ξT

3 e3

)2
< 1 and one can show that critical points are determined by the

zeros of the following polynomial function in n = ξT
3 e3:

g(n) = Fr2(1− ε)2σ2(n(−1 + σ) + εσ)− εµ(1− n2 + (n+ ε)2σ)2. (5.6)

Observe that (5.5) implies that:

g(−1) = −σ2(1− ε)2
(
Fr2(σ(1− ε)− 1) + εµ(1− ε)2

)
> 0,

g(1) = σ2
(
Fr2(1− ε)2(σ(1 + ε)− 1)− εµ(1 + ε)4

)
> 0.

The following argument shows that (5.5) implies there are no solutions to
g(n) = 0 for σ strictly positive. If σ = 1 it is easy to show that there are no
solutions to g(n) = 0 such that |n| < 1. If σ > 1 then by convexity it is easy
to see that:

Fr2(1− ε)2σ2(n(σ − 1) + εσ) > εµ(1− n2 + (n+ ε)2σ)2 for n ∈ [−1, 1].
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If σ < 1, the maximum of 1 − n2 + (n + ε)2σ occurs at n? = εσ/(1 − σ).
However, if n? ≤ 1 then the term εσ − n(1 − σ) vanishes and (5.5) does not
hold. If n? > 1, then it is easy to see that

Fr2(1− ε)2σ2(−n(1− σ) + εσ) > εµ(1− n2 + (n+ ε)2σ)2 for n ∈ [−1, 1].

since the RHS in the above inequality is monotonically increasing for n ∈
[−1, 1]. And hence, zi and zf define the unique critical points if and only if
(5.5) is satisfied. �

To use lemma 5.3 to prove theorem 5.2, one can invoke theorem 4.1 or
check definiteness of the Hessian of EJ in directions tangent to the level set of
J and transverse to rotations about q. This check shows that zi is an energetic
saddle and zf is an energetic minimum.

For a stability analysis of intermediate relative equilibria, i.e., those for
which the tippe top does not fully invert, the reader is referred to [39; 15].

6 Concluding Remarks

We conclude with a few remarks on related mechanical systems as well as re-
lated stability issues. The reader is directed to the July 13, 2007 New Scientist
Short Sharp Science blog for a video of Tadashi Tokieda (Cambridge Univer-
sity) explaining the curious behavior of other mechanical “toys” including the
rattleback top discussed below.

Energy Adiabatic Momentum Method. In the paper [6], we extend
the energy momentum method to situations where an adiabatic momentum
map exists on a certain time-scaleand apply it to the “rising egg” phenomena.
We assume this adiabatic momentum map corresponds to an approximate
symmetry of the mechanical system. This situation arises, e.g., when one adds
ellipticity to the tippe top to analyze the rising of an egg, or more generally,
the rising of tops [30; 31; 6]. The Jellett momentum map in this context is no
longer an exact invariant.

However, under a fast top approximation, the Jellett momentum map is an
adiabatic invariant in rising egg motion as discovered in [30]. The procedure
to prove this is a standard application of averaging which introduces an S1

symmetry corresponding to the symmetry of the Jellett momentum map. The
presence of this adiabatic invariant simplifies the analysis of a dissipation-
induced heteroclinic orbit connecting the nonrisen to risen state of a rising
top. In [6] it is shown that under a fast top approximation, ε << 1, (where ε
can be thought of as being inversely related to the spin rate) this momentum
is constant with O(ε2) error on the time-scale t/ε. Since the spheroid rises
only if the spin is fast enough, this fast-top approximation is appropriate.
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Using a multiscale analysis, Moffatt et al. [32] theoretically predict a fasci-
nating transient instability in rising egg motion that manifests itself in the egg
jumping on a time-scale that is fast compared to the time-scale associated to
rising. Interestingly, Mitsui et al. [29] confirm this finding experimentally! The
authors use a sophisticated apparatus that mechanically spins a spheroid at
high speeds and simultaneously measures optical, acoustic and electric signals
generated by it.

Dynamic Stability by Time-Periodic Forcing. Time-periodic excita-
tions in mechanical systems lead to surprising phenomena. The fact that un-
der the action of vibrations, the inverted position of the pendulum can become
stable by time-periodically exciting its suspension point is a classical exam-
ple [23]. Or, as discovered by Wolfgang Paul, one can also use time-periodic
electric fields to confine charged particles [34]. Yet another example involves
a coupling of electromagnetic and gyroscopic effects to achieve so-called spin-
stabilized magnetic levitation; see, e.g., [35; 36] and references therein.

As a final example we consider the action of vibrations on a complex fluid
as shown in Fig. 6.1. The following dynamics is observed. Initially, the free
surface of an aqueous suspension of cornstarch in a container is flat. Under
the action of vibrations, the fluid can permanently support holes and vertical
fingerlike protrusions through its surface appear [20].1

Heteroclinic Orbit in Rattleback Top. The rattleback phenomenon is
a very interesting related problem in classical mechanics. A geometric form
of the rattleback top is a truncated ellipsoid with an asymmetric mass dis-
tribution. Because of this asymmetric mass distribution and dissipation, the
rattleback top spins stably about its short axis in one direction, and unstably
in the other direction. When spun on a dry surface in the unstable direction,
the rattleback top rocks about its intermediate axis and then reverses spin
direction as shown in Fig. 6.2. Moreover, if set in a rocking motion about
its intermediate or long axis, the rattleback top tends to spin in the stable
direction. Some rattleback tops exhibit multiple spin-reversal which implies
the existence of a heteroclinic orbit between saddle-like relative equilibria. Be-
cause of its asymmetry and dissipation, the rattleback top has no conserved
quantity or known adiabatic invariant. For an exposition of what is known
in this problem from the perspective of nonholonomic mechanics the reader is
referred to [21; 40; 1].

Stochastic Resonance in Tippe Top. We conclude the paper with a con-
jecture. Stochastic resonance is a phenomenon that is ubiquitous in science

1We thank Houman Owhadi (Caltech) for introducing us to this system.
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Figure 6.1: Rising of Complex Fluids [20]. Side view of the first steps toward the
delocalized state in cornstarch. These photographs were taken every 0.9 s; time increases
from left to right and top to bottom. An initial hump on the rim begins growing upward,
reaches a maximum height, and then topples outward, enlarging the area of fluid motion.
This process repeats until the entire surface of the liquid is active in the creation and
destruction of vertical structures and voids (acceleration a = 25g, frequency f = 80Hz).

Figure 6.2: Rattleback Top. Sketch of the rattleback top initially spinning in the
unstable direction, rocking back and forth, and then spinning in the opposite direction.

and engineering applications such as the ice ages, neurons, lasers, optical traps
and quantum systems. In its basic form, it occurs in systems with stochastic
forcing and a double-well potential whose depth changes periodically. If the
period of the driving frequency matches the average noise-induced escape time
from one well to the other, one obtains synchronized switching between two
states of the system as shown in Fig. 6.3. Can such a phenomenon arise in the
tippe top?

Examining theorem 4.1 it is clear there are parameter values where both
inverted and noninverted states are Liapunov stable. This suggests that the
effective potential the tippe top perceives in the ξT

3 e3 direction is a double
well. One can then let the magnitude of gravity change periodically and add
structured stochastic forcing to realize stochastic resonance in the tippe top.
The condition on the stochastic force is that it preserves the Jellett momentum
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map. The tools for carrying out such an analysis: a Noether’s theorem for
stochastically forced and torqued mechanical systems, stochastically torqued
rigid body equations, and ergodicity theorems, can be found in [9; 10; 11; 12].

Figure 6.3: Stochastic Resonance. Stochastic resonance occurs in stochastically forced
systems characterized by a double well potential that time-periodically changes depth. When
the ratio of the mean-escape time from one well to another matches the driving frequency
of the potential energy, then one obtains synchronized switching between two states of the
system (e.g., inverted and noninverted states of the tippe top) which is depicted in the above
cartoon by the happy and sad faces switching positions.
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