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Outline for this week

1. Dynamics of point vortices;
1.1 Vorticity;
1.2 Fluid dynamics in 2D;
1.3 Dynamics of N vortices;
1.4 The Kirchhoff-Routh function;
1.5 Dynamics of N = 1,2, 3 vortices;
2. Chaotic advection:

2.1 Aref’s stirring mechanism;
2.2 The ABC flow.
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Vortex dynamics
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Dynamics of an inviscid flow

1. Euler equations:

du Ju
™ .—E—l—u-VU——Vp,

together with the incompressibility condition V - u = 0. Pressure p

acts as a Lagrange multiplier for this constraint, and satisfies
V2p =0.

2. Take the curl of Euler, and put w =V X u:

E:w'Vu.

(vorticity form of Euler eqgns).

Due to the presence of p, system (1) is much more complicated than (2).
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e —
What is vorticity?

Intuitively: vorticity is a measure for the amount of rotation of the fluid.

» Suppose given a flow with velocity field u(x, y, z, t).

» Mathematically, vorticity is a vector field w given by
w=VXxu

Why study vorticity?
» Localised patches of vorticity appear quite often in nature;
» numerically, vortex methods are very attractive;
> vorticity equation contains just as much information as the Euler
equation;
» vortices are “a classical mathematics playground” (Aref).
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Hurricane Rita
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Example (point vortex)
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u=— (—y,X, 0) = w= (0,0,5(X,y)).
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This will be the building block of our subsequent treatment. Think of a
point vortex as being similar to a point mass.
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Fluid dynamics in 2D

We will only be concerned with 2D flows in these lectures!

» Consider a fluid with velocity u(x, t) = (ux(x, t), u,(x, t)) in 2D.
» Fluid is incompressible if
Ouy,  Ou
Viu= >+ -2 =0
" ox + Oy

» Incompressibility: there exists a stream function % such that

_ W _%
Oy ox’

Uy and wu, =

v

If u is independent of t: steady flow.
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Trajectories of fluid particles

» Motion of individual fluid particles:

) . o
x=— and y=-—

Oy

Ox

Obvious Hamiltonian structure, with Hamiltonian v and conjugate
variables x and y.

» Poisson form: f = {f,1} for all functions f on R?, and where the
Poisson bracket is given by

(g =3 -5 2L

Result: use the heavy machinery from Hamiltonian dynamical systems to
get results about fluid dynamics.
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Preservation of vorticity

> Recall the equation governing the dynamics of the vorticity field. In
general:

EZW'VU.

> In 2D: u = (uy, uy,0) and w is proportional to e,. Therefore
w-Vu=0.

Hence 4
w
— =0.
dt

Result: vorticity is simply advected with the flow!
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e —
Getting u if w is known

Note: in 2D, w is a scalar.

» Fact: any vector field u on the whole of R? can be written as
u=Vo+V x(ve,),

(Helmholtz-Hodge decomposition).
» Take the curl: V% = —w.

» Solution of this Poisson equation gives you :

v = - [ 5 log x — vl w(y)dy.

(Similar formulas work in 3D).

» Finally, put u =YV X (ve;). This determines u up to a gradient of a
scalar function.
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Example: sum of point vortices

» Take a vorticity field of the following form:

N
w(x) = Z Fio(x — x;).

i=1

» Associated stream function:
1
v = = Y01 [ 5 togllx— vl aly — xi(£))dy
= —Zilogﬂx—x;ﬂ.

2m

> Velocity field:
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Dynamics of N vortices: fluid dynamics

Take again N point vortices, located at x;(t), i=1,...,N.
> The velocity field of the fluid due these vortices is
N

X(t) = SV x (ie,) where 1 = 1L log x — x|

‘ 2w
i=1

> Since the vortices are advected, their velocity is simply the velocity of
the surrounding flow:

%i(t) =YV x (dje,).
i

Note: we removed singular terms.
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.
The Kirchhoff-Routh function

» The stream function for the fluid due to N vortices is
N r
P = Zl¢;(x), where ¢; = —i log ||x — x;|| -

» Define the Kirchhoff-Routh function H as the following function:

rr;
H = —Z 4’-7TJ |Og ||X,' — XJ'H .
i#j

H is related to %), but without the singular contributions. Physically,
H represents the kinetic energy of the N-vortex system.
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Dynamics of N vortices: Hamiltonian form

Main idea: vortex motion = finite-dimensional Hamiltonian system.
1. Configuration space is R2N.

2. Hamiltonian: Kirchhoff-Routh function H.

{ I',->'<,-(t) = g'-l’

Fivi(t) = —5¢
Rescale variables to obtain “true” Hamiltonian system.
Explicitly:
xi(t) :_*ZJ and - y;(t) = ZJ
i#j |X/ - J|| 175,1 |X, XJH

Poisson bracket:

of dg 0Og Of
{f.e} = Z (8X, dyi  Ox; 8y,-> '
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L
Dynamics of vortices for N =1, 2
N = 1: vortex just sits there.

N = 2 (see also example 1.8 in Newton)
Assume that 1 =T =T #0.
» Two conserved quantities:
1
€ = E(xl(t) +x2(t)) and D? = ||x1(t) — x2(2)]%.
(C: center of "mass” /barycenter/...)

» System decouples and can be rewritten in action-angle variables
(R;, 0;) by the following canonical trafo:

xi— C = \/2R,'(t) exp(i@;(t)),

giving R; = 0 and 6; = 0. Result: vortices rotate on a circle around C
(integrability).
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Dynamics of vortices for N = 3,4, ...

» N = 3: Still integrable. Four integrals of motion: H, linear impulse 7
and angular impulse £, where

N N
I:ZF;X,' and L= Zri||Xi||2-
i=1 i=1

(think Noether: invariance under time translation, spatial translation,
and rotation). Three involutive quantities: H, £, and Z2 +Z2.

» N = 4: Arnold-Liouville integrable if Zf}:l ' = 0. Nonintegrable in
general.

» N — +4o00: Statistical mechanics. Euler equations? Chaos?
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Hamiltonian reduction

Hamiltonian

» Kinetic energy of a fluid:

1 1
H= 2/Hu||2dx: 2/w¢dx.

> Plug in w = YN, [;6(x — x;), and remove singular terms:

1
H = - z#: il log||x; — x;l| -
i#]

Marsden and Weinstein: the passage from Euler to vortex dynamics is a
special case of symplectic reduction.
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Further outlook

> Generalisations and applications:

1. Consider vortices in the presence of solid bodies: Karman vortex street,
stability, etc.

2. look at vorticity concentrated in patches, along lines, etc.

3. quantum theory of vortices in superfluid helium.

» For (1), see Dr Kanso's lectures next week.

» Crowds of exceedingly interesting cases present themselves. (Kelvin
1880)
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Chaotic advection
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Topology of stream lines

> Let ¢(x,y) be an autonomous stream function in 2D.
» Particle trajectories are lines of constant 1 (streamlines): severely
limits possible regions for chaos, ergodicity, mixing, etc.
What happens if we allow for
1. non-autonomous stream functions?

2. higher-dimensional flows?
Chaotic advection (Lagrangian chaos)

» Fluid is quite simple, but particle trajectories show remarkably
complicated behaviour.

» Note: don't confuse with Eulerian chaos (turbulence, etc.)
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Aref's stirring mechanism
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Background: Stokes flow

» Consider the non-dimensional Navier-Stokes equations:

0
87“ +u-Vu=—-Vp+ (Re) 1V,

where the Reynolds number Re = pUL gives the ratio of inertial to
viscous forces.

» For very viscous flows or small length scales, inertial terms are
negligible.
> Stokes equation:
Vp = (Re)"1V2u,

No explicit time dependence, other than through the (possibly time
dependent) boundaries.

No-slip boundary condition: fluid sticks to boundaries.
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Non-autonomous stream functions

> Aref's example: viscous fluid in a cylinder, with two rotating rods
(parallel to the cylinder) in the container.

» Aim: stir fluid by alternating between rotating rod #1 and rod # 2.

Stream function for one rotating rod at location (r, theta) = (b,0) (rotlet
flow):

a(l r> — 2brcosf + b? +(1—r2/a2)(.92—b2r2/32)>

0 =2
¢lr.0) 2 na2—2brcos¢9—|—b2r2/a2 a? — 2brcos + b?r?/a?

Not terribly complicated. ..

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 26 / 34



Rotlet stream lines

L , L
-1 -0.5 0 05

Each stirring rod is placed at a stagnation point in the flow of the other
cylinder. Hence, they don’t exert a force on each other.
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Poincaré section of Aref's flow

Figures courtesy of H. Aref and V. V. Meleshko (Phys. Fluids 8).
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BESSSS—— A
Computation of LCS structures?

(See movies)
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The ABC flow
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Euler equations in 3D

» Consider again the Euler equations for an inviscid, incompressible
flow, but now in three dimensions.

: . Ou __
> Stationary flow: G = 0. So
u-Vu+Vp=0,

or
ux (Vxu)=Va,
where o = p + u?/2, the Bernoulli function (first integral).

» o = 0: so-called force-free velocity fields.
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Regularity in fluid motion

> Force free velocity field: u x (V x u) = 0. Assume that u vanishes
nowhere.

» So, there exists a function f such that
V X u=fu.

> v is tangent to the level sets of f = compact level surfaces of f
are tori.

» The same goes for non-free force flows by looking at the level sets of
.

All this hints, under well-defined assumptions, at remarkably regular
behaviour!

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 32/ 34



.
The ABC flow

» To open the door for chaos, we should tinker with these assumptions.
One way out: look for u such that

V X u = \u,

with A a constant (Beltrami fields).

» A famous example: ABC flows on the 3-torus {(x,y,z) mod 27}
(i.e. R3 with periodic boundary conditions).

vy = Asinz+ Ccosy,
vy = Bsinx+ Acosz,
v, = Csiny+ Bcosx.

Integrable when A, B, or C is zero, chaotic otherwise.
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Trajectories for regular motion

A—0,B=\/2]3,C = /13
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Poincaré section for chaotic case

A=1,B=+/2/3,C=+/1/3.

See also computation of LCS structures in Philip’s lectures.
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