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Outline for this week

1. Dynamics of point vortices;

1.1 Vorticity;
1.2 Fluid dynamics in 2D;
1.3 Dynamics of N vortices;
1.4 The Kirchhoff-Routh function;
1.5 Dynamics of N = 1, 2, 3 vortices;

2. Chaotic advection;

2.1 Aref’s stirring mechanism;
2.2 The ABC flow.
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Vortex dynamics
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Dynamics of an inviscid flow

1. Euler equations:

du

dt
:=

∂u

∂t
+ u · ∇u = −∇p,

together with the incompressibility condition ∇ · u = 0. Pressure p
acts as a Lagrange multiplier for this constraint, and satisfies
∇2p = 0.

2. Take the curl of Euler, and put ω = ∇× u:

dω

dt
= ω · ∇u.

(vorticity form of Euler eqns).

Due to the presence of p, system (1) is much more complicated than (2).

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 5 / 34



What is vorticity?

Intuitively: vorticity is a measure for the amount of rotation of the fluid.

I Suppose given a flow with velocity field u(x , y , z , t).

I Mathematically, vorticity is a vector field ω given by

ω = ∇× u.

Why study vorticity?

I Localised patches of vorticity appear quite often in nature;

I numerically, vortex methods are very attractive;

I vorticity equation contains just as much information as the Euler
equation;

I vortices are “a classical mathematics playground” (Aref).
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Hurricane Rita
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Example (point vortex)

u =
1

2
√

x2 + y 2
(−y , x , 0) ⇒ ω = (0, 0, δ(x , y)).

This will be the building block of our subsequent treatment. Think of a
point vortex as being similar to a point mass.
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Fluid dynamics in 2D

We will only be concerned with 2D flows in these lectures!

I Consider a fluid with velocity u(x, t) = (ux(x, t), uy (x, t)) in 2D.

I Fluid is incompressible if

∇ · u =
∂ux

∂x
+
∂uy

∂y
= 0.

I Incompressibility: there exists a stream function ψ such that

ux =
∂ψ

∂y
and uy = −∂ψ

∂x
.

I If u is independent of t: steady flow.
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Trajectories of fluid particles

I Motion of individual fluid particles:

ẋ =
∂ψ

∂y
and ẏ = −∂ψ

∂x
.

Obvious Hamiltonian structure, with Hamiltonian ψ and conjugate
variables x and y .

I Poisson form: ḟ = {f , ψ} for all functions f on R2, and where the
Poisson bracket is given by

{f , g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

Result: use the heavy machinery from Hamiltonian dynamical systems to
get results about fluid dynamics.
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Preservation of vorticity

I Recall the equation governing the dynamics of the vorticity field. In
general:

dω

dt
= ω · ∇u.

I In 2D: u = (ux , uy , 0) and ω is proportional to ez . Therefore

ω · ∇u = 0.

Hence
dω

dt
= 0.

Result: vorticity is simply advected with the flow!
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Getting u if ω is known

Note: in 2D, ω is a scalar.

I Fact: any vector field u on the whole of R2 can be written as

u = ∇φ+∇× (ψez),

(Helmholtz-Hodge decomposition).

I Take the curl: ∇2ψ = −ω.

I Solution of this Poisson equation gives you ψ:

ψ(x) = −
∫

1

2π
log ‖x− y‖ω(y)dy.

(Similar formulas work in 3D).

I Finally, put u = ∇× (ψez). This determines u up to a gradient of a
scalar function.
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Example: sum of point vortices

I Take a vorticity field of the following form:

ω(x) =
N∑

i=1

Γiδ(x− xi ).

I Associated stream function:

ψ(x) = −
∑

Γi

∫
1

2π
log ‖x− y‖ δ(y − xi (t))dy

= −
∑ Γi

2π
log ‖x− xi‖ .

I Velocity field:

u(x) = ∇× (ψez) = −
∑ Γi

2π

(−(y − yi ), x − xi )

‖x− xi‖2
.
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Dynamics of N vortices: fluid dynamics

Take again N point vortices, located at xi (t), i = 1, . . . ,N.

I The velocity field of the fluid due these vortices is

ẋ(t) =
N∑

i=1

∇× (ψiez) where ψi = − Γi

2π
log ‖x− xi‖ .

I Since the vortices are advected, their velocity is simply the velocity of
the surrounding flow:

ẋi (t) =
∑
i 6=j

∇× (ψjez).

Note: we removed singular terms.
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The Kirchhoff-Routh function

I The stream function for the fluid due to N vortices is

ψ =
N∑

i=1

ψi (x), where ψi = − Γi

2π
log ‖x− xi‖ .

I Define the Kirchhoff-Routh function H as the following function:

H = −
∑
i 6=j

ΓiΓj

4π
log ‖xi − xj‖ .

H is related to ψ, but without the singular contributions. Physically,
H represents the kinetic energy of the N-vortex system.
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Dynamics of N vortices: Hamiltonian form
Main idea: vortex motion = finite-dimensional Hamiltonian system.

1. Configuration space is R2N ;

2. Hamiltonian: Kirchhoff-Routh function H.{
Γi ẋi (t) = ∂H

∂yi

Γi ẏi (t) = −∂H
∂xi

Rescale variables to obtain “true” Hamiltonian system.
Explicitly:

ẋi (t) = − 1

2π

∑
i 6=j

Γj
yi − yj

‖xi − xj‖2
and ẏi (t) =

1

2π

∑
i 6=j

Γj
xi − xj

‖xi − xj‖2

Poisson bracket:

{f , g} =
N∑

i=1

1

Γi

(
∂f

∂xi

∂g

∂yi
− ∂g

∂xi

∂f

∂yi

)
.
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Dynamics of vortices for N = 1, 2
N = 1: vortex just sits there.

N = 2 (see also example 1.8 in Newton)

Assume that Γ1 = Γ2 = Γ 6= 0.

I Two conserved quantities:

C =
1

2
(x1(t) + x2(t)) and D2 = ‖x1(t)− x2(t)‖2 .

(C : center of “mass”/barycenter/. . . )

I System decouples and can be rewritten in action-angle variables
(Ri , θi ) by the following canonical trafo:

xi − C =
√

2Ri (t) exp(iθi (t)),

giving Ṙi = 0 and θ̇i = 0. Result: vortices rotate on a circle around C
(integrability).
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Dynamics of vortices for N = 3, 4, . . .

I N = 3: Still integrable. Four integrals of motion: H, linear impulse I
and angular impulse L, where

I =
N∑

i=1

Γixi and L =
N∑

i=1

Γi ‖xi‖2 .

(think Noether: invariance under time translation, spatial translation,
and rotation). Three involutive quantities: H, L, and I2

x + I2
y .

I N = 4: Arnold-Liouville integrable if
∑4

i=1 Γi = 0. Nonintegrable in
general.

I N → +∞: Statistical mechanics. Euler equations? Chaos?
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Hamiltonian reduction

Hamiltonian

I Kinetic energy of a fluid:

H =
1

2

∫
‖u‖2 dx =

1

2

∫
ωψdx.

I Plug in ω =
∑N

i=1 Γiδ(x− xi ), and remove singular terms:

H = − 1

4π

∑
i 6=j

ΓiΓj log ‖xi − xj‖ .

Marsden and Weinstein: the passage from Euler to vortex dynamics is a
special case of symplectic reduction.
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Further outlook

I Generalisations and applications:

1. Consider vortices in the presence of solid bodies: Karman vortex street,
stability, etc.

2. look at vorticity concentrated in patches, along lines, etc.
3. quantum theory of vortices in superfluid helium.

I For (1), see Dr Kanso’s lectures next week.

I Crowds of exceedingly interesting cases present themselves. (Kelvin
1880)
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Chaotic advection
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Topology of stream lines

I Let ψ(x , y) be an autonomous stream function in 2D.

I Particle trajectories are lines of constant ψ (streamlines): severely
limits possible regions for chaos, ergodicity, mixing, etc.

What happens if we allow for

1. non-autonomous stream functions?

2. higher-dimensional flows?

Chaotic advection (Lagrangian chaos)

I Fluid is quite simple, but particle trajectories show remarkably
complicated behaviour.

I Note: don’t confuse with Eulerian chaos (turbulence, etc.)
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Aref’s stirring mechanism
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Background: Stokes flow

I Consider the non-dimensional Navier-Stokes equations:

∂u

∂t
+ u · ∇u = −∇p + (Re)−1∇2u,

where the Reynolds number Re = ρUL
µ gives the ratio of inertial to

viscous forces.

I For very viscous flows or small length scales, inertial terms are
negligible.

I Stokes equation:
∇p = (Re)−1∇2u,

No explicit time dependence, other than through the (possibly time
dependent) boundaries.
No-slip boundary condition: fluid sticks to boundaries.
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Non-autonomous stream functions

I Aref’s example: viscous fluid in a cylinder, with two rotating rods
(parallel to the cylinder) in the container.

I Aim: stir fluid by alternating between rotating rod #1 and rod # 2.

Stream function for one rotating rod at location (r , theta) = (b, 0) (rotlet
flow):

ψ(r , θ) =
σ

2

(
ln

r 2 − 2br cos θ + b2

a2 − 2br cos θ + b2r 2/a2
+

(1− r 2/a2)(a2 − b2r 2/a2)

a2 − 2br cos θ + b2r 2/a2

)
.

Not terribly complicated. . .
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Rotlet stream lines

Each stirring rod is placed at a stagnation point in the flow of the other
cylinder. Hence, they don’t exert a force on each other.
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Poincaré section of Aref’s flow

Figures courtesy of H. Aref and V. V. Meleshko (Phys. Fluids 8).
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Computation of LCS structures?

(See movies)
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The ABC flow
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Euler equations in 3D

I Consider again the Euler equations for an inviscid, incompressible
flow, but now in three dimensions.

I Stationary flow: ∂u
∂t = 0. So

u · ∇u +∇p = 0,

or
u× (∇× u) = ∇α,

where α = p + u2/2, the Bernoulli function (first integral).

I α = 0: so-called force-free velocity fields.
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Regularity in fluid motion

I Force free velocity field: u× (∇× u) = 0. Assume that u vanishes
nowhere.

I So, there exists a function f such that

∇× u = f u.

I v is tangent to the level sets of f ⇒ compact level surfaces of f
are tori.

I The same goes for non-free force flows by looking at the level sets of
α.

All this hints, under well-defined assumptions, at remarkably regular
behaviour!
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The ABC flow

I To open the door for chaos, we should tinker with these assumptions.
One way out: look for u such that

∇× u = λu,

with λ a constant (Beltrami fields).

I A famous example: ABC flows on the 3-torus {(x , y , z) mod 2π}
(i.e. R3 with periodic boundary conditions).

vx = A sin z + C cos y ,
vy = B sin x + A cos z ,
vz = C sin y + B cos x .

Integrable when A, B, or C is zero, chaotic otherwise.
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Trajectories for regular motion

A = 0,B =
√

2/3,C =
√

1/3.
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Poincaré section for chaotic case

A = 1,B =
√

2/3,C =
√

1/3.

See also computation of LCS structures in Philip’s lectures.
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