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Outline for this week

Introductory concepts;
Poisson brackets;

Integrability;

el

Perturbations of integrable systems.

4.1 The KAM theorem:;
4.2 Melnikov's method.
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Introduction
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Transition to the Hamiltonian framework

» Consider a mechanical system with n degrees of freedom and
described by generalised coordinates (q*,...,q").

» Denote the kinetic energy %mv2 by T, and the potential energy by
V(q). Define the Lagrangian L to be T — V.

» Define the canonical momenta p; as

oL
Pi=avic

This defines a map from velocity space with coords (g', v/) to phase
space with coords (q', p;), called the Legendre transformation.
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Transition to the Hamiltonian framework

The associated Hamiltonian is given by

H(q,p) = piv' — L(q, V).

To express the RHS as a function of g and p only, we need to be able to

invert the Legendre transformation. By the implicit function theorem, this
is the case if the matrix )
0L
— (1)
ov'ov

is invertible.

Notes

> Not every Hamiltonian is associated to a Lagrangian in this way. See
next week's class on vortex dynamics!

» Much of the above can be extended to the case where (1) is singular.
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Hamilton's equations

» Variational interpretation: arise as extrema of the following action
functional:

5(q(t), p(t), 1) = /p;(t)di(t) — H(q(t), p(t), t)dt.

» Equations of motion:
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Properties of Hamiltonian systems
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Poisson brackets: definition

Let f(q, p, t) be a time-dependent function on phase space. Its total
derivate is

df _ Of dg' _ Of dp; | Of

f=

dt ~ dq' dt +3p,- dt ot
_Of OH  Of OH  Of

_8qi8p;_8p;8qi+8t
of

={f, H} + —

{f, }+6t’

where we have defined the (canonical) Poisson bracket of two functions f
and g on phase space as

_ Of Og B gag
~ 0q'9p;  OpiOq'

{f.g}
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Poisson brackets: properties

A Poisson bracket is an operation {-, -} on functions satisfying the
following properties:

L {f,g} =—{g f}
2. {f+g,h} ={f,h} +{g, h};
3. {f.{g.h}} +{g {h F}} +{h{f . g}} =0;
4. {fg,h} = f{g, h} + g{f, h}.
Property 3 is called the Jacobi identity.
Properties 1, 2, and 3 make the ring of functions on R?" into a Lie algebra.
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Rewriting Hamilton's equations

» For any function f on phase space, we have

df

= = {FH).

» For f = g and f = p;, we recover Hamilton's equations:

. OH
'I: 1 H —

¢ =1{q',H} o’

and oK

pj = pi,H} = ———.

pi = {pi, H} g
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Conserved quantities

Definition
A function f is a conserved quantity if it Poisson commutes with the

Hamiltonian:
{f,H}=0.

Immediate consequences:

» If the Hamiltonian is autonomous, then it is conserved, as
{H,H} =0;
» If f and g are conserved, then so is {f, g}:

{{f.g}, H}t = {{g, H}, f} — {{f, H},g} = 0,

using the Jacobi identity. Usually this doesn't give too much
information.
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Not all Poisson brackets are canonical: Euler equations

» Consider a rigid body with moments of inertia (/1, k, I3) and angular
velocity Q = (21, Q2,Q3). Define the angular momentum vector

M= (M, Ny, M3) = (hQ1, hQ2, 5Q3).
» The equations of motion for the rigid body (Euler equations) are
n=nxqQ.
or, written out in components,

hQ1 = (h — )03,
b = (5 — h)Q3Q,
Qs = (h — ©h)Q21Q,.
» Clearly not canonical, since odd number of equations.
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Euler equations: Poisson form

» Define the rigid body Poisson bracket on functions F(IT), G(I) as
{F,G};p.(M)=-N-(VF xVG).
» The Euler equations are equivalent to
F={F.H}p.,

where the Hamiltonian is given by

1/n3 ng nj
H=>(-14.2423),
2(/1+/2+/3
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Other examples of Poisson brackets

» Fruitful approach: start from canonical Poisson bracket on R?" or
similar, consider a group action which leaves {-, -} invariant, and
define the bracket on the quotient.

» Other examples: ideal fluids, MHD, the Toda lattice, ...

(Idea for project. . .)
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Characteristic property of Hamiltonian flows

Theorem

The flow of a Hamiltonian vector field preserves the Poisson structure:
{F,G}Oq)t:{Foq)t,Goq)t}.
(thm. 10.5.1 in [MandS])

Take the derivative of u:={Fo®;, Go®;} —{F,G} o dy:

% = {{Fod, H},God,} + {Fod, {God, H}} — {{F,G}od,, H}

> Jacobi identity: % = {u, H}.

» Solution: u; = ug o D¢, but ug = 0.
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Liouville's theorem

To each Hamiltonian H, associate the following vector field on phase

space:
9H
. op;
Xy = _ng
aq’

The flow of Xy preserves volume in phase space.

Liouville's theorem

» Consequence of the following fact:

flow of X = f(x) is volume preserving <= divf(x) = 0.

0 0H 0 OH _
dq' Op;  Opi0q’
More is true: the flow of Xy is symplectic.
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Consequences of Liouville's theorem

1. In a Hamiltonian system, there are no asymptotically stable equilibria
or limit cycles in phase space.

2. Poincaré’s recurrence theorem:

Theorem

Let ® : D — D be a volume preserving diffeomorphism from a bounded
region D C R" to itself. Then for any neighborhood U in D, there is a
point of U returning to U after sufficiently many iterations of ®.

The sets U, ®(U), ®?(U),... cover D and have the same volume. So, for
some k and /, with k >/,

Pk ndl()#2 <= O U)NU+#a.

Take y € UN®K/(U) and put x = d~"(y) (n = k — 1), then x € U and
d"(x) € U.
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e —
Aside: symplecticity

» Define a map w : R?V x R?N — R as follows
w(X,Y) = signed area of parallellogram spanned by X, Y.
» A map ¢ : R?N — R2N s symplectic if it preserves these areas.

Remarks

> symplecticity = volume preservation, but not vice versa unless
2N = 2;

» w is a differential form.
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Integrability and near-integrability
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e —
Integrability: definitions
Definition

A Hamiltonian system with n degrees of freedom and Hamiltonian H is
called integrable if there exist n functionally independent integrals F;,
i=1,...,n, which are in involution: {F;, Fj} =0.

» The odds of randomly picking an integrable Hamiltonian among the
class of all analytic functions are zero.

> Motivation: if system is integrable, one can find a canonical trafo to
action-angle coordinates

(p.q)— (I,¢) and H(p,q) — H'(),
i.e. H' doesn't depend on ¢. Trivially integrable eqns of motion:

. . ,
I =0 and (ﬁ_%l_ll:_w(l).
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Integrability: examples

> Simple example
H— 1 5, 2,1 9 2
= 5(pi +a1) + 5 (p2 +wa3)

Integrable; action-angle form: H' = I} + hw. Trajectories fill out
2-torus if w is irrational.

» Rigid body (energy and angular momentum conserved);

» Kepler problem (energy, Laplace-Runge-Lenz vector, angular
momentum), etc.
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The Arnold-Liouville theorem

Let Mr be a level set of the F;:

M= {x:Fi(x)=Ff,i=1,...,n}

Theorem

» If M¢ is compact and connected, then it is diffeomorphic to a smooth
n-torus;

» M;: is invariant under the flow of H, and the motion on My is
quasi-periodic. In angular coordinates: ¢; = wi(f).

Important to remember: integrability — motion on invariant tori.
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Proof of Arnold’'s theorem

Idea:
1. the n conserved quantities F; generate n commuting vector fields Xr;;

2. composition of the flows of the Xg. defines an action of R" on M;

3. the isotropy subgroup of each point is a lattice in R".
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Perturbed Hamiltonian systems

Question: what can we say about systems with Hamiltonians of the form
H = Hy + eHq,

where Hy is integrable, and ¢ is small?

Possible answers

> Since perturbation is small, the resulting dynamics will still be close
to the original dynamics (Birkhoff averaging);

» Even a tiny perturbation destroys integrability completely, rendering
the system ergodic (Fermi's point of view).

KAM theory: sometimes one is true, in some cases the other — very rich
picture!
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Importance of near integrability

Many examples in practice

» special cases of 3-body problem;
» Motion of a charged particle in a tokamak;

» The Hénon-Heiles potential (astronomy again).

The solution
KAM theorem (after Kolmogorov-Arnold-Moser)

> One of the most important theorems in 20th century mathematical
physics;

» Many deep connections with other branches of math, like number
theory, analysis, etc.

Disclaimer: KAM is extremely technical! Fortunately, computer
simulations give a quick and far-reaching insight (project idea).
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Some definitions

Small divisors are killing us. How can we avoid them?

Definition
» Resonant torus: one for which the rotation numbers (w1, ... ,wp)
satisfy
kiwi + -+ + knpwn = 0,
for some (ki,..., k) € Z". Otherwise, torus is non-resonant.

> Strongly non-resonant: there exist « > 0 and 7 > 0 such that
(6
‘klwl qFocoqF knwn‘ > W

for all k € Z", k # 0.

Denote the set of all strongly non-resonant frequencies by A7,.
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The fate of resonant tori

Let T be an area preserving mapping. So T can be
1. a Poincaré mapping;

2. the time-7 advance mapping of some autonomous Hamiltonian flow
(=Poincaré);

3. just any area preserving map.

Consider a 1D torus C with rational rotatation number: wy/wy =r/s € Q.
Note that every point of C is a fixed point of T°.

Poincaré-Birkhoff

Under small perturbations: the resonant torus breaks up and leaves 2ks
fixed points of T° in its wake, which are alternatingly elliptic and
hyperbolic.

Technical condition: T should be a twist mapping.
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The fate of resonant tori (2)

The following picture “illustrates” the proof of Poincaré-Birkhoff:

{:.;.

E

v/

The full proof (very intuitive!) can be found in Tabor (p. 141) or Verhulst
(p. 236).
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Small perturbations

> So...all resonant tori are destroyed under arbitrarily small
perturbations and give rise to chaos. Does that mean that the system
is ergodic?

» Answer: an emphatic no. Let's find out what happens to the
non-resonant tori!

Joris Vankerschaver (CDS) Hamiltonian Dynamics 01/22/08, 01/24/08 31/36



L
The fate of the strongly non-resonant tori
Structure of the sets 7,
Here Q7 := A7 N2, with Q C R” compact.

Theorem

For all o and 7 > n—1, ], is a Cantor set. The complement of Q], has
Lebesgue measure of the order a.

Define

o
;yk:{wEQ:|k1w1+~-+k,,w,,|< |k]7}'

Then Ugkezn RY | is the complement of €2,.
> R is open;
» R7 is dense in Q (since Q"N Q C RY).

Sufficient to have a Cantor set.
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The KAM theorem

Roughly speaking: under suitable conditions of nondegeneracy, the
following holds:

» For perturbations of the order a2, all tori in Q7 persist;

» The destroyed tori fill an part of phase space with measure of order a.

e
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Melnikov's method

» Let z(t) be a homoclinic orbit such that lim;_,, = zg, a hyperbolic
fixed point.

» Define the Melnikov function
M(to) :/ (Ho, Hi} (2(t — to))dt.

Important idea: M(tp) is a measure for the distance between W*" and
we.
Theorem

If M(ty) has simple zeros and is independent of €, then, for e > 0
sufficiently small, W" and W* intersect transversely. If M(ty) remains
bounded away from zero, then W' N W* = &.
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Example: the forced pendulum

(See Marsden and Ratiu (p. 41) or Perko (p. 415) for more details)

» Equations of motion:

()= (o) e la)

Hamiltonian with

1.
Hy = Egbz —cos¢p and H; = ¢pcoswt.

» Homoclinic orbits for € = 0:

() - (=5
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Computation of Melnikov function

M(to) = /OO {Ho, Hi} (x(¢ — to))dt
= /OO o(t — ty) coswtdt

o0
= ¢/ 2sech(t — tg) coswtdt.

—Oo
Change variables, and use method of residues to conclude that
oo
M(ty) = F </ sech tcoswtdt) cos wty
— 00
Tw
= F2mwsech (7> coswty.
1. Conclusion: simple zeros, hence homoclinic chaos!

2. Compare with lobe dynamics for damped pendulum in LCS talk.
Caution: not entirely the same system!
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