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Outline for this week

1. Introductory concepts;

2. Poisson brackets;

3. Integrability;

4. Perturbations of integrable systems.

4.1 The KAM theorem;
4.2 Melnikov’s method.

Joris Vankerschaver (CDS) Hamiltonian Dynamics 01/22/08, 01/24/08 2 / 36



References

Books

I J. Marsden and T. Ratiu: Introduction to Mechanics and Symmetry.

I V. Arnold: Mathematical Methods of Classical Mechanics.

I M. Tabor: Chaos and Integrability in Nonlinear Dynamics.

I P. Newton: The N-vortex problem.

I F. Verhulst.

Papers

I J. D. Meiss: Visual Exploration of Dynamics: the Standard Map. See
http://arxiv.org/abs/0801.0883 (has links to software used to
make most of the plots in this lecture)

I J. D. Meiss: Symplectic maps, variational principles, and transport.
Rev. Mod. Phys. 64 (1992), no. 3, pp. 795–848.

Joris Vankerschaver (CDS) Hamiltonian Dynamics 01/22/08, 01/24/08 3 / 36



References

Software

I GniCodes: symplectic integration of 2nd order ODEs. Similar in use
as Matlab’s ode suite. See
http://www.unige.ch/∼hairer/preprints/gnicodes.html

I StdMap: Mac program to explore the dynamics of area preserving
maps. See
http://amath.colorado.edu/faculty/jdm/stdmap.html

Joris Vankerschaver (CDS) Hamiltonian Dynamics 01/22/08, 01/24/08 4 / 36



Introduction
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Transition to the Hamiltonian framework

I Consider a mechanical system with n degrees of freedom and
described by generalised coordinates (q1, . . . , qn).

I Denote the kinetic energy 1
2mv2 by T , and the potential energy by

V (q). Define the Lagrangian L to be T − V .

I Define the canonical momenta pi as

pi =
∂L

∂v i
.

This defines a map from velocity space with coords (qi , v i ) to phase
space with coords (qi , pi ), called the Legendre transformation.
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Transition to the Hamiltonian framework

The associated Hamiltonian is given by

H(q, p) = piv
i − L(q, v).

To express the RHS as a function of q and p only, we need to be able to
invert the Legendre transformation. By the implicit function theorem, this
is the case if the matrix

∂2L

∂v i∂v j
(1)

is invertible.

Notes

I Not every Hamiltonian is associated to a Lagrangian in this way. See
next week’s class on vortex dynamics!

I Much of the above can be extended to the case where (1) is singular.
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Hamilton’s equations

I Variational interpretation: arise as extrema of the following action
functional:

S(q(t), p(t), t) =

∫
pi (t)q̇i (t)− H(q(t), p(t), t)dt.

I Equations of motion:

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
.
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Properties of Hamiltonian systems
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Poisson brackets: definition

Let f (q, p, t) be a time-dependent function on phase space. Its total
derivate is

ḟ ≡ df

dt
=

∂f

∂qi

dqi

dt
+
∂f

∂pi

dpi

dt
+
∂f

∂t

=
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
+
∂f

∂t

= {f ,H}+
∂f

∂t
,

where we have defined the (canonical) Poisson bracket of two functions f
and g on phase space as

{f , g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.
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Poisson brackets: properties

A Poisson bracket is an operation {·, ·} on functions satisfying the
following properties:

1. {f , g} = −{g , f };
2. {f + g , h} = {f , h}+ {g , h};
3. {f , {g , h}}+ {g , {h, f }}+ {h, {f , g}} = 0;

4. {fg , h} = f {g , h}+ g{f , h}.
Property 3 is called the Jacobi identity.
Properties 1, 2, and 3 make the ring of functions on R2n into a Lie algebra.
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Rewriting Hamilton’s equations

I For any function f on phase space, we have

df

dt
= {f ,H}.

I For f = qi and f = pi , we recover Hamilton’s equations:

q̇i = {qi ,H} =
∂H

∂pi
,

and

ṗi = {pi ,H} = −∂H

∂qi
.
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Conserved quantities

Definition

A function f is a conserved quantity if it Poisson commutes with the
Hamiltonian:

{f ,H} = 0.

Immediate consequences:

I If the Hamiltonian is autonomous, then it is conserved, as
{H,H} = 0;

I If f and g are conserved, then so is {f , g}:

{{f , g},H} = {{g ,H}, f } − {{f ,H}, g} = 0,

using the Jacobi identity. Usually this doesn’t give too much
information.
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Not all Poisson brackets are canonical: Euler equations

I Consider a rigid body with moments of inertia (I1, I2, I3) and angular
velocity Ω = (Ω1,Ω2,Ω3). Define the angular momentum vector

Π = (Π1,Π2,Π3) = (I1Ω1, I2Ω2, I3Ω3).

I The equations of motion for the rigid body (Euler equations) are

Π̇ = Π×Ω.

or, written out in components,

I1Ω̇1 = (I2 − I3)Ω2Ω3,

I2Ω̇2 = (I3 − I1)Ω3Ω1,

I3Ω̇3 = (I1 − I2)Ω1Ω2.

I Clearly not canonical, since odd number of equations.
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Euler equations: Poisson form

I Define the rigid body Poisson bracket on functions F (Π), G (Π) as

{F ,G}r.b.(Π) = −Π · (∇F ×∇G ).

I The Euler equations are equivalent to

Ḟ = {F ,H}r.b.,

where the Hamiltonian is given by

H =
1

2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
.
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Other examples of Poisson brackets

I Fruitful approach: start from canonical Poisson bracket on R2n or
similar, consider a group action which leaves {·, ·} invariant, and
define the bracket on the quotient.

I Other examples: ideal fluids, MHD, the Toda lattice, . . .

(Idea for project. . . )
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Characteristic property of Hamiltonian flows

Theorem

The flow of a Hamiltonian vector field preserves the Poisson structure:

{F ,G} ◦ Φt = {F ◦ Φt ,G ◦ Φt}.

(thm. 10.5.1 in [MandS])

Take the derivative of u := {F ◦ Φt ,G ◦ Φt} − {F ,G} ◦ Φt :

du

dt
= {{F ◦ Φt ,H},G ◦ Φt}+ {F ◦ Φt , {G ◦ Φt ,H}} − {{F ,G} ◦ Φt ,H}

I Jacobi identity: du
dt = {u,H}.

I Solution: ut = u0 ◦ Φt , but u0 = 0.
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Liouville’s theorem
To each Hamiltonian H, associate the following vector field on phase
space:

XH :=

(
∂H
∂pi

− ∂H
∂qi

)

Liouville’s theorem

The flow of XH preserves volume in phase space.

I Consequence of the following fact:

flow of ẋ = f (x) is volume preserving⇐⇒ divf (x) = 0.

I

divXH =
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi
= 0.

More is true: the flow of XH is symplectic.
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Consequences of Liouville’s theorem

1. In a Hamiltonian system, there are no asymptotically stable equilibria
or limit cycles in phase space.

2. Poincaré’s recurrence theorem:

Theorem

Let Φ : D → D be a volume preserving diffeomorphism from a bounded
region D ⊂ Rn to itself. Then for any neighborhood U in D, there is a
point of U returning to U after sufficiently many iterations of Φ.

The sets U,Φ(U),Φ2(U), . . . cover D and have the same volume. So, for
some k and l , with k > l ,

Φk(U) ∩ Φl(U) 6= ∅ ⇔ Φk−l(U) ∩ U 6= ∅.

Take y ∈ U ∩ Φk−l(U) and put x = Φ−n(y) (n = k − l), then x ∈ U and
Φn(x) ∈ U.
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Aside: symplecticity

I Define a map ω : R2N × R2N → R as follows

ω(X ,Y ) = signed area of parallellogram spanned by X ,Y .

I A map Φ : R2N → R2N is symplectic if it preserves these areas.

Remarks

I symplecticity ⇒ volume preservation, but not vice versa unless
2N = 2;

I ω is a differential form.
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Integrability and near-integrability
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Integrability: definitions

Definition

A Hamiltonian system with n degrees of freedom and Hamiltonian H is
called integrable if there exist n functionally independent integrals Fi ,
i = 1, . . . , n, which are in involution: {Fi ,Fj} = 0.

I The odds of randomly picking an integrable Hamiltonian among the
class of all analytic functions are zero.

I Motivation: if system is integrable, one can find a canonical trafo to
action-angle coordinates

(p, q) 7→ (I , φ) and H(p, q) 7→ H ′(I ),

i.e. H ′ doesn’t depend on φ. Trivially integrable eqns of motion:

İ = 0 and φ̇ =
∂H ′

∂I
:= ω(I ).
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Integrability: examples

I Simple example

H =
1

2
(p2

1 + q2
1) +

1

2
(p2

2 + ωq2
2)

Integrable; action-angle form: H ′ = I1 + I2ω. Trajectories fill out
2-torus if ω is irrational.

I Rigid body (energy and angular momentum conserved);

I Kepler problem (energy, Laplace-Runge-Lenz vector, angular
momentum), etc.
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The Arnold-Liouville theorem

Let Mf be a level set of the Fi :

Mf := {x : Fi (x) = fi , i = 1, . . . , n}.

Theorem

I If Mf is compact and connected, then it is diffeomorphic to a smooth
n-torus;

I Mf is invariant under the flow of H, and the motion on Mf is
quasi-periodic. In angular coordinates: φ̇i = ωi (f ).

Important to remember: integrability → motion on invariant tori.
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Proof of Arnold’s theorem

Idea:

1. the n conserved quantities Fi generate n commuting vector fields XFi
;

2. composition of the flows of the XFi
defines an action of Rn on M;

3. the isotropy subgroup of each point is a lattice in Rn.
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Perturbed Hamiltonian systems

Question: what can we say about systems with Hamiltonians of the form

H = H0 + εH1,

where H0 is integrable, and ε is small?

Possible answers

I Since perturbation is small, the resulting dynamics will still be close
to the original dynamics (Birkhoff averaging);

I Even a tiny perturbation destroys integrability completely, rendering
the system ergodic (Fermi’s point of view).

KAM theory: sometimes one is true, in some cases the other → very rich
picture!
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Importance of near integrability

Many examples in practice

I special cases of 3-body problem;

I Motion of a charged particle in a tokamak;

I The Hénon-Heiles potential (astronomy again).

The solution

KAM theorem (after Kolmogorov-Arnold-Moser)

I One of the most important theorems in 20th century mathematical
physics;

I Many deep connections with other branches of math, like number
theory, analysis, etc.

Disclaimer: KAM is extremely technical! Fortunately, computer
simulations give a quick and far-reaching insight (project idea).
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Some definitions

Small divisors are killing us. How can we avoid them?

Definition

I Resonant torus: one for which the rotation numbers (ω1, . . . , ωn)
satisfy

k1ω1 + · · ·+ knωn = 0,

for some (k1, . . . , kn) ∈ Zn. Otherwise, torus is non-resonant.

I Strongly non-resonant: there exist α > 0 and τ > 0 such that

|k1ω1 + · · ·+ knωn| >
α

|k |τ

for all k ∈ Zn, k 6= 0.

Denote the set of all strongly non-resonant frequencies by ∆τ
α.
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The fate of resonant tori

Let T be an area preserving mapping. So T can be

1. a Poincaré mapping;

2. the time-τ advance mapping of some autonomous Hamiltonian flow
(=Poincaré);

3. just any area preserving map.

Consider a 1D torus C with rational rotatation number: ω1/ω2 = r/s ∈ Q.
Note that every point of C is a fixed point of T s .

Poincaré-Birkhoff

Under small perturbations: the resonant torus breaks up and leaves 2ks
fixed points of T s in its wake, which are alternatingly elliptic and
hyperbolic.

Technical condition: T should be a twist mapping.
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The fate of resonant tori (2)

The following picture “illustrates” the proof of Poincaré-Birkhoff:

The full proof (very intuitive!) can be found in Tabor (p. 141) or Verhulst
(p. 236).
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Small perturbations

I So. . . all resonant tori are destroyed under arbitrarily small
perturbations and give rise to chaos. Does that mean that the system
is ergodic?

I Answer: an emphatic no. Let’s find out what happens to the
non-resonant tori!
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The fate of the strongly non-resonant tori
Structure of the sets Ωτ

α

Here Ωτ
α := ∆τ

α ∩ Ω, with Ω ⊂ Rn compact.

Theorem

For all α and τ > n − 1, Ωτ
α is a Cantor set. The complement of Ωτ

α has
Lebesgue measure of the order α.

Define

Rτ
α,k =

{
ω ∈ Ω : |k1ω1 + · · ·+ knωn| <

α

|k|τ

}
.

Then ∪06=k∈ZnRτ
α,k is the complement of Ωτ

α.

I Rτ
α is open;

I Rτ
α is dense in Ω (since Qn ∩ Ω ⊂ Rτ

α).

Sufficient to have a Cantor set.
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The KAM theorem

Roughly speaking: under suitable conditions of nondegeneracy, the
following holds:

I For perturbations of the order α2, all tori in Ωτ
α persist;

I The destroyed tori fill an part of phase space with measure of order α.
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Melnikov’s method

I Let z(t) be a homoclinic orbit such that limt→∞ = z0, a hyperbolic
fixed point.

I Define the Melnikov function

M(t0) =

∫ ∞
−∞
{H0,H1} (z(t − t0))dt.

Important idea: M(t0) is a measure for the distance between W u and
W s .

Theorem

If M(t0) has simple zeros and is independent of ε, then, for ε > 0
sufficiently small, W u and W s intersect transversely. If M(t0) remains
bounded away from zero, then W u ∩W s = ∅.
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Example: the forced pendulum

(See Marsden and Ratiu (p. 41) or Perko (p. 415) for more details)

I Equations of motion:

d

dt

(
φ

φ̇

)
=

(
φ̇

− sinφ

)
+ ε

(
0

cosωt

)
.

Hamiltonian with

H0 =
1

2
φ̇2 − cosφ and H1 = φ cosωt.

I Homoclinic orbits for ε = 0:(
φ(t)

φ̇(t)

)
=

(
±2 tan−1(sinh t)
±2 sech t

)
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Computation of Melnikov function

M(t0) =

∫ ∞
−∞
{H0,H1} (x(t − t0))dt

= −
∫ ∞
−∞

φ̇(t − t0) cosωtdt

= ∓
∫ ∞
−∞

2 sech(t − t0) cosωtdt.

Change variables, and use method of residues to conclude that

M(t0) = ∓
(∫ ∞
−∞

sech t cosωtdt

)
cosωt0

= ∓2π sech
(πω

2

)
cosωt0.

1. Conclusion: simple zeros, hence homoclinic chaos!

2. Compare with lobe dynamics for damped pendulum in LCS talk.
Caution: not entirely the same system!
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