CDS 140b Winter 2008 Week 6 Spherical Tippe Top Inversion as a Dissipation-Induced Instability

Due: Thursday, Feb 21, 2008

This assignment references the preprint "Dissipation-Induced Heteroclinic Orbits in Tippe Tops" which accompanies this homework.

Problem A [Quadratic Lagrangians]

Let $M \in L(\mathbb{R}^n, \mathbb{R}^n)$ be a symmetric positive-definite matrix. Consider a mechanical system with quadratic Lagrangian $L : \mathbb{R}^{2n} \to \mathbb{R}$:

$$L(\mathbf{q}, \dot{\mathbf{q}}) = \dot{\mathbf{q}}^T M \dot{\mathbf{q}} + \dot{\mathbf{q}}^T G \mathbf{q} - \mathbf{q}^T K \mathbf{q}.$$

Show that the only conservative forces derivable from such a quadratic Lagrangian are gyroscopic and potential. (Recall a gyroscopic force is a force that can be written as $A\dot{\mathbf{q}}$ where A is skew-symmetric and a potential force is a force that can be written as $B\mathbf{q}$ where B is symmetric.)

Problem B [Linear Hamiltonian Systems]

Let $\mathbf{q}(t) \in \mathbb{R}^2$. Consider $A, B \in L(\mathbb{R}^2, \mathbb{R}^2)$ where A is skew-symmetric and B is symmetric. Verify that the following differential equations are Hamiltonian:

$$\ddot{\mathbf{q}} + A\dot{\mathbf{q}} + B\mathbf{q} = 0. \tag{*}$$

Show that if σ is an eigenvalue of (*) then so are $1/\sigma$, $\bar{\sigma}$ and $1/\bar{\sigma}$.

Problem C [Conservative Spherical Tippe Top]

Let $a, b \in \mathbb{R}$. Recall the governing equations of the conservative spherical tippe top admit the following momentum invariant:

$$J = a\boldsymbol{\pi}^T \boldsymbol{\xi}_3 + b\boldsymbol{\pi}^T \mathbf{e}_3.$$

Show that as a consequence of this invariance, the conservative spherical tippe top cannot capture tippe top inversion. That is, there exists no time T such that $\boldsymbol{\xi}_3(T) \approx \mathbf{e}_3$ given that one initializes the system in a neighborhood of the noninverted state: $\boldsymbol{\xi}_3(0) \approx -\mathbf{e}_3$ and $\boldsymbol{\pi}(0) \approx \sigma \operatorname{Fre}_3$. **Problem D** [Jellett Momentum Map]

Recall the governing equations of the spherical tippe top are given by:

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{v}, \\ \mu \dot{\mathbf{v}} = (\lambda - \mu) \mathbf{e}_3 + \mathbf{F}_f, \\ \mathbf{x}^{\mathrm{T}} \mathbf{e}_3 = 1 + \epsilon \mathbf{e}_3^{\mathrm{T}} \boldsymbol{\xi}_3, \\ \dot{\boldsymbol{\xi}}_3 = \boldsymbol{\omega} \times \boldsymbol{\xi}_3, \\ \dot{\boldsymbol{\pi}} = -\lambda \epsilon \boldsymbol{\xi}_3 \times \mathbf{e}_3 + \mathbf{q} \times (\mathbf{F}_f), \\ \boldsymbol{\pi} = \boldsymbol{\omega} + (\sigma - 1) (\boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{\xi}_3) \boldsymbol{\xi}_3. \end{cases}$$
(**)

Prove that the Jellett momentum map:

$$\mathcal{J} = -\boldsymbol{\pi}^T \mathbf{q}$$

is invariant under the flow of $(^{**})$. Discuss its role in the analysis of the spherical tippe top's inversion.

Problem E [Relative Equilibria]

Show that the fully nonlinear rotational equations of the spherical tippe top:

$$\begin{cases} \dot{\boldsymbol{\xi}}_3 &= \boldsymbol{\pi} \times \boldsymbol{\xi}_3, \\ \dot{\boldsymbol{\pi}} &= -\mu\epsilon \boldsymbol{\xi}_3 \times \mathbf{e}_3 + \nu \mathbf{q} \times \mathbf{q} \times \boldsymbol{\pi} - \nu \frac{\sigma-1}{\sigma} (\boldsymbol{\pi}^{\mathrm{T}} \boldsymbol{\xi}_3) \mathbf{q} \times \mathbf{q} \times \boldsymbol{\xi}_3, \end{cases}$$

admit the following fixed points:

$$\pi = \pi_0 \mathbf{e}_3, \quad \boldsymbol{\xi}_3 = n_0 \mathbf{e}_3, \quad n_0^2 = 1,$$

where n_0 and π_0 are real constants.

Project Ideas

- 1. Write a "article review" of the preprint.
- 2. Simulate tippe top inversion using variational rigid body integrators coupled to Sigrid Leyendecker's discrete null-space method to handle the external surface constraint.
- 3. Analyze stochastic resonance in tippe top inversion as discussed in the preprint (cf. §6).
- 4. Model dynamic stability of an inverted pendulum with an autonomous mechanical system.