
CDS 140b: Homework Set 2
Due by Thursday, January 31, 2008.

For the purpose of calibration, note down the time spent on each problem
on your solution.

Problems

1. Consider the Poisson form of the rigid body equations. Show that the
total angular momentum C(Π), defined as

C(Π) =
1
2
‖Π‖2

Poisson commutes with any function, i.e. for any function G(Π),

{C,G} = 0.

A function Poisson commuting with any other function is called a Casimir
function.

2. A vector field X acts as a derivation on functions as follows: X(f) =
Df ·X, i.e. X(f) is the derivative of f in the direction of X.

(a) Show that if XF is a vector field on phase space associated to a
function F (q, p), then

XF (f) = {f, F} (1)

for all functions f .

(b) Show by direct calculation that for any two functions F and G on
phase space the following relation holds:

X{F,G} = −[XF , XG] (2)

where the Poisson bracket is the canonical one on phase space, and
the Lie bracket [X,Y ] of two vector fields is defined by

[X,Y ](f) = X(Y (f))− Y (X(f)). (3)

(c) Now consider an arbitrary Poisson structure on (a subset of) Rn.
Taking (1) to be the definition of the vector field XF associated to a
function F , and using (3) to define the Lie bracket of vector fields,
show that (2) continues to hold in this general setting.

3. This exercise deals with the motion of a charged particle in a magnetic
field in R3. You will show that the effect of having a non-zero magnetic
field is to modify the Poisson bracket by a certain magnetic term. This is
yet another example of a Poisson structure which is not canonical.
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Consider the following Poisson bracket on phase space (for notational def-
initeness, the coordinates on phase space are (q; p) = (x, y, z; px, py, pz)):

{f, g}B = {f, g}can +
e

c
B

(
∂f

∂py

∂g

∂pz
− ∂g

∂py

∂f

∂pz

)
, (4)

where {f, g}can is the canonical Poisson bracket:

{f, g}can =
3∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
,

and the second term in (4) is referred to as the magnetic term, as it is
proportional to the magnetic field B. Note that B is a function of (x, y, z).

Show that the equations of motion for this Poisson bracket and the kinetic
energy Hamiltonian

H =
1

2m
(p2
x + p2

y + p2
z)

describe the motion of a particle of mass m and charge e in a magnetic
field B = (B(x, y, z), 0, 0) along the x-axis. Recall that the equations of
motion for such a particle are the Lorentz equations:

m
dv
dt

=
e

c
v ×B.

4. Fill in the details for the computation of the Melnikov function for the
forced pendulum. Recall that for this system

H =
1
2
p2
φ − cosφ+ εφ cosωt

where pφ = φ̇ is the momentum conjugate to φ.

• Find all equilibrium points of the unperturbed system and discuss
their stability;

• Show that the curve given by

φ(t) = ±2 tan−1(sinh t)

is a homoclinic orbit;

• Follow the outline in the slides to compute the Melnikov function for
this perturbation. To evaluate the complex integral, note that there
is a simple pole at z = iπ

2 and evaluate the integral there. What do
you conclude?
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Project ideas

1. Gain further insight in perturbed Hamiltonian systems (by using the
gnicodes Matlab numerical integrators and/or your own software).

2. Master a special topic in Hamiltonian mechanics. Examples: the formal-
ism of generating functions and the Hamilton Jacobi equation, the theory
behind symplectic numerical integrators, etc.

3. Study some of the special Poisson structures in mechanics and/or field
theory.

4. Study some real-world examples of chaos. Example: the use of Melnikov’s
method to prove the existence of homoclinic chaos in superfluid helium.
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