1. Consider the following planar, autonomous vector field:

\[
\begin{align*}
\dot{x} &= -x + y^2, \\
\dot{y} &= -2x^2 + 2xy^2, \\
(x,y) &\in \mathbb{R}^2.
\end{align*}
\]

(a) Prove that \(y = x^2 \) is an invariant manifold for this vector field.

(b) Prove that there exists a heteroclinic connection between the equilibrium points \((x,y) = (0,0)\) and \((x,y) = (1,1)\).

2. Consider the system of equations in the plane \(\mathbb{R}^2 \) given by

\[
\begin{align*}
\dot{x} &= y \\
\dot{y} &= -4x - \mu y + 6x^3 - 2x^7
\end{align*}
\]

(a) Show that for \(\mu = 0 \), the system is Hamiltonian and find a Hamiltonian function.

(b) Still assuming that \(\mu = 0 \), write this system as Euler-Lagrange equations and find a Lagrangian function.

(c) Assume that \(\mu \geq 0 \). Show that solutions exist for all positive time for any initial data.

(d) Assume that \(\mu \geq 0 \). Show that \((0,1)\) is an equilibrium point and find the eigenvalues of the linearized system at this equilibrium. Explain how your answer is consistent with the possible eigenvalue configurations for a Hamiltonian system in the special case \(\mu = 0 \).

(e) What can you say about the stable, unstable and center manifolds for the equilibrium point \((0,1)\)?

(f) Assume that \(\mu > 0 \) and let \((x_0, y_0)\) be given initial data for a solution \((x(t), y(t))\). What is the possible limit of \((x(t), y(t))\) as \(t \to +\infty \)?

3. Let \(\delta, \gamma, \omega \) be constants and \(\omega \neq 0 \). Consider the following system in \(\mathbb{R}^3 \):

\[
\begin{align*}
\dot{x} &= -\delta x + \omega y - \gamma x^3 - \gamma xy^2 \\
\dot{y} &= -\omega x - \delta y - \gamma y^3 - \gamma yx^2 \\
\dot{z} &= -z + zxy.
\end{align*}
\]

(a) Discuss the stability of the origin and the corresponding invariant manifolds.
(b) Show by direct calculation that the system has a periodic orbit for some values of ω, δ, γ for which both δ and γ are nonzero.

(c) Show that there is a Hopf bifurcation as δ changes sign (keeping ω, γ fixed).

4. Discuss the relation between the Smale horseshoe map and the homoclinic tangle; that is, given the tangle, show how to construct the horseshoe map.

5. Consider the periodically forced pendulum equation (as in the lectures):

$$\ddot{x} + \sin x + \epsilon \dot{x} \sin t = 0$$

Suspend the system to an autonomous system on \mathbb{R}^3 as follows:

$$\dot{x} = v$$
$$\dot{v} = -\sin x + \epsilon v \sin \tau$$
$$\dot{\tau} = 1$$

Relate invariant manifolds of this system with invariant manifolds of the Poincaré map with LCS.

Project Suggestions.

1. Read and master at least one paper on LCS.

2. Get LCS running for some concrete system of your choice.