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1.4 Stability and Linearization

Suppose we are studying a physical system whose states x are described
by points in Rn. Assume that the dynamics of the system is governed by a
given evolution equation

dx

dt
= f(x).

Let x0 be a stationary point of the dynamics, i.e., f(x0) = 0. Imagine that
we perform an experiment on the system at time t = 0 and determine that
the initial state is indeed x0. Are we justified in predicting that the system
will remain at x0 for all future time? The mathematical answer to this
question is yes, but unfortunately it is probably not the question we really
wished to ask. Experiments in real life seldom yield exact answers to our
idealized models, so in most cases we will have to ask whether the system
will remain near x0 if it started near x0. The answer to the revised question
is not always yes, but even so, by examining the evolution equation at
hand more carefully, one can sometimes make predictions about the future
behavior of a system starting near x0. A simple example will illustrate some
of the problems involved. Consider the following two differential equations
on the real line:

x′(t) = −x(t) (1.4.1)

and
x′(t) = x(t). (1.4.2)

The solutions are, respectively,

x(x0, t) = x0e
−t (1.4.3)

and
x(x0, t) = x0e

+t. (1.4.4)

Note that 0 is a stationary point of both equations. In the first case, for
all x0 ∈ R, we have limt→∞ x(x0, t) = 0. The whole real line moves toward
the origin, and the prediction that, if x0 is near 0 then x(x0, t) is near 0, is
justified. On the other hand, suppose we are observing a system whose state
x is governed by equation (0.1.2). An experiment telling us that at time
t = 0, x(0) is approximately zero will certainly not permit us to conclude
that x(t) stays near the origin for all time, since all points except 0 move
rapidly away from 0. Furthermore, our experiment is unlikely to allow us
to make an accurate prediction about x(t) because if x(0) < 0, x(t) moves
rapidly away from the origin toward−∞, but if x(0) > 0, x(t) moves toward
+∞. Thus, an observer watching such a system would expect sometimes
to observe x(t) → −∞ as t → ∞ and sometimes x(t) → +∞ as t → ∞.
The solution x(t) = 0 for all t may be difficult to observe because a slight
perturbation of the initial state would destroy this solution. This sort of
behavior is frequently observed in nature. It is not due to any nonuniqueness
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in the solution to the differential equation involved, but to the instability
of that solution under small perturbations in initial data.

It is convenient to represent the dynamics by sketching representative
flow lines (solution curves) in the state space, as in Figure 1.4.1. In this
figure we also indicate examples of unstable and stable points on the line,
in the plane

(
R2

)
and in space

(
R3

)
.
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(a) flow lines for a stable
     point on the line

(b) flow lines for an unstable
     point on the line

(c) an unstable point for a  
     dynamical system in the
     plane 

(d) a stable point for a dynamical
     system in space

Figure 1.4.1. Stable and unstable equilibria.

Since questions of stability are central in dynamical systems, we will
want to define the concept of stability precisely and develop criteria for
determining it.

Definition 1.4.1. Consider a C1 dynamical system ẋ = X(x) on Rn,
and suppose that xe is a fixed point of X; that is, X(xe) = 0.

1. We say that the point xe is stable if for every b > 0, there is an ε > 0
such that if an initial condition x0 lies in the ball of radius ε around
x(e) then it exists for all t > 0 and stays in the ball of radius b.

2. We say that xe is asymptotically stable if it is stable and in addi-
tion, the solutions x(t) with initial conditions in the ball of radius ε
converge to x(e) as t→ +∞
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If x(e) is not stable it is called unstable. (See Figure 1.4.2.)

asymptotically stable
 fixed point

A

stable closed orbitstable fixed point

Figure 1.4.2. Stability for fixed points and closed orbits.

Eigenvalue Criteria for Stability. There is a classical test for stability
of fixed points due to Liapunov. To begin, consider the linear case. Letting
A : Rn → Rn be a linear map, the ẋ = Ax has flow Ft(x) where Ft : Rn →
Rn is the linear map given by

Ft = etA, (1.4.5)

where
etA = I + tA +

1
2
t2A2 + · · · + 1

n!
tnAn + · · · .

Let λ1, . . . ,λn be the (complex) eigenvalues of A.
Recall the following result from the section on Linear Systems.

Proposition 1.4.2. For the linear case, the origin is

i. asymptotically stable if

Re λi < 0 for all i = i, . . . , n;

ii. unstable if
Re λi > 0 for some i.

When some eigenvalues are on the imaginary axis, further investigation
is needed.

Recall that the preceding proposition can be proved using the Jordan
normal form; it is especially easy when A is diagonalizable (over the com-
plex numbers) with linearly independent eigenvectors v1, . . . , vn, for in that
basis A is the diagonal matrix

diag(etλ1 , . . . , etλn)



1.4 Stability and Linearization 45

and etλi → 0 as t→∞ if Re λi < 0.

A local nonlinear version of this result is as follows.

Theorem 1.4.3 (Liapunov’s Theorem). Let f : Rn → Rn be C1 and
x0 ∈ Rn be a fixed point of ẋ = f(x) (so f(x0) = 0). Let A = Df(x0)
be the linearization of f (so Aij = ∂fi/∂xj is the Jacobian matrix) and
λ1, . . . ,λn be its eigenvalues. Then x0 is

i. asymptotically stable if

Re λi < 0 for all i = 1, . . . , n;

ii. unstable if
Re λi > 0 for some i.

If the eigenvalues all have real parts zero, then further analysis is necessary.

We will prove the stability result here. The instability result can be
proved by a similar method, but it is a bit more subtle.

Proof. Without loss of generality, we can assume that the equilibrium
point is at the origin. In the section on linear systems we saw that there is
an ε > 0 such that ‖etA‖ ≤Me−εt.

From the local existence theory, there is an r-ball about 0 for which the
time of existence is uniform if the initial condition x0 lies in this ball. Let

R(x) = X(x)−Ax.

Find r2 ≤ r such that ‖x‖ ≤ r2 implies ‖R(x)‖ ≤ α‖x‖, where α = ε/2.
This is possible by considering the definition of the derivative at the origin.

Let D be the open r2/2 ball about 0 and let x0 ∈ D. The strategy is to
show that if x0 ∈ D, then the integral curve starting at x0 remains in D
and converges to the origin exponentially as t → +∞. This will prove the
stability result.

To carry out this plan, let x(t) be the integral curve of X starting at x0.
Suppose x(t) remains in D for 0 ≤ t < T . The equation

ẋ = Ax(t) + R(x(t))

with initial conditions x(0) = x0 has a solution that satisfies the variation
of constants formula, namely

x(t) = etAx0 +
∫ t

0
e(t−s)AR(x(s)) ds,

and so

‖x(t)‖ ≤Me−tε‖x0‖+ α

∫ t

0
e−(t−s)ε‖x(s)‖ ds.
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Letting f(t) = etε‖x(t)‖, the previous inequality becomes

f(t) ≤M‖x0‖+ α

∫ 1

0
f(s) ds,

and so, by Gronwall’s inequality, f(t) ≤M‖x0‖eαt. Thus

‖x(t)‖ ≤M‖x0‖e(α−ε)t = M‖x0‖e−εt/2.

Hence x(t) ∈ D, 0 ≤ t < T , so as in the local continuation results, x(t)
may be indefinitely extended in t and the foregoing estimate holds. !

Examples.

1. Consider the vector field f on R2 defined by

f(x, y) = (y, µ(1− x2)y − x)

where µ is a real parameter. That is, consider the nonlinear system

ẋ = y

ẏ = µ(1− x2)y − x

Using Theorem 1.4.3 we see that the linearization at the origin is
given by the linear system

ẋ = y

ẏ = −x + µy;

that is,
d

dt

[
x
y

]
=

[
0 1
−1 µ

] [
x
y

]

The eigenvalues of this matrix are

λ =
1
2

(
µ ±

√
µ2 − 4

)

and we see that the real parts (examine the cases |µ| > 2 and |µ| < 2
separately) have negative real parts for µ < 0, so it is stable and
have at least one positive real part if µ > 0, so the origin is unstable.
For µ = 0, the eigenvalues are pure imaginary, so we do not draw a
conclusion—but in fact, a direct examination shows that the system
is a linear center for µ = 0. A computer simulation confirms these
findings.


