
82 Introduction

Liapunov Functions

Besides the Liapunov spectral theorem, there is another basic method of
proving stability that is a generalization of the energy method we have seen
in the introductory mechanical examples.

Definition (Liapunov Function). . Let X be a Cr vector field on Rn,
r ≥ 1, and let xe be an equilibrium point for X, that is, X(xe) = 0.
A Liapunov function for X at xe is a continuous function L : U → R
defined on a neighborhood U of xe, differentiable on U\{xe}, and satisfying
the following conditions:

(i) L(xe) = 0 and L(x) > 0 if x #= xe;

(ii) The directional derivative of L along X, denoted X[L] ≤ 0 on U\{xe};
this means that d

dtL ≤ 0 along solution curves of X.

The Liapunov function L is said to be strict , if (ii) is replaced by the
condition (ii)′: X[L] < 0 in U\{xe}.

Condition (i) is sometimes called the potential well hypothesis.7 By
the Chain Rule for the time derivative of V along integral curves, condition
(ii) is equivalent to the statement: L is nonincreasing along integral curves
of X.

Theorem (Liapunov Stability Theorem.). Let X be a Cr vector field on
Rn, r ≥ 1, and let xe be an equilibrium point for X, that is, X(xe) = 0. If
there exists a Liapunov function for X at xe, then xe is stable.

Proof. Since the statement is local, we can assume that xe = 0. By the
local existence theory, there is a neighborhood U of 0 such that all solutions
starting in U exist for time t ∈ [−δ, δ], with δ depending only on X and
U , but not on the solution. Now fix ε > 0 and an open ball Dε(0) that
is included in U . Let ρ(ε) > 0 be the minimum value of L on the sphere
of radius ε, and define the open set U ′ = {x ∈ Dε(0) | L(x) < ρ(ε) }. By
(i), U ′ #= ∅, 0 ∈ U ′, and by (ii), no solution starting in U ′ can meet the
sphere of radius ε (since L is decreasing on integral curves of X). Thus all
solutions starting in U ′ never leave Dε(0) ⊂ U and therefore by uniformity
of time of existence, these solutions can be extended indefinitely in time.
This shows that 0 is stable. !

There is a more global concept that is related to this circle of ideas that
we discuss somewhat informally. Namely, a region R ⊂ Rn with a (smooth)

7In infinite dimensions, one needs to augment (i) by the additional condition that
there is an ε > 0 such that for all 0 < ε′ ≤ ε,

inf{L(ϕ−1(x)) | ‖x− xe‖ = ε′ } > 0.

In finite dimensions, this condition is automatic by the compactness of spheres.



1.7 Liapunov Functions 83

boundary with a well defined inside and outside, is called a positively
trapping region if for initial conditions that start in R, the solution stays
in R for t ≥ 0. If the given vector field is pointing inwards (or is tangent)
to the boundary of R, this is a sufficient condition for R to be a trapping
region. If R is bounded, necessarily the dynamical system is positively
complete on R. Often sublevel sets R = {x ∈ Rn | L(x) ≤ C} of Liapunov
functions provide such trapping regions because the vector field is inwards
corresponds to the condition that L is decreasing along solutions at the
boundary.

Theorem (Liapunov Asymptotic Stability Theorem.). Let X be a Cr

vector field on Rn, r ≥ 1, and let xe be an equilibrium point for X, that is,
X(xe) = 0. Suppose that L a strict Liapunov function for X at xe. Then
xe is asymptotically stable.

Proof. We can assume xe = 0. By the preceding Theorem, 0 is stable, so
if tn is an increasing sequence, tn →∞, and x(t) is an integral curve of X
starting in U ′, it lies in a bounded set and so the sequence {x(tn)} ∈ Rn has
a convergent subsequence. Thus, there is a sequence tn → +∞ such that
x(tn)→ x0 ∈ Dε(0), some ε disk. We shall prove that x0 = 0. Since L(x(t))
is a strictly decreasing function of t by (ii)′, L(x(t)) > L(x0) for all t > 0. If
x0 #= 0, let c(t) be the solution of X starting at x0, so that L(c(t)) < L(x0),
again since t )→ L(x(t)) is strictly decreasing. Thus, for any solution c̃(t)
starting close to x0, L(c̃(t)) < L(x0) by continuity of L. Now take c̃(0) =
x(tn) for n large to get the contradiction L(x(tn + t)) < L(x0). Therefore
x0 = 0 is the only limit point of {x(t) | t ≥ 0 } if x(0) ∈ U ′, that is, 0 is
asymptotically stable. !

The same method can be used to detect the instability of equilibrium
solutions, as in the following result.

Theorem (Liapunov Instability Theorem). Let X be a Cr vector field on
Rn, r ≥ 1, and let xe be an equilibrium point for X, that is, X(xe) = 0.
Assume there is a continuous function L : U → R defined in a neighborhood
of U of xe, which is differentiable on U\{xe}, and satisfies L(xe) = 0,
X[L] > 0 (respectively, ≤ a < 0) on U\{xe}. If there exists a sequence
xk → xe such that L(xk) > 0 (respectively, < 0), then xe is unstable.

Proof. We need to show that there is a neighborhood W of xe such that
for any neighborhood V of xe, V ⊂ U , there is a point xV whose integral
curve leaves W . By local compactness, we can assume that X[L] ≥ a > 0.
Since xe is an equilibrium, there is a neighborhood W1 ⊂ U of xe such
that each integral curve starting in W1 exists for time at least 1/a. Let
W = {xe ∈W1 | L(m) < 1/2 }.
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We can assume as usual that xe = 0. Let cn(t) denote the integral curve
of X with initial condition xn ∈W . Then

L(cn(t))− L(xn) =
∫ t

0
X[L](cn(λ)) dλ ≥ at

so that
L(cn(1/a)) ≥ 1 + L(mn) > 1,

that is, cn(1/a) #∈W . Thus all integral curves starting at the points xn ∈W
leave W after time at most 1/a. Since xn → 0, the origin is unstable. !

Example 1. Consider the simple pendulum ẍ + sinx = 0. As usual, we
write this as a dynamical system:

ẋ = v

v̇ = − sin x

Let us test the origin (x, v) = (0, 0) for stability using the energy function as
Liapunov function: E(x, v) = 1

2v2−cos x on the set U where, say, −π < x <
π. Since d

dtE = 0, condition (ii) of the definition of a Liapunov function
holds. The origin (x, v) = (0, 0) is a strict local minimum of E and so
condition (i) holds. Thus, the origin is stable by the Liapunov stability
theorem.

Example 2. Let us test the upright solution (x, v) = (π, 0) for instability.
However, the Liapunov instability theorem does not apply with the same
choice of Liapunov function since that result requires that E has a nonzero
time derivative. On the other hand, the Liapunov spectral theorem, or
invariant manifold theory shows that indeed this equilibrium is unstable.

Example 3. Consider the simple pendulum with friction ẍ + sin x = −νẋ.
Again, write this as a dynamical system:

ẋ = v

v̇ = − sinx− νv

This time let us test the origin (x, v) = (0, 0) for asymptotic stability using
the same energy function as Liapunov function: E(x, v) = 1

2v2 − cos x on
the set U where, say, −π < x < π. This time

d

dt
E(x, v) = −νv2,

which is non-positive. However, it is not negative everywhere on the set U
because it vanishes when v = 0. Thus, E is not a strict Liapunov function
and the Liapunov asymptotic stability theorem fails to apply. On the other
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hand, the Liapunov spectral theorem does apply to show asymptotic sta-
bility because the linearization of the system at the origin is given by the
matrix [

0 1
−1 −ν

]

which has eigenvalues λ =
(
−ν ±

√
ν2 − 4

)
which, for ν > 0 are in the left

half plane (note that the eigenvalues can be imaginary or real, correspond-
ing to whether or not the origin is a spiral sink or a node (underdamped
or overdamped). Thus, by the Liapunov spectral theorem, the origin is
asymptotically stable.

While the Liapunov asymptotic stability theorem does not apply, a more
general result, the LaSalle Invariance principle does apply. We turn to this
topic in the next section.

Example 4. The vector field on the plane with components

X(x, y) = (−y − x5, x− 2y3)

has the origin as an isolated equilibrium. The eigenvalues of the lineariza-
tion of X at (0, 0) are ±i and so Liapunov’s Spectral Stability Criterion
does not give any information regarding the stability of the origin. If we
suspect that (0, 0) is asymptotically stable, we can try searching for a Li-
apunov function of the form L(x, y) = ax2 + by2, so we need to determine
the coefficients a, b #= 0 in such a way that X[L] < 0. We have

X[L] = 2ax(−y − x5) + 2by(x− 2y3) = 2xy(b− a)− 2ax6 − 4by4,

so that choosing a = b = 1, we get X[L] = −2(x6 + 2y4) which is strictly
negative if (x, y) #= (0, 0). Thus the origin is asymptotically stable by the
Liapunov asymptotic stability theorem.

Example 5. Consider the vector field in the plane with components

X(x, y) = (−y + x5, x + 2y3)

with the origin as an isolated critical point and characteristic exponents ±i.
Again Liapunov’s Stability Criterion cannot be applied, so that we search
for a function L(x, y) = ax2 + by2, a, b #= 0 in such a way that X[L] has a
definite sign. As above we get

X[L] = 2ax(−y + x5) + 2by(x + 2y3) = 2xy(b− a) + 2ax6 + 4by4,

so that choosing a = b = 1, it follows that X[L] = 2(x6 + y4) > 0 if
(x, y) #= (0, 0). Thus, the origin is unstable.

The preceding two examples show that if the spectrum of X lies on the
imaginary axis, the stability nature of the equilibrium is determined by the
nonlinear terms.
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Example 6. Now we give another proof of the Dirichlet Stability Theorem.
Consider Newton’s equations in R3, q̈ = −(1/m)∇V (q) written as a first
order system q̇ = v, v̇ = −(1/m)∇V (q) and so define a vector field X on
R3 ×R3. Let (q0,v0) be an equilibrium of this system, so that v0 = 0 and
∇V (q0) = 0. In previous lectures we have seen that the total energy

E(q,v) =
1
2
m‖v‖2 + V (q)

is conserved, so we use E to construct a Liapunov function L. Since L(q0,0) =
0, define

L(q,v) = E(q,v)− E(q0,0) =
1
2
m‖v‖2 + V (q− V (q0),

which satisfies X[L] = 0 by conservation of energy. If V (q) > V (q0) for
q #= q0, then L is a Liapunov function. Thus we have proved

The Dirichlet-Lagrange Stability Theorem: An equilibrium point (q0,0)
of Newton’s equations for a particle of mass m, moving under the influence
of a potential V , which has a local absolute minimum at q0, is stable.

The Invariance Principle

A key ingredient in proving more general global asymptotic stability results
is what is often referred to as the LaSalle invariance principle.8 It allows
one to prove attractivity of more general invariant sets than equilibrium
points.

Theorem (The Invariance Principle). Consider a smooth dynamical sys-
tem on Rn given by ẋ = X(x) and let Ω be a compact set that is (positively)
invariant under the flow of X. Let V : Ω → R, V ≥ 0, be a C1 function
such that

V̇ (x) =
∂V

∂x
· X ≤ 0

in Ω. Let S be the largest invariant set in Ω where V̇ (x) = 0. Then every
solution with initial point in Ω tends asymptotically to S as t → ∞. In
particular, if S is an isolated equilibrium, it is asymptotically stable.

8The theorem is actually due to Barbashin, E. A. and N. N. Krasovskii [1952], Sta-
bility of motion in the large, Doklady Mathematics, (Translations of Proceedings of
Russian Academy of Sciences) 86, 453–456, and apparently independently appears in
the book LaSalle, J. P. and S. Lefschetz [1961], Stability by Lyapunov’s direct method
with applications. Academic Press, New York, Krasovskii, N. [1963], Stability of Motion.
The book Khalil, H. K. [1992], Nonlinear systems. Macmillan Publishing Company, New
York. Stanford University Press, (originally published 1959) has a nice treatment. We
refer to one of these sources for the proof of the theorem.
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In the statement of the theorem, V (x) need not be positive definite, but
rather only semidefinite, and that if in particular S is an equilibrium point,
the theorem proves that the equilibrium is asymptotically stable. The set Ω
in the LaSalle theorem also gives us an estimate of the region of attraction
of an equilibrium. This is one of the reasons that this is a more attractive
methodology than that of spectral stability tests, which could in principle
give a very small region of attraction.

Example. Now we study an example similar to Example 3 in the preceding
section, where the Liapunov asymptotic stability theorem failed, but we
assert that the Invariance Principle succeeds. So again consider the simple
pendulum with friction ẍ + sinx = −νẋ and write this as a dynamical
system:

ẋ = v

v̇ = − sinx− νv

This time let us test the origin (x, v) = (0, 0) for asymptotic stability using
the same energy function as Liapunov function: E(x, v) = 1

2v2 − cos x on
the set Ω where, say, E(x, v) < 2. As before,

d

dt
E(x, v) = −νv2,

Since E is non-increasing on trajectories, the open set Ω is positively in-
variant. The only invariant set S containing the set where Ė = 0, that is,
where v = 0, is the set of equilibrium points, since the vector field is trans-
verse to the x-axis. In our case, there is just one equilibrium point, namely
the origin. Thus, by the Invariance Principle, the origin is asymptotically
stable.


