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Invariant Manifolds

There are two basic motivations for invariant manifolds. The first comes
from the notion of separatrices that we have seen in our study of planar
systems, as in the figures. We can ask what is the higher dimensional gen-
eralization of such separatrices. Invariant manifolds provides the answer.

The second comes from our study of of linear systems:

ẋ = Ax, x ∈ Rn.

Let Es, Ec, and Eu be the (generalized) real eigenspaces of A associated
with eigenvalues of A lying on the open left half plane, the imaginary axes,
and the open right half plane, respectively. As we have seen in our study of
linear systems, each of these spaces is invariant under the flow of ẋ = Ax
and represents, respectively, a stable, center, and unstable subspace. We
want to generalize these notions to the case of nonlinear systems. Thus,
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invariant manifolds will correspond, intuitively, to “nonlinear eigenspaces.”

Let us call a subset S ⊂ Rn a k-manifold if it can be locally represented
as the graph of a smooth function defined on a k-dimensional affine sub-
space of Rn. As in the calculus of graphs, k manifolds have well defined
tangent spaces at each point and these are independent of how the mani-
folds are represented (or parametrized) as graphs. Although the notion of
a manifold is much more general, this will serve our purposes.

A k-manifold S ⊂ Rn is said to be invariant under the flow of a vector
field X if for x ∈ S, Ft(x) ∈ S for small t > 0, where Ft(x) is the flow of
X. One can show that this is equivalent to the condition that X is tangent
to S. One can thus say that an invariant manifold is a union of (segments
of) integral curves of X.

While one can study invariant manifolds associated to general invariant
sets, such as periodic orbits, let us focus on fixed points, say, xe to begin—
these correspond to the origin for a linear system. There will be three
sorts of invariant manifolds, namely stable manifolds, center mani-
folds, and unstable manifolds. In a neighborhood of xe, the tangent
spaces to the stable, center, and unstable manifolds are provided by the
generalized eigenspaces Es, Ec, and Eu of the linearization A = DX(xe).

We are going to start with hyperbolic points; that is, points where
the linearization has no center subspace. Let the dimension of the stable
subspace be denoted k.

Theorem (Local Invariant Manifold Theorem for Hyperbolic Points). As-
sume that X is a smooth vector field on Rn and that xe is a hyperbolic
equilibrium point. There is a k- manifold W s(xe) and a n − k-manifold
Wu(xe) each containing the point xe such that the following hold:

i. Each of W s(xe) and Wu(xe) is locally invariant under X and con-
tains xe.

ii. The tangent space to W s(xe) at xe is Es and the tangent space to
Wu(xe) at xe is Eu.

iii. If x ∈ W s(xe), then the integral curve with initial condition x tends
to xe as t →∞ and if x ∈ Wu(xe), then the integral curve with initial
condition x tends to xe as t → −∞.

iv The manifolds W s(xe) and Wu(xe) are (locally) uniquely; they are
determined by the preceding conditions.

A rough depiction of stable and unstable manifolds of a fixed point are
shown in the next figure.
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stable and unstable manifolds of a critical point with one eigenvalue 

of the linearization in the right half plane and two in the left

In this case of hyperbolic fixed points we only have the locally unique
manifolds W s(xe) and Wu(xe). These can be extended to globally unique,
manifolds6 by means of the flow of X. This is called the Global Stable
Manifold Theorem of Smale.

Invariant Manifolds for Periodic Orbits. There is a similar result
for invariant manifolds of periodic orbits γ. We indicate the idea of this
result in the following figure.

stable and unstable manifolds of a periodic orbit whose Poincare 

map has one eigenvalue inside and one outside the unit circle. 

Invariant Manifolds for Mappings. Recall that mappings rather than
flows arise in at least three basic ways:

(a) Many systems are directly described by discrete dynamics: xn+1 =
f(xn). For example, the standard map, the Henon map, many in-
tegration algorithms for dynamical systems, and many population
problems may be understood this way. Delay and difference equa-
tions can be viewed in this category as well.

(b) The Poincaré map of a closed orbit.

(c) Suppose we are interested in nonautonomous systems of the form
ẋ = f(x, t) where f is T -periodic in t. Then the map P that advances

6Technically they are called immersed submanifolds
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solutions by time T , also called the Poincaré map, is basic to a qual-
itative study of the orbits. (See the following Figure.) This map is
often used in the study of, for example, forced oscillations.

t

x

x

Poincare map

state space M

trajectory of

state space M
The Poincaré map of a time-periodic dynamical system.

The Center Manifold Theorem

First we state the Center Manifold Theorem, and again first assume that
we are dealing with an equilibrium point at the origin.

Theorem (Local Center Manifold Theorem for Flows). Let X be a Ck

vector field on Rn (k ≥ 1) such that X(0) = 0. Let Ft(x) denote the
corresponding flow. Assume that the spectrum of DX(0) is of the form
σ = σ1∪σ2 where σ1 lies on the imaginary axis and σ2 lies off the imaginary
axis. Let E1 ⊕ E2 be the corresponding splitting of Rn into generalized
eigenspaces.

Then there is a neighborhood U of 0 in Rn and a Ck manifold W c ⊂ U
of dimension d passing through 0 and tangent to E1 at 0 such that

i. W c is invariant in the sense that if x ∈ W c and Ft(x) ∈ U for all
t ∈ [0, t0], then Ft0(x) ∈ W c.

ii. If Ft(x) ∈ U for all t ∈ R, then Ft(x) ∈ W c. The manifold W c

is locally the graph of a Ck map h : E1 → E2 with h(0) = 0 and
Dh(0) = 0. (See the following Figure.)
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h

The center manifold W c(xe) of a fixed point.

The manifold W c is called a center manifold. Property i says that W c

is locally invariant under the flow Ft, and ii means that all orbits of Ft that
are globally defined and contained in U for all t are actually contained in
W c.

Proofs of the Center Manifold Theorem
(Optional Discussion)

This is a technical job, but the technicalities can lead to (and historically
did lead to) fundamental advances and new ideas. After giving an overview
of the main methods that have been used to prove the theorem, we give
the details of each of three approaches. Following this, further properties
of smoothness and attractivity are given.

In this section we will discuss some of the main techniques that are
available to prove the center manifold theorem.

The first main division is that between maps and flows. One can take
the approach of first proving the invariant manifold theorems for maps
and then, using the time t map associated to any flow, deduce the center
manifold theorems for flows. This approach is certainly useful since the
invariant manifold theorems for maps are important in their own right.
However, in our introductory approach, we have chosen to proceed directly
with proofs for differential equations. By consulting the references cited,
the reader will have no trouble tracking down the corresponding theorems
for maps, should they require that.

There are several approaches in the literature to proving the invariant
manifold theorems. We shall not attempt to survey them all here, but rather
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we shall focus on three main ideas:

1. The invariance equation approach.

2. The trajectory selection method (sometimes called the Liapunov-
Peron method).

3. The normal form method.

Each of these methods sets up the problem in a different way, but once the
problem is set up, there is a nonlinear equation to solve. To solve it, there
are two main approaches that can be used:

A. The contraction mapping approach.

B. The deformation method.

Thus, in principle, one can follow six general lines of proof to the end. Each
line has its own merits, as we shall see.

The contraction mapping principle is a familiar method for solving non-
linear equations. One formulates the equation as a fixed point problem on
an appropriate complete metric space (often a Banach space) and then
applies the contraction mapping principle.

As we learn in elementary analysis, one can often replace the contraction
mapping argument by the inverse function theorem. Irwin [1970, 1970] has
shown, this is indeed the case for the stable and unstable manifold theorems.
However, it does not seem possible for the center manifold case. (Although
a Lipschitz version of the inverse function following Pugh and Shub [1970]
might be appropriate). We shall give an idea of the difficulties involved
below.

The deformation method is a powerful and general method that was de-
veloped in singularity theory that has been applied to prove sharp versions
of various normal form theorems, including the Morse lemma (Golubit-
sky and Marsden [1983]) and the Darboux theorem in mechanics (Moser
[1965]). The general idea is to join the nonlinar problem to a simpler (often
linear) one by a parameter, and then to flow out, using an ordinary differ-
ential equation, the solution of the simpler problem, to one for the desired
problem. We shall give an abstract context for the method below.

Let us now go into the various approaches in a bit more detail. We start
with equations of the form

ẋ = Ax + f(x, y) =: φ1(x, y) (Center Piece)

ẏ = By + g(x, y) =: φ2(x, y) (Hyperbolic Piece)

where x and y belong to subspaces X and Y , say, X = Rk and Y =
Rl), A and B are linear operators on X and Y respectively and f and
g are nonlinear maps of a neighborhood of (0, 0) in X × Y to X and Y ,
respectively. We assume that:



1.6 Mechanical Systems 73

A1. The spectrum of A is on the imaginary axis and the spectrum of B lies
at a positive distance from the imaginary axis, as in the associated
Figure, for example.

spectrum of B

spectrum of A

The spectrum at a fixed point can have a stable, and unstable and a
center part.

A2. The mappings f and g are of class Ck, k ≥ 2 or of class Ck
lip, k ≥

1. (Ck
lip denotes the functions of class Ck whose kth derivative is

Lipschitz.)

A3. f(0, 0) = 0, Df(0, 0) = 0, g(0, 0) = 0, and Dg(0, 0) = 0.

Remarks.

1. If we begin with a differential equation ż = X(z) on Rn and F (0) = 0,
we divide the spectrum of DX(0) into parts with spectrum on the
imaginary axis and the rest, then this defines the linear operators
A and B and the functions f and g are the remainder terms after
subtracting the linear terms. This is how a general system produces
one of the form (Center Piece) and (Hyperbolic Piece).

2. One can modify A1-A3 to allow the possibility of dependence on pa-
rameters. For example, one then asks that the spectrum of A lie near
the imaginary axis and that Df(0) and Dg(0) are small. However,
this is mainly useful for the most technically sharp theorems that are
needed when PDE’s are considered. For this book we are concentrat-
ing on the finite dimensional case and then A1-A3 suffice by using
the suspension trick.

!
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Now comes an important point. The next three sections will put assump-
tions on f and g in addition to the above that involve their behavior as
(x, y) → ∞. In this global setting one proves that the center manifold is
unique. However, without these assumptions, which one does not want to
make in general, the center manifold (unlike the stable and unstable man-
ifolds) is not unique, nor need it be smooth, even if f and g are. We will
give some examples of this below.

One gets the local theorem stated from the global one in a very simple
way. One simply multiplies f and g by a function ϕ that vanishes outside
a neighborhood U of (0, 0), and is 1 on a smaller neighborhood V . The
new system has a center manifold (depending on ϕ!) that is a valid center
manifold for the original system on V .

If the spectrum of B lies in the strict left hand plane, then the center
manifold is an attracting set (unless trajectories leave the neighborhood
where it is defined) and moreover, trajectories approach orbits on the center
manifold in the strong sense of an asymptotic phase: A trajectory z(t) is
said to converge ot a trajectory z0(t) with an asymptotic phase if there is
a number t∞ such that ‖z(t)− z0(t + t∞)‖ → 0 as t →∞. These dynamic
properties, along with smoothness results for center manifolds, are proved
in the last two sections of the chapter.

Next we describe the general idea of each of the methods 1, 2 and 3.

1. The Invariance Method
Here we search for an invariant manifold of the form y = h(x), as in the

Figure.
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x

y

y=h(x)

The idea of the invariance method.

The condition that y = h(x) be invariant under the flow is obtained by
differentiating it in time: ẏ = Dh(x)ẋ, or

φ2(x, h(x)) = Dh(x) · φ1(x, h(x)). (Invariance Equation)

This, together with the tangency requirement h(0) = 0, Dh(0) = 0 can be
regarded as the equation we have to solve.

An immediate difficulty with the equation (Invariance Equation) is the
loss of derivatives in h due to the term Dh(x). Second, h occurs in a
nonlinear way due to the composition in both φ1 and φ2.

To understand the difficulties with solving (Invariance Equation), con-
sider a simple example. Let A = 0 (so the spectrum is at zero) and X = R,
Y = R, so equations (Center Piece) and (Hyperbolic Piece) read

ẋ = f(x, y)
ẏ = By + g(x, y)

and (Invariance Equation) reads

Bh(x) + g(x, h(x)) = f(x, h(x))h′(x). (Center Invariance Equation)

As an ode for h, this equation is singular since the coefficient (and even its
derivative) of h′(x) vanishes at x = 0! This is an essential difficulty that
has to be overcome.
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At this point, there are two techniques we shall consider to solve the
equation (Center Invariance Equation). The first is to reformulate it as a
fixed point problem and, on a suitable space Ck

lip, apply the contraction
mapping theorem. To formulate it as a fixed point problem, one proceeds
in two steps.

Step 1. The second method is the deformation method. We insert a pa-
rameter ε in (5.1.1) and (5.1.2):

ẋ = Ax + εf(x, y) =: φ1(x, y), (1.6.12)

ẏ = By + εg(x, y) =: φ2(x, y). (1.6.13)

For ε = 0 there is a solution of (5.1.3), namely h0(x) = 0. We then
seek a solution hε(x) for the above system. The procedure is to dif-
ferentiate (5.1.3) in ε to obtain an equation for dhε/dε which can be
solved as an evolution equation in the “time” ε. We get what we want
at ε = 1.

2. The Trajectory Selection Method
It is reasonable to think of the center manifold as the “slow manifold”.

For example, trajectories near, but not on the center manifold appear to
spiral out, away from the origin as t → −∞ at an exponential rate (depend-
ing on the distance of the spectrum of B to the imaginary axis). Points on
the center manifold are characterized by the fact that they either linger on
the center manifold, or if they do leave a neighborhood of the origin, they
do so at a slower rate.

Thus, in this method, one sets up function spaces with growth rates built
in as t → ±∞ and initial conditions are sought with “slow” growth rates.
Gluing these together produces the center manifold.

3. The Normal Form Method
The idea here, borrowed from normal form theory (the simple version of

the Hopf bifurcation is an example), is to seek a certain change of variables
of the form

u = x + χ(x, y)

v = y + ψ(x, y)

where χ and ψ vanish, along with their derivaties at (0, 0). Thus, this is a
near identity change of variables near the origin. The equations (Center Piece)
and (Hyperbolic Piece) now become

u̇ = Au + f̃(u, v)

v̇ = Bu + g̃(u, v)
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for new functions f̃ and g̃ that depend on χ and ψ. What we seek is to
choose χ and ψ so that

g̃(u, 0) = 0.

This is an implicit equation for χ and ψ which, in principle, can be solved
by either the contraction mapping argument or the deformation method.
Once it is done, the invariant manifold is simply

v = 0

which implicitly defines the center manifold as y = h(x) through the change
of variables.

Examples

Examples of Stable and Unstable Manifolds.

Example 1. Find the leading two terms in the expansion of the stable
manifold for the system

ẋ = −x− y2

ẏ = y + xy + x2

near the origin.
Solution. The origin is clearly an equilibrium point and the linearized
system at the origin is

ẋ = −x

ẏ = y

and so the stable subspace is the x-axis (with eigenvalue −1) and the un-
stable subspace is the y-axis (with eigenvalue 1). Since the stable manifold
is tangent to the x-axis, we seek the stable manifold as a graph of the form

y = h(x) = ax2 + bx3 + . . .

The key thing is that this must be invariant. We obtain the invariance
equation by taking the time derivative of this equation to give:

y + xy + x2 = 2ax(−x− y2) + 3bx2(−x− y2) + . . .

Now substitute y = ax2 + bx3 + . . . to give

ax2 + bx3 + x(ax2 + bx3) + x2 + . . .

= 2ax2 − 2ax(ax2 + bx3)2 + 3bx2(−x− (ax2 + bx3)2) + . . .
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and next equate coeffients of like powers of x to give a = −1/3 and b = 1/12.
Thus, the leading terms in the stable manifold are

y = −1
3
x2 +

1
12

x3 + . . .

and so we have approximately a parabola bending downwards.

Center Manifold Examples.

We now give some examples of center manifolds that show the delicacy of
the situation.

A. Both this example and the next will be systems with parameters and
exhibiting an interesting bifurcation. This first example shows the
non-uniqueness of the center manifold. We consider the system

ẋ = −x2 + α

ẏ = −y

α̇ = 0

The phase protraits for α < 0, α = 0 and α > 0 are shown in the
Figure.

x

y

x

y

x

y

Center manifolds in (x, y,α)-space are obtained by gluing together
one of the curves tending to (0, 0) at α = 0 as t → ∞ from x > 0
with the negative x-axis and with their counterparts for α < 0 and
α > 0. One of these choices is highlighted in the figure.
As α = 0, notice that the curves from the right half plane are given
by

x =
1

t− t0
, y = y0e

t−t0

for any t0 and y0; i.e., y = y0e1/x. Notice that this curve is tangent
to the x-axis to all orders. This is a general property of all center
manifolds, as was proved by Wan [198?]. !



1.6 Mechanical Systems 79

Remark. Note that the center manifold is unique at α = 0 in the
half plane x < 0 and for α > 0 between the two fixed points created
in the bifurcation. Features like this in fact are true generally when
unstable manifolds are created by a bifurcation in an attracting center
manifold, as follows from uniqueness of the unstable manifold of the
bifurcated fixed point. These are part of the center manifold for the
suspended system. !

B. Next we give an example showing that the center manifold need not
be C∞. It will be, for any k ≥ 0, of class Ck on some neighborhood
of the origin, but as k → ∞, this neighborhood shrinks to a point.
We consider

ẋ = −x3 − εx,

ẏ = −y + x2,

ε̇ = 0.

(1.6.14)

The phase portraits for ε < 0, ε = 0 and ε > 0 are shown in Fig-
ure 1.6.7.

x x x

yyy

Figure 1.6.7. Missing Caption

In this example we can see, as in Example A, that the center mani-
fold is not unique. One such choice is emphasized in the figure. (The
portion containing the unstable manifold of the origin for ε < 0 is
unique.) Let us now investigate the smoothness of this manifold.

First, we claim that at ε = 0, it is not analytic. Represent it by
y = h(x). If it were analytic, we could write

y = h(x) =
∞∑

n=2

anxn. (1.6.15)
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The invariance condition is obtained by differentiating: ẏ = h′(x)ẋ,
or −y + x2 = h′(x)(−x3), or

x2 −
∞∑

n=2

anxn = −
∞∑

n=2

anxn+2. (1.6.16)

Solving this recursively determines an and hence h. We get a2 = 1,
a3 = 0 and an = (n − 2)an−2 for n ≥ 4. Thus, the odd coefficients
vanish, while the even ones are a2m = 2m−1(m − 1)!. In particular,
the radius of convergence of this series is zero, so it proves our claim.
Second, we claim that for ε > 0, the center manifold loses its differ-
entiability of class Ck on a neighborhood of the origin that shrinks
to a point as k →∞.
Consider the invariant manifold for ε > 0 in parametrized form as
y = hε(x). The invariance condition is

− y + x2 = h′ε(x)(−x3 − εx). (1.6.17)

If hε is of class C2m+1 in a neighborhood of x = 0, then

hε(x) =
2m∑

i=1

aix
i + O(x2m+1) (1.6.18)

and

h′ε(x) =
2m∑

i=1

aiix
i−1 + O(x2m). (1.6.19)

Substituting these in the preceding equation gives

− a1x− (a2 − 1)x2 −
2m∑

i=3

aix
i + O(x2m+1)

=

[(
2m∑

i=1

iaix
i−1

)
+ O(x2m)

]
(−x3 − εx).

Thus, a1 = 0, a2 = 1/(1− iε) and (1− iε)ai = (i− 2)ai−2 and so

ai =
i− 2
1− iε

ai−2.

For 1 − 2mε = 0, or ε = 1/2m, a2m → ∞, so h can’t be C2m+1 on
a neighborhood of 0 if ε = 1/2m. Therefore, the neighborhood on
which h is Ck shrinks as k →∞. !


