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Basic Theory of Dynamical Systems

1.1 Introduction and Basic Examples

Dynamical systems is concerned with both quantitative and qualitative
properties of evolution equations, which are often ordinary differential equa-
tions and partial differential equations. In these notes we shall focus on the
case of ordinary differential equations (ODE), and start off dealing with
such equations in Euclidean space R". They are equations of the form

i= f(x,t) (1.1.1)

where f is a map of an open set in R™ x R to R™ with some regularity
properties to be examined as we develop the theory a bit more in depth.
For now, we assume that f is smooth. A goal is to find solutions x(¢) to
this equation satisfying some initial conditions, say x(tg) = xg is given. To
further simplify things, let us assume for now that f is autonomous; that
is, f does not depend explicitly on ¢t. Then the equation becomes

i = f(z) (1.1.2)

However, in many examples, f can depend on parameters. We shall see
concrete examples of this as we proceed. If we denote these parameters by
p € RP then equation (1.1.1) becomes

T = f(z,p) (1.1.3)

and we think of solving this equation for each fixed p and then consider
how things change as p varies.
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A Simple Example. Let us start off by examining a simple system that
is mechanical in nature. We will have much more to say about examples of
this sort later on. Basic mechanical examples are often grounded in New-
ton’s law, F' = ma. For now, we can think of a as simply the acceleration,
given in R” by a = &, the second time derivative.!

Often the forces F are derived from a potential; namely F(z) = —VV (x)
for some real valued function V', the potential energy. In this case, the
equations take the form

mi = -VV(x). (1.1.4)
Here is a simple example in one dimension; choosing
1 1
Viz) = —ixz + 13:4
and m = 1, we get the equation
F=x—a®

Intuitively, think of a particle moving in the potential field given by V| as
in Figure 1.1.1.

v

FIGURE 1.1.1. Particle at position x on the line, moving in a potential field V.

To analyze this system, some basic observations are useful. First of all, we
can put the equation in first order form (1.1.2) by introducing the velocity
v as a separate variable, so what we called x before becomes the pair (z,v):

r=v (1.1.5)

V=x—a°

Now let us now pause for a basic observation:
L As we shall see later, the acceleration does not take this simple form in coordinates

more general than Euclidean coordinates and also is more subtle when one is considering
systems that are in motion, such as a pendulum on a rotating Earth.
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First Order Form and Equilibria. Suppose we have an equation of
the form (1.1.4). We first write that equation in first order form as we did
in the preceding example:

- 1.1.6
b= (-VV () o

By definition, equilibrium points of an autonomous system are points
where the right hand side of equation (1.1.2) vanishes. Finding and ana-
lyzing such points is a useful thing to do and is often the first step in the
analysis of a dynamical system. Notice that if x¢ is such a point, then the
solution curve through that point is simply the constant curve z(t) = o,
since in this case (1.1.2) is satisfied, both sides being zero. For our equation
(1.1.6), it is clear that equilibrium points are points for which v = 0 and
x is a critical point of V. For our specific example above, these points are
clearly at x =0 and = = +1.

Conservation of Energy. We claim that the kinetic energy plus the
potential energy is conserved; that is, the expression

E(z,v) = %va + V() (1.1.7)

is constant in time. To verify this simply differentiate in time, making use
of equation (1.1.6):

iE(x, v) = mvo + VV(x)&

dt
=v(mv+ VV(x))
=0

as claimed.

Return to the Example. We now return to the example (1.1.5). What
we have shown is quite remarkable. Namely, the solution trajectories of
this equation must lie on level sets of the energy function for this example,
namely

1 1 1
E(z,v) = 51)2 - §z2 + 1x4. (1.1.8)
A graph of this energy function (drawn using Mathematica) is shown in
Figure 1.1.2 and the corresponding level sets are shown in Figure 1.1.3.

We return to this example after another short interlude.



4 1. Basic Theory of Dynamical Systems

FIGURE 1.1.3. Level contours of the energy function E(z,v) = %1}2 — %mz + gzt

1.4

Finding a Formula for Solution Trajectories. Using conservation
of energy, we can find a formula for solutions. Start with the expression
(1.1.7) and an initial condition (zq, vo). Use this initial condition to evaluate
the constant C = E(x,vo). Then by conservation of energy, we have the
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identity along the trajectory (x(t),v(t)) of the system:
1 2
C= imv(t) + V(z(t))

Solve for v:

ot) = % = 4\ /2(C VGO

Note that the quantity under the square root is non-negative because the
kinetic energy is positive. However, also note that the sign used in this
expression depends on the sign of v. The sign can certainly change as a
trajectory crosses the x axis. When it does so, the kinetic energy becomes
momentarily zero and is called a turning point. For instance, when a
pendulum reaches the highest point of its oscillation and changes direction,
this happens. With this sign in mind, we can write the solution implicitly
in terms of integrals, as follows:

=t + constant.

dx
/ V2(C =V (x(t)))

While such expressions certainly can be useful at times, it is often more
insightful to directly simulate a system.

Simulations. On the other hand, one can draw the trajectories in the
phase plane, that is, the (x,v) plane by using software available over
the internet, such as 3D Xplore Math, PPlane, etc (see http://www.cds.
caltech.edu/~marsden/cds140a-08/computing for some examples. This
gives Figure 1.1.4:

Symmetries. Motivated by the preceding figure, we note the following:

If (x(t),v(t)) is a solution of (1.1.5), then so is (Z(t),0(t)),
where &(t) = —x(—t) and 0(t) = v(—t). This trajectory is ob-
tained by reflecting in the v-axis and then running time back-
wards. This statement is easily verified and rests on the fact
that V(x) is an even function of x.

Likewise, (Z(t),v(t)) is a solution, where T(t) = x(—t) and
o(t) = —v(—t). This second symmetry is also verified to hold
for any potential V.

Dissipation. A simple (and naive) model of dissipative forces is to add
a term —v to the force. This represents a force that opposes the motion
and it proportional to the velocity. It is an instance of what is often called
Rayleigh dissipation. In this case, our example becomes

- 1.1.9
DES e (=VV(z)) —vv ( )

m
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FIGURE 1.1.4. Trajectories for the equation (1.1.5).

Where m = 1 and V(z) is as in our example. Let us check what happens
to conservation of energy in this case:

%E(x, v) = mvo + VV(2)&
=v(mv+ VV(x))
= —w? <0.

Note that this holds for general V. Thus, apart from turning points, E is
always decreasing, and so it is plausible that trajectories (at least most, but
not all of them) will go to a minimum of E. This is verified in our example
by drawing the phase portrait, as in Figure 1.1.5

Stability and Instability. We will treat these important notions in-
formally here and illustrate them with the preceding example. First of all,
notice that adding dissipation does not change the equilibrium points. Note
that in the preceding figure, initial conditions near the equilibrium points
(£1,0) stay near the equilibrium for all future time and even tend to it as
t — oo; we call such a point asymptotically stable. In the case dissipation
is absent, solutions with initial conditions close to one of these points still
stays near the point; in fact, in this case, they move along periodic orbits,
namely level sets of the energy. Such points are called stable. Some orbits
with initial points near the origin, on the other hand, move away from the
origin as t — oo and so the origin is called an unstable equilibrium.
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NN

FIGURE 1.1.5. Trajectories for the equation (1.1.9) for v = 1.

Poincaré-Hopf Example. One of the most fascinating phenomena in
dynamical systems is when a system starts oscillating as a parameter
changes. One of the most interesting examples is in chemical reactions,
the Belousov-Zhabotinsky reaction reaction, which is beautifully described
in Strogatz’ book. Another example is when wind blows past power lines
and they begin to sing as a parameter (in this case the wind speed) is
increased. Other examples of oscillating systems abound in biology, from
neurons to heartbeats and many of them involve the same fundamental
phenomenon, called the Poincaré-Hopf bifurcation. We illustrate here
with the following simple example of this phenomenon that can be analyzed
“by hand”. Consider this planar system

s'c:—y—l—a:(u—xg—gf)

1.1.10
y=x+y(p—2*>—y?) ( )

where p is a parameter.
To analyze this system, first note that if we leave off the nonlinear terms,
what remains is a small variant of the harmonic oscillator with energy

Eharmonic oscillator (LL', y) = (.’E2 + y2) .

N =

This, together with the fact that the phase portrait of the harmonic oscilla-
tor consist of points moving in circles (which are level sets of this energy),
motivates the introduction of polar coordinates. Thus, introduce polar co-
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ordinates (r,6) in the usual way:
r=rcosf, y=rsinb.

Differentiating the relation 2 = 22 + y? and using the equations (1.1.10),
we see that

rr =T+ yy
=z(-ytz(p=—2a*—9") +y(e+y(n-2"-y))
(=)
Thus, as long as r is not zero,
fzr(u—rQ).

Similarly, by differentiating x = r cos # and making use of the equations for
4 and 7, we find that
0=1

This system is now easy to analyze since the equations decouple. In fact,
by considering the sign of 7, we see that the origin is stable for u < 0
and for p > 0 the origin is unstable. Note that for p > 0, there is a fixed
point in the r-dynamics, namely at 7 = ,/p. This corresponds to a periodic
orbit in the (z,y)-plane. Note that as p crosses from negative to positive,
a periodic orbit is “born” out of the origin and its amplitude grows as /i
as [ increases.

A movie of this basic phenomenon for this example is available at https:
//www.cds.caltech.edu/help/cms.php?op=wiki&wiki_op=view&id=162.

Bifurcation to Oscillation. As the preceding example illustrates, the
Poincaré-Hopf bifurcation is a general dynamic bifurcation in which, roughly
speaking, a periodic orbit born when an equilibrium looses stability. As we
have mentioned, an everyday example of a Hopf bifurcation we all encounter
is flutter. For example, when venetian blinds flutter in the wind or a tele-
vision antenna “sings” in the wind, there is probably a Hopf bifurcation
occurring. The general idea is shown in Figure 1.1.6.

A related example that is physically easy to understand is that of a pipe
conveying a fluid.? One considers a straight vertical rubber tube conveying
fluid. The lower end is a nozzle from which the fluid escapes. This is called a
follower-load problem since the water exerts a force on the free end of the
tube which follows the movement of the tube. Those with any experience
in a garden will not be surprised by the fact that the hose will begin to
oscillate if the water velocity is high enough.

2This system has been analyzed by a large number of authors; see, for instance
Bou-Rabee, Romero, and Salinger [2002], de Langre, Paidoussis, Doaré, and Modarres-
Sadeghi [2007] and references therein.
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FIGURE 1.1.6. A periodic orbit appears for u close to po.

Ball in the Hoop: An Example of a Bifurcation of Equilibria. An-
other example that illustrates many of the concepts of dynamical systems
is the ball in a rotating hoop. Refer to figure 1.1.7.

CD w < Wy CD w > wo

[ .‘\

FIGURE 1.1.7. The ball in the hoop system; the equilibrium is stable for w < w.
and unstable for w > we.

This system consists of a rigid hoop that hangs vertically with a small
ball resting in the bottom of the hoop. The hoop rotates with frequency w
about a vertical axis through its center (Figure 1.1.9(left)).

Now we consider varying w, keeping the other parameters fixed. For small
values of w, the ball stays in equilibrium at the bottom of the hoop and
that position is stable. Accept this in an intuitive sense for the moment; we
will have to define this concept carefully. However, when w reaches a partic-
ular critical value wy (which we will determine below), this point becomes
unstable and the ball rolls up the side of the hoop to a new equilibrium
position x(w), which is stable. The ball may roll to the left or to the right,
depending, perhaps upon the side of the vertical axis to which it was ini-
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tially leaning. (Figurel.1.7(right)). The position at the bottom of the hoop
is still a fixed point, but it has become unstable. The solutions to the initial
value problem governing the ball’s motion are unique for all values of w.
For w > wy, we cannot predict which way the ball will roll.

Using principles of mechanics which we shall discuss in detail a bit later,
one can show that the equations for this system are given by

mR%*0 = mR?w?sin 6 cos § — mgRsin — vRY, (1.1.11)

where R is the radius of the hoop, 6 is the angle from the bottom vertical,
m is the mass of the ball, g is the acceleration due to gravity, and v is a
coefficient of friction. To analyze this system, we use the same sort of phase
plane analysis as was discussed above. One way to find an energy equation
is to multiply each side of equation (1.1.11) by 6 and to recognize some of
the terms as time derivatives; we get

d1 . d1 d .
aimRQOQ = %imRQa)z sin? @ + %ng cos ) — vRH?
Thus, we get
d .
—E=-vR0*> <0
dt

where ) )
E(9,0) = §mR292 - imsz2 sin? @ — mgR cos 0

Thus, as with the preceding examples, note that for v = 0, trajectories
must follow level curves of E and that for v > 0, it is plausible that most
trajectories spiral into the minima of E. Will be evident when we write
the equations in first order form, the critical points of E are exactly the
equilibria. This is consistent with the phase portraits drawn below.

To analyze the system further, we write the equation as a first order
system:

T=y

g = %(acosa: —1)sinz — By
where & = Rw?/g and 3 = v/m. This system of equations produces for
each initial point in the xy-plane, a unique trajectory. That is, given a point
(z0,y0) there is a unique solution (x(t),y(t)) of the equation that equals
(z0,y0) at t = 0. This statement is proved by using general existence and
uniqueness theory that we shall discuss later.

The equilibrium points of this system are obtained by setting the right

hand side to zero. Thus, the equilibria occur in the zy-plane when y = § = 0
and when z satisfies

%(acosx —1)sinz = 0.
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The solutions are when one of the factors vanishes. That is, when z = 0, 7
(or, since & = 0 is periodic, points of the form w+2n7, where n is a (positive
or negative) integer. These equilibria correspond to the particle being at
the bottom or at the top of the hoop.

Other equilibria occur when cosz = 1/a = g/Rw?. For there to be a real
solution, we must have g/Rw? < 1; that is, when w > 1/g/R. Referring to
Figure 1.1.8, we see that for w < 1/g/R there are no solutions, for w =
v/g/R there is one, and for w > /g/R, there are two solutions (ignoring
solutions that differ from these ones by a multiple of 27). We say that
there is a bifurcation of equilibria as w passes through the critical value

We = v/ g/R

Yy
1.5 g
= >1
Y Rw?
g
=—<1
4 Ruw?
0.5
T
—4 -3 -2 -1 1 2 3 4
-0.5F
_1
1.5l

FIGURE 1.1.8. The equation cosz = g/Rw? has no solutions if w < 1/g/R and
two solutions if w > /g/R.

When we draw the phase portraits in the (6, 9)—plane, we get figures like
those shown in Figure 1.1.9.

Notice that the original stable fixed point has become unstable and has
split into two stable fixed points as w passes through its critical value w, =
v/g/R. This is one of the simplest situations in which symmetric problems
can have non-symmetric solutions and in which there can be multiple stable
equilibria, so there is non-uniqueness of equilibria (even though the solution
of the initial value problem is unique).

The Notion of Bifurcation. This example as well as the Poincaré-
Hopf example show that in some systems the phase portrait changes as
certain parameters are changed. Changes in the qualitative nature of phase
portraits as parameters are varied are called bifurcations. Consequently,
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FIGURE 1.1.9. The phase portrait for the ball in the hoop before and after the
onset of instability for the case g/R = 1.

the corresponding parameters are often called bifurcation parameters.
These changes can be simple such as the formation of new fixed points—
these are called static bifurcations to dynamic bifurcations such as
the formation of periodic orbits, that is, an orbit x(¢) with the property
that z(t + T) = x(t) for some T and all ¢, or more complex dynamical
structures.

The Role of Symmetry. We shall discuss the role of symmetry from
time to time. It plays a very important role in many bifurcation problems.
Already in the ball in the hoop example, one sees that symmetry plays an
important role. The “perfect” system discussed so far has a symmetry in
the sense that one can reflect the system in the vertical axis of the hoop and
one gets an equivalent system; we say that the system has a Zs-symmetry
in this case. This symmetry is manifested in the obvious symmetry in the
phase portraits.

We say that a fixed point has symmetry when it is fixed under the action
of the symmetry. The straight down solution of the ball is thus symmet-
ric, but the solutions that are to each side are not symmetric — we say
that these solutions have undergone solution symmetry breaking. This
simple example already shows the important point that symmetric sys-
tems need not have symmetric solutions!. In fact, the way solutions loose
symmetry as bifurcations occur is a fundamental and important idea.

Solution symmetry breaking is distinct from the notion of system sym-
metry breaking in which the whole system looses its symmetry. If this



1.1 Introduction and Basic Examples 13

Zo symmetry is broken, by setting the rotation axis a little off center, for
example, then one side gets preferred, as in Figure 1.1.10.

FIGURE 1.1.10. A ball in an off-center rotating hoop.

The evolution of the phase portrait for v = 0 is shown in Figure 1.1.11.

—X©)
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FIGURE 1.1.11. The phase portraits for the ball in the off-centered hoop as the
angular velocity increases.

Modelling. We shall draw many of our models from mechanics, which
is why we include some basic mechanics from a dynamical systems per-
spective in this book. While the modelling process is a serious issue even
in mechanics (such as how should one truncate a continuous system by
a discrete one), in other areas such as biological systems, the situation is
even more serious—then the modelling phase of dynamical systems has to
be dealt with in a significant way.
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Chaos. This example is also rich in many other ways. The reader has
undoubtedly heard about the concept of chaos. Dynamical systems provides
a framework in which such notions can be understood and simple examples
like this one provide examples of mechanical systems with chaotic solutions.
As we shall see later, if one modulates the frequency periodically by, say
writing w = w° + esin Ot , then the above equations can have very complex
solutions; this kind of complexity is the origin of the notion of chaos, an
idea going back to Poincaré about 1890. The delicacy of this concept is one
of the reasons one needs a firm mathematical foundation in which to discuss
it. Some history of the ideas of chaos in the context of celestial mechanics
and the fundamental work of Poincaré may be found in the book of Diacu
and Holmes [1996].



