CDS 140a Problem Set 5

November 6, 2009
8) The linearization at the origin is given by

$$
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}
$$

with

$$
A=\left(\begin{array}{cc}
\mu & -1 \\
1 & \mu
\end{array}\right)
$$

The eigenvalues of A are $\lambda_{ \pm}=\mu \pm i$. When $\mu<0$, the origin is a stable spiral in the linearized system, in agreement with the full nonlinear phase portrait. When $\mu>0$, the origin is an unstable spiral in the linearized system, again in agreement with the nonlinear phase portrait. When $\mu=0$, the linearization has a center at the origin. In contrast, the nonlinear system has a stable spiral at the origin for $\mu=0$. Note that this does not violate Liapunov's Theorem, since the eigenvalues of A all have zero real part when $\mu=0$.
10) Let $U \subseteq \mathbb{R}^{n}$ be an open set containing the periodic orbit $\gamma([0, \tau])$ and let \mathcal{D}_{X} denote the set of all $(x, t) \in U \times \mathbb{R}$ for which there is an integral curve $c: I \rightarrow U$ through x with $c(0)=x$ and $t \in I$. Since any point on the periodic orbit has an infinite solution lifetime, $\gamma([0, \tau]) \times \mathbb{R} \subset \mathcal{D}_{X}$. Moreover, \mathcal{D}_{X} is open in $U \times \mathbb{R}$ by Proposition 1.3.10(ii). Fix a number $T>0$. Then for any $t \in[0, \tau]$, there exists a finite number $b(t)>0$ that depends continuously on the parameter t such that $B_{b(t)}(\gamma(t)) \times\{T\} \subset \mathcal{D}_{X}$, where $B_{b(t)}(\gamma(t))$ denotes the open ball of radius $b(t)$ centered at $\gamma(t)$. Define $\varepsilon=\inf _{t \in[0, \tau]} b(t)$. Since $[0, \tau]$ is a compact interval, $b(t)$ achieves its infimum on $[0, \tau]$, so ε must be nonzero. This proves that there is a positive number ε such that any point lying within a distance ε from the periodic orbit has a solution lifetime of at least T.

