CDS 140A - HOMEWORK 3 SCRIBE FILE

SHAUN MACBRIDE MAGUIRE

Exercise 2. Do all solutions of the system

$$
\begin{aligned}
& \dot{x}=-x+y+z \\
& \dot{y}=-y+2 z \\
& \dot{z}=-2 z
\end{aligned}
$$

converge to the origin as $t \rightarrow \infty$?

Proof. This system can be written in matrix form

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x} \Longrightarrow \frac{d}{d t}\left|\begin{array}{l}
x \\
y \\
z
\end{array}\right|=\left|\begin{array}{ccc}
-1 & 1 & 1 \\
0 & -1 & 2 \\
0 & 0 & -2
\end{array}\right|\left|\begin{array}{l}
x \\
y \\
z
\end{array}\right|
$$

A is upper triangular, and therefore the eigenvalues are $-1,-1$ and -2 . Each of these eigenvalues has a negative real part, so $E^{S}=\mathbb{R}^{3}$ and Theorem 1.5 then states that all trajectories approach the origin.

Exercise 4. Find the Jordan canonical form, the $S+N$ decomposition and the matrix exponential for the matrix

$$
A=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right|
$$

Proof. First, notice that this matrix is triangular, so we can read the eigenvalues off the diagonal as 1,1 and -1 . The eigenvectors corresponding to 1 can be found by computing

$$
\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right|\left|\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right|=\left|\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right| \Longrightarrow \begin{gathered}
v_{1}=v_{1} \\
v_{2}+v_{3}=v_{2} \\
-v_{3}=v_{3}
\end{gathered}
$$

Therefore, two linearly independent eigenvectors for the eigenvalue of 1 are $(1,0,0)$ and $(0,1,0)$. The eigenvector of $(0,1,-2)$ can be computed analogously for the eigenvalue of -1 . These eigenvectors form a basis for \mathbb{R}^{3} so an aside in the notes yields that A is diagonalizable. In particular, consider

$$
T=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right| \text {, then } T^{-1} A T=D=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right|
$$

The Jordan canonical form is unique up to rearranging Jordan blocks, so it is equal to D. Moreover, the matrix A can be diagonalized, so it is semi-simple. We can take $S=A, N=0$. The matrix exponential can be computed with the diagonalization

$$
e^{A}=T^{-1} e^{D} T=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right|\left|\begin{array}{ccc}
e & 0 & 0 \\
0 & e & 0 \\
0 & 0 & e^{-1}
\end{array}\right|\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 / 2 \\
0 & 0 & -1 / 2
\end{array}\right|=\left|\begin{array}{ccc}
e & 0 & 0 \\
0 & e & \frac{1}{2}\left(e-e^{-1}\right) \\
0 & 0 & e^{-1}
\end{array}\right|
$$

Exercise 5. Find the generalized eigenspaces of the matrix in the preceding problem and show directly that these subspaces are invariant under the equation $\dot{x}=A x$ and span all of \mathbb{R}^{3}.
Proof. I computed the eigenvalues to be 1,1 and -1 in the preceeding problem. Furthermore, I found the eigenvectors to be

$$
\underline{v}_{1}=\left|\begin{array}{l}
1 \\
0 \\
0
\end{array}\right| ; \quad \underline{v}_{1}^{\prime}=\left|\begin{array}{l}
0 \\
1 \\
0
\end{array}\right| ; \quad \underline{v}_{-1}=\left|\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right|
$$

We can now obtain the generalized eigenspaces:

$$
E^{S}=\operatorname{span}\left(\left|\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right|\right) ; \quad E^{C}=\operatorname{span}(0) ; \quad E^{U}=\operatorname{span}\left(\left|\begin{array}{c}
1 \\
0 \\
0
\end{array}\right|,\left|\begin{array}{c}
0 \\
1 \\
0
\end{array}\right|\right)
$$

These subspaces span \mathbb{R}^{3} because for any $\underline{x} \in \mathbb{R}^{3}$ we can write

$$
\underline{x}=\left|\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right|=x_{1} \underline{v}_{1}+\left(x_{2}+\frac{x_{3}}{2}\right) \underline{v}_{1}^{\prime}-\frac{x_{3}}{2} \underline{v}_{-1} .
$$

I will now show that these subspaces are invariant under the equation $\dot{x}=A x$. Let $\underline{x} \in E^{U}$, this implies that \underline{x} is of the form

$$
\underline{x}=\left|\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right| .
$$

We can use this to show invariance of E^{U} :
a set S is invariant in the dynamical system $\dot{x}=A x$ if and only if the flow maps points in the set to points in the set, i.e. $\phi_{t}(x) \in S, \forall x \in S, \forall t$. In this case the flow is $\phi_{t}=e^{A t}$. We find the exponentail of $A t$ to be

$$
e^{A t}=\left[\begin{array}{ccc}
e^{t} & 0 & 0 \\
0 & e^{t} & \sinh (t) \\
0 & 0 & e^{-t}
\end{array}\right]
$$

So that the point $\left(x_{1}, x_{2}, 0\right) \in E^{U}$ flows to $\left(e^{t} x_{1}, e^{t} x_{2}, 0\right) \in E^{U}$, so that E^{U} is invariant. The same is done for E^{C} and E^{S}. That is we choose an arbitrary point in each space, and show that point remains confined to that space under the map $e^{A t}$

