CDS 140A - Solutions to Problems 1,9,10 from Homework 2

Ragavendran Gopalakrishnan

October 19, 2009

1. Problem 1. First, verify that the given orbit satisfies the differential equation of the system.

$$
\begin{aligned}
\phi(t) & = \pm 2 \tan ^{-1}(\sinh t) \\
\dot{\phi}(t) & = \pm 2 \frac{1}{1+\sinh ^{2} t} \cosh t \\
& = \pm 2(\cosh t)^{-1} \\
\ddot{\phi}(t)=\mp 2 \frac{1}{\cosh ^{2} t} \sinh t &
\end{aligned}
$$

Now, given that $\tan \left(\frac{\phi(t)}{2}\right)= \pm \sinh t$, we get,

$$
\begin{aligned}
\sinh t & = \pm \tan \frac{\phi(t)}{2} \\
\cosh ^{2} t & =1+\sinh ^{2} t \\
& =1+\tan ^{2} \frac{\phi(t)}{2} \\
& =\sec ^{2} \frac{\phi(t)}{2}
\end{aligned}
$$

Therefore, we have,

$$
\begin{aligned}
\ddot{\phi}(t) & =\mp \pm 2 \frac{\tan \frac{\phi(t)}{2}}{\sec ^{2} \frac{\phi(t)}{2}} \\
& =-\sin \phi(t)
\end{aligned}
$$

This finally gives us $\ddot{\phi}(t)+\sin \phi(t)=0$. Therefore, the given orbits are solutions to the system. To verify that they are homoclinic, note that the equilibrium points of this system (in the range $-\pi \leq 0 \leq$ $+\pi)$ are at $-\pi, 0$ and $+\pi$. And, clearly, $\lim _{t \rightarrow+\infty} \pm 2 \tan ^{-1}(\sinh t)= \pm \pi$, and $\lim _{t \rightarrow-\infty} \pm 2 \tan ^{-1}(\sinh t)=$ $\mp \pi$, which are equilibrium points. By definition, therefore, these orbits are homoclinic.
2. Problem 9. The given matrix is

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

This can be decomposed as $A=S+N$, where

$$
S=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=2 I
$$

and

$$
N=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Since S is a constant multiple of the identity matrix, S and N commute. Therefore, $e^{A}=e^{S+N}=$ $e^{S} e^{N}$. Clearly, $e^{S}=e^{2 I}=e^{2} I$. To compute e^{N}, notice that N is nilpotent:

$$
N^{0}=I, N^{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], N^{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \text { and } N^{k}=0 \quad \forall k \geq 3
$$

Applying the definition of e^{N}, and using then nilpotency of N, we get

$$
\begin{aligned}
e^{N} & =I+N+\frac{N^{2}}{2}+0 \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
\frac{1}{2} & 1 & 1
\end{array}\right]
\end{aligned}
$$

Finally, we get $e^{A}=e^{2} I \cdot e^{N}=e^{2}\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{1}{2} & 1 & 1\end{array}\right]$
3. Problem 10. Given the system,

$$
\begin{aligned}
\dot{x} & =-2 x-y \\
\dot{y} & =x-2 y \\
\dot{z} & =-z
\end{aligned}
$$

Clearly, the only equilibrium point is the origin, $(0,0,0)$. The system can be written in the standard notation as follows.

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -1 & 0 \\
1 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

This is of the form $\dot{\mathbf{X}}=A \cdot \mathbf{X}$, where $\mathbf{X}=\left[\begin{array}{lll}x & y & z\end{array}\right]^{T}$. We note that the eigenvalues of A can be computed, and are given by $-1,-2 \pm i$. Because all the three eigenvalues have negative real parts, the stable subspace E^{S}, defined as the span of the generalized eigenvectors of A corresponding to eigenvalues with negative real part, is \mathbb{R}^{3} itself. Now, invoking the Stability Theorem (Theorem 1.5 of the notes), we conclude that all the trajectories approach the origin as $t \rightarrow \infty$. This concludes the proof.

