CDS 140a: Homework 1 Solutions

1. Consider the planar system (z,v) € R? given by

T=0 (0.1)

b= —a3 (0.2)

(a) The equilibrium points for the system can be found by setting equations
(0.1) and (0.2) equal to 0. from equation (0.1) we get v = 0 and from

equation (0.2) we get 23 = 0 and so = 0. Therefore, there is only one
equilibrium points given by (z,v) = (0,0).

(b) From equation (0.2), we can write

We assert that
v?/2 + 2* /4 = constant = Energy

This conservation of energy equation can be proved by %E = 0; using
equation (0.2) we get:

d 3 .
%E—(v+$ Jo=0 (0.3)

Hence energy is conserved.

(¢) the phase portrait for the given problem is :
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(d) In the energy equation, replacing

(z(t),v(t)) by (x(), =v(=1)), (=z(=1), (1)), (x(=1), —v(=1)),



doesn’t change the energy value. Thus, the trajectory is symmetric about
all axis. since, they crosses the axis, this implies that they are a closed
trajectory. Also, the energy equation has the topological form of a circle
with coordinates (22,v), which says its a closed trajectory.

To be more specific, lets check the Jacobian of the given equation.

0 1
J(.’E,U) = |:—3l'2 O:|
Therefore,
0 1

The trace of this matrix trace = p = 0, and also det = g = 0, this tell us
that both the eigen values are zero. Hence, this is a non-hyperbolic fixed
point. therefore it act as a center and hence the orbit surrounding to the
fixed point are periodic.

2. Given

i=—a®— i (0.4)
This equation (0.4) is same as that in problem 1, but with a dissipation term.
Since, the dissipation term does not effect the equilibrium points, they are still
the same: (z,v) = (0,0). Since we have a dissipation term, the system will
lose its energy, it will move towards stable point. In this case, (0,0) is a stable
point and hence all the trajectory will move towards (0, 0)

We can check this by writing the equation in the form

&= (0.5)
v=—2>—v 0.6
by solving this equation, we get the fixed point as (x,v) = (0,0) The Jacobian
of the system of equation is:

Therefore,
0 1
o0 =0 1]

The trace of this matrix trace = p = —1, and also det = ¢ = 0, this tell us
that one of the eigen value is zero. Hence, this is a non-hyperbolic fixed point
and therefore it act as a attractor and hence the trajectory will sink on the
fixed point.
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3. Given: planar system (z,v) € R?:
i=2x+a2*—2®
This can be written in the following form.
T=0 (0.7)
3

v=2x+4+2>—zx

a e equilibrium points for the system can be found by setting equation
Th ilibri i for th be found b i i
((0.7) & (0.8)) equal to 0. from equation (0.7) we get:

=0
=v=0
and from equation (0.8) we get
v=20
=2 +a2?—2>=0
= —z(x—2)(x+1)=0

Thus, z = 0,2, —1. Thus, the equilibrium points are (z,v) = (0,0), (2,0), (—1,0)

(b) From equation (0.8), we can write

. v
V=v— =20 +1° —2°

dz
=  0?/242%/4 — 23/3 — 2? = constant = Energy (0.9)



That energy is conserved can be proved by %E = 0 from equation (0.9),
using equation (0.8) we have:

d
%Ezﬁuﬂﬁ—#—amﬁzo (0.10)

Hence energy is conserved.

(¢) The phase portrait of the given system is:

\

(d) Since, in the energy equation ((0.9)), replacing (x(t), v(t)) by (z(t), —v(—t)),
doesn’t change the energy value. Therefore, the trajectory is symmetric
about x axis. since, they crosses the axis, this means, they are closed
trajectory. Also, energy equation ((0.9)) is of the form of ellipse, this
implies periodic trajectory. Also, from the phase portrait, we can see
that the point (2,0)&(—1,0) are stable point, with the point (2,0) being
a strong attractor, compare to point (—1,0).

To check the nature of fixed points formally,
The Jacobian of the system of equation is:

0 1
J@M_L+m—m2J
Therefore, fixed point 1:
0 1
so0=[0 ]
The trace of this matrix trace = p = 0, and also det = ¢ = —2, this

tell us that the eigen values are of opposite sign and equal in magnitude.
therefore, origin act as a saddle point.



fixed point 2:
0 1

The trace of this matrix trace = p = 0, and also det = ¢ = 6, Thus, (2,0)
acts as an center.

fixed point 3:
0 1

The trace of this matrix trace = p = 0, and also det = ¢ = 3, Thus,
(—1,0) also acts as an center.

4. Given
i =2r+a* 2% -2 (0.11)

The equation ((0.11)) is same as problem 2, with a dissipative term. Since,
the dissipation term does not effect the equilibrium points, therefore, the equi-
librium points are still the same (x,v) = (0,0), (2,0), (—1,0).

Since, we have a dissipation term in the equation ((0.11)) This means, as the
system will lose its energy, it will move towards stable point. In this case,
(2,0)&(—1,0) are stable points and (0,0) is a saddle point, hence all the tra-
jectory will move towards (2,0)&(—1,0) them in a spiral motion. Depending
on the initial conditions of the system, which describes the initial energy of the
system, the point will either move towards (2,0) or (—1,0). Also, (—1,0) is a
weak attractor as compare to (2,0), therefore a system with enough energy will
most likely will be attracted by (2,0). (This can be verified by taking Jacobian
matrix and checking the trace and determinant of the Jacobian matrix.)
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5. In the energy equation, replacing

(z(t),v(t)) by (x(), =v(=1)), (=z(=1), (1)), (—z(=t), —v(=1)),

doesn’t change the energy value. Therefore, the trajectory is symmetric about
all axis and also reversible. since, they crosses the axis, this implies that they
are a closed trajectory. Also, the level set of the energy is of the form of circle
with coordinates (z2,v), which says its a closed trajectory with a constant
period.

For the system in problem (2), because of the dissipation term, the energy
equation is no longer stable and hence, the trajectory will fall on the origin, as
origin acts as a stable attractor. Thus, the equation are no longer symmetric or
reversible. Although, since the dissipative term is v, therefore, the trajectories
are anti-symmetric about x = v line, as can be seen in the phase portrait.

6. Since, in the energy equation ((0.9)), replacing (z(t),v(t)) by (x(t), —v(—t)),
doesn’t change the energy value. Therefore, the trajectory is symmetric about
x axis. since, they crosses the axis, this means, they are closed trajectory.
Also, energy equation ((0.9)) is of the form of ellipse, this implies periodic
trajectory.

Also, from the phase portrait, we can see that the point (2,0)&(—1,0) are
stable point, with the point (2,0) being a strong attractor, compare to point
(—1,0). The point (2,0) being a strong attractor as compare to (—1,0) can
be checked by calculating the eigenvalues or the checking the trace and deter-
minant of the Jacobian matrix (as shown in problem 3).

In case of problem (4), the system will loses its energy, therefore, it will move
towards stable points. In this case, (2,0)&(—1,0) are stable points and (0, 0)
is a saddle point, hence all the trajectory will move towards (2,0)&(—1,0)
them in a spiral motion. Also, (—1,0) is a weak attractor as compare to
(2,0), therefore a system with enough energy will most likely will be attracted
by (2,0), hence, the system will no longer be symmetric and due to stable
attractor, the system will not be reversible.

7. dynamical system provided:
&= —z(@®+y* —p) -yl +97) (0.12)
g =—y(@® +y° —p) +2(=® +¢°) (0.13)

To analyze the system, we can leave off the nonlinear terms, therefore, we get
is:

T = px (0.14)
y=py (0.15)

therefore, the equilibrium point of the system is origin (0, 0).

DF(0, 1) = {g 2]



Thus, origin is a stable point for pu < 0.

The Jacobian of the nonlinear equation system is:

~Be® +y* —p—2ay) (x4 +3y?)

J(@,v) = —(22y) + (322 +v?)  —(2®+3y* —pu—2)

Therefore, fixed point 1:
_ |0
o0 = [t

The trace of this matrix trace = p = 2y, and also det = ¢ = p? > 0, this tell
us that the origin will act as attractor for u < 0, repeller for © > 0, and as a
center for =10

Also, from the energy point of view.

E($,y) =

’i(x"’ +9?) (0.16)

Thus introduce polar coordinates (rf) in the usual way:

x = rcos(h), y = rsin(6)

Differentiating the relation 2 = 22 4+ y? and using equation (0.12) & (0.13),
we get: (as long as 7 is not zero)

= 1r(p—1r?) (0.17)

Similarly, by differentiating x = r cos(f) and making use of the equations for
Z and rwe find that ‘
6 =r? (0.18)

Thus from equation ((0.17)), the system has a fixed point at origin and a
limit cycle at r = /u. for g > 0, there is a unique and stable circular limit
cycle that exists. This corresponds to a periodic orbit in the (x,y) plane. As
1 increases past 0, the fixed point at the origin switches from attractor to
repeller and a stable limit cycle (attractor) emerges for p > 0.

. (part of this problem is already explained in previous problem) when u < 0,
we have 7 < 0, and therefore, r decreases and it the trajectory moves towards
the origin. Also, from the Jacobian matrix, for 4 < 0, the origin act as
stable attractor and no limit cycle is present. - 6 = r2, this implies, as
r decreases, 6 changes too. and this trajectory goes to origin. when p > 0,
a stable limit cycle appears due to the change of eigenvalue of the equation.
and when p > pg, the limit cycle act as an attractor and the limit cycle is
asymptotic to the circle of radius ,/p0.



9.

10.

Given & = ax — 3 we can write this equation as
T=wv (0.19)
b =ax— a3 (0.20)

The equilibrium points for the system can be found by setting equation ((0.19)
& (0.20)) equal to 0. from equation (0.19) we get:
=0
=v=0
and from equation (0.20) we get
=0
Sar—22=0
= —z(z®—a)=0
=z =0,Va,—/a
therefore, the equilibrium points are (z,v) = (0,0), (v/a,0), (—/a, 0)
The Jacobian of the nonlinear equation system is:
0 1
J(z,v) = [oz — 322 0]
Therefore, fixed point 1:
0 1
sw0=[0 ]
The trace of this matrix trace = p = 0, and also det = ¢ = —«, this tell us
that the origin will act as saddle for a > 0, center for o < 0.
fixed point 2 & 3:

J(i\/a,()):{ 0 1]

—2a 0

The trace of this matrix trace = p = 0, and also det = g = 2, this tell us
that the points will act as center for a > 0. For a < 0, the fixed points will
be complex value.

Given # = ax — 2% — & we can write this equation as
T=wv (0.21)
v=oar—2>—v (0.22)

The equilibrium points for the system can be found by setting equation ((0.21)
& (0.22)) equal to 0. from equation (0.21) we get:

=0
=v=0



and from equation (0.22) we get

v=0

3

sar—2°—v=0

= —z(z—a)=0

=z=0Va,—Va
therefore, the equilibrium points are (z,v) = (0,0), (v/a,0), (—/a, 0)

The Jacobian of the nonlinear equation system is:

Therefore, fixed point 1:
J(0,0) = [0 11}

(%

The trace of this matrix trace = p = —1, and also det = ¢ = —«, this tell us
that the origin will act as saddle for a > 0, stable spiral for a < 0.

fixed point 2 & 3:
0 1
J(0,0) = [—204 0]

The trace of this matrix trace = p = 0, and also det = ¢ = 2a, this tell us
that the points will act as center for &« > 0. For a < 0, the fixed points will
be complex value.

fixed point 2 & 3:

I (v, 0) = [—ga —11}

The trace of this matrix trace = p = —1, and also det = ¢ = 2«, this tell us
that the points will act as stable spiral for a > 0. For o < 0, the fixed points
will be complex value.



