CDS140a - Introduction to Dynamics Homework 1
 Exercises 1, 2, and 5

Fernando Ferrari de Goes

October 7, 2009

1. Consider the following planar system for $(x, v) \in \mathbb{R}^{2}$:

$$
\left\{\begin{array}{l}
\dot{x}=v \tag{1}\\
\dot{v}=-x^{3}
\end{array}\right.
$$

(a) Find the equilibrium points for the system.

The equilibrium points of this system are obtained by setting the right hand side to zero. Thus, the equilibria occurs in the $x v$-plane when $\dot{x}=v=0$ and when x satisfies

$$
\dot{v}=-x^{3}=0 \rightarrow x=0
$$

$\therefore(0,0)$ is the equilibrium point of the system.
(b) Find a conserved energy for the system.

This system corresponds to a conservative mechanical system and can be rewritten as:

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=\frac{1}{m}(-\nabla V(x)) .
\end{array}\right.
$$

Replacing the Equation 1 in this form, we can compute the potential energy $V(x)$:

$$
\frac{1}{m}(-\nabla V(x))=-x^{3} \rightarrow V(x)=m \frac{x^{4}}{4}
$$

Finally, we find the conserved energy:

$$
\therefore E(x, v)=m \frac{v^{2}}{2}+m \frac{x^{4}}{4} .
$$

(c) Draw the phase portrait.

Figure 1.
(d) Argue informally that all the trajectories outside the origin are periodic.

Since the system preserves energy, its trajectories correspond to level-sets of the energy equation. Fixed an initial condition $\left(x_{0}, v_{0}\right) \neq(0,0)$, we verify that the level-sets compose ellipses. Therefore, the trajectories outside the origin are periodic.

2. Draw the phase portrait for the system:

$$
\begin{equation*}
\ddot{x}=-x^{3}-\dot{x} \tag{2}
\end{equation*}
$$

and comment on its structure.
First we rewrite the equation as a first order system:

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-x^{3}-y
\end{array}\right.
$$

The portrait is in Figure 2. The system has one equilibrium point, (0,0). Such point is asymptotically stable, since all trajectories converge to it. The trajectories also have a spiral structure.
5. Discuss symmetry and reversibility properties (if any) of the equations in problems 1 and 2.

Given a system with solution $(x(t), v(t))$, first let's claim the conditions for symmetry and reversibility properties.
$\underline{\text { Reversibility }} \mathrm{A}$ system has time reversibility if $(\tilde{x}(t), \tilde{v}(t))=(x(-t),-v(-t))$ is also solution.

Symmetry A system has symmetry if $(\tilde{x}(t), \tilde{v}(t))=(-x(-t), v(-t))$ is also solution.
Now, let's verify if equations of problems 1 and 2 are still valid for $(\tilde{x}(t), \tilde{v}(t))$.

Problem 1

Reversibility:

$$
\begin{aligned}
& \dot{\tilde{x}}(t)=x(-t)=-\dot{x}(-t)=-v(-t)=\tilde{v}(t) \\
& \dot{\tilde{v}}(t)=-v(\dot{-} t)=\dot{v}(-t)=(-x(-t))^{3}=-\tilde{x}(t)^{3}
\end{aligned}
$$

\therefore Problem 1 has time reversibility.

Symmetry:

$$
\begin{aligned}
& \dot{\tilde{x}}(t)=-x(\dot{-} t)=\dot{x}(-t)=v(-t)=\tilde{v}(t) \\
& \dot{\tilde{v}}(t)=v(\dot{-} t)=-\dot{v}(-t)=-(-x(-t))^{3}=-\tilde{x}(t)^{3}
\end{aligned}
$$

\therefore Problem 1 has symmetry.

Problem 2

Reversibility:

$$
\begin{aligned}
\dot{\tilde{x}}(t) & =x(-t)=-\dot{x}(-t)=-v(-t)=\tilde{v}(t) \\
\dot{\tilde{v}}(t) & =-v(\dot{(}-t)=\dot{v}(-t)=-x(-t)^{3}-v(-t)= \\
& =-\tilde{x}(t)^{3}+\tilde{v}(t) \neq-\tilde{x}(t)^{3}-\tilde{v}(t) \quad \text { FAILED }
\end{aligned}
$$

\therefore Problem 2 does not have time reversibility.
Symmetry:

$$
\begin{aligned}
\dot{\tilde{x}}(t) & =-x(\dot{-}-t)=\dot{x}(-t)=v(-t)=\tilde{v}(t) \\
\dot{\tilde{v}}(t) & =v(\dot{-}-t)=-\dot{v}(-t)=-\left(-x(-t)^{3}-v(-t)\right)= \\
& =-\tilde{x}(t)^{3}+\tilde{v}(t) \neq-\tilde{x}(t)^{3}-\tilde{v}(t) \quad \text { FAILED }
\end{aligned}
$$

\therefore Problem 2 does not have symmetry.

Figure 1: Phase Portrait for the system 1.

Figure 2: Phase Portrait for the system 2.

