CDS 140a: Homework Set 4

Due: Friday, October 30st, 2009.

1. Show that if A is diagonalizable, then

$$
\operatorname{det} e^{A}=e^{\operatorname{trace} A}
$$

Try this out on a few nondiagonalizble matrices and make a conjecture as to its general validity.
2. Solve the system

$$
\begin{aligned}
\dot{x} & =a x-b y \\
\dot{y} & =b x+a y
\end{aligned}
$$

by using polar coordinates.
3. Find the stable, unstable and center subspaces for the system

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=0 \\
& \dot{z}=2 x-z
\end{aligned}
$$

and comment on the phase portrait.
4. Find the stable, unstable and center subspaces for the system

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=-x \\
& \dot{z}=2 x+z
\end{aligned}
$$

and comment on the phase portrait.
5. Does the one dimensional equation $\dot{x}=x^{1 / 3}, x(0)=0$ have a unique solution $x(t)$ defined for t in some interval $(-\epsilon, \epsilon)$?
6. What happens when you apply Picard iteration to the linear system $\dot{x}=A x$?
7. Use the local existence and uniqueness theorem to estimate the time of existence of the solution of the one dimensional equation $\dot{x}=x^{2}$, where $x(0)=1$. What is the actual positive lifetime of the solution?
8. Consider the solution $(x(t, \omega), y(t, \omega)$ of the problem

$$
\begin{aligned}
& \dot{x}=x-\omega y \\
& \dot{y}=\omega x+y
\end{aligned}
$$

with the initial condition $x(0, \omega)=1, y(0, \omega)=0$. Is the solution a smooth function of ω ? Let $X=\partial x / \partial \omega$ and $Y=\partial y / \partial \omega$. What equation, with what initial condition, does the pair (X, Y) satisfy?
9. Consider the solution $\left(x\left(t, x_{0}\right), y\left(t, y_{0}\right)\right.$ of the problem

$$
\begin{aligned}
& \dot{x}=x-y \\
& \dot{y}=x+y
\end{aligned}
$$

with the initial condition $x\left(0, x_{0}\right)=x_{0}, y\left(0, y_{0}\right)=y_{0}$. Is the solution a smooth function of $\left(x_{0}, y_{0}\right)$? Let $X=\partial x / \partial x_{0}$ and $Y=\partial y / \partial y_{0}$. What equation, with what initial condition, does the pair (X, Y) satisfy?
10. Let $X: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth vector field on an open set containing the origin. Suppose that $X(0)=0$. Let $T>0$ be a given positive real number. Show that there is a ball B about the origin such that any initial condition $x_{0} \in B$ has a positive lifetime that is at least T.

