CDS 140a: Homework Set 3

Due: Friday, October 23th, 2009.

1. Solve the system

$$
\begin{aligned}
& \dot{x}=x-y \\
& \dot{y}=x+3 y
\end{aligned}
$$

for given initial conditions $\left(x_{0}, y_{0}\right)$.
2. Do all solutions of the system

$$
\begin{aligned}
& \dot{x}=-x+y+z \\
& \dot{y}=-y+2 z \\
& \dot{z}=-2 z
\end{aligned}
$$

converge to the origin as $t \rightarrow \infty$?
3. Do all solutions of the system

$$
\begin{aligned}
& \dot{x}=-x+y+z \\
& \dot{y}=-y+2 z \\
& \dot{z}=2 z
\end{aligned}
$$

converge to the origin as $t \rightarrow \infty$?
4. Find the Jordan canonical form, the $S+N$ decomposition and the matrix exponential of the matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

5. Find the generalized eigenspaces of the matrix in the preceding problem and show directly that these subspaces are invariant under the equation $\dot{x}=A x$ and span all of \mathbb{R}^{3}.
6. Find the Jordan canonical form, the $S+N$ decomposition and the matrix exponential of the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

7. Find the generalized eigenspaces of the matrix in the preceding problem and show directly that these subspaces are invariant under the equation $\dot{x}=A x$ and span all of \mathbb{R}^{4}.
8. Let A be a 3×3 (real) matrix.
(a) If all the eigenvalues of A are zero, is it true that

$$
\exp (t A)=\mathrm{I}+t A+\frac{1}{2} t^{2} A^{2} ?
$$

(b) Without giving details, explain how you could use (a) to solve the equations

$$
\begin{aligned}
& \frac{d x}{d t}=-3 x+y+2 z \\
& \frac{d y}{d t}=-4 x+y+3 z \\
& \frac{d z}{d t}=-3 x+y+2 z
\end{aligned}
$$

with initial conditions $x(0)=1, y(0)=0, z(0)=1$.
9. Consider the ordinary differential equation $\dot{x}=A x$ where

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 3 \\
0 & -4 & 5 \\
0 & 0 & -4
\end{array}\right]
$$

(a) Find the Jordan canonical form of the matrix A.
(b) Compute the exponential $e^{t A}$ in terms of the matrix P that brings A into Jordan canonical form (you don't need to compute P explicitly, but explain how you would compute it).
(c) The positive orbit of x_{0} under the flow generated by this differential equation is given by

$$
O\left(x_{0}\right)=\left\{x \mid x=e^{A t} x_{0}, t \geq 0\right\} .
$$

For which $x_{0} \in \mathbb{R}^{3}$ are the positive orbits bounded?
10. Let A be an $n \times n$ matrix, all of whose eigenvalues have positive real parts. Making use of appropriate results stated in class, show that for any initial condition $x_{0} \in \mathbb{R}^{n}$, the solution of $\dot{x}=A x$ tends to zero as $t \rightarrow-\infty$.

