CDS 140a: Homework Set 2

Due: Friday, October 16th, 2009.

1. Verify directly that the homoclinic orbits for the simple pendulum equation $\ddot{\phi}+\sin \phi=0$ are given by $\phi(t)= \pm 2 \tan ^{-1}(\sinh t)$.
2. Derive the same formula as in Exercise 1 using conservation of energy, determining the value of the energy on the homoclinic orbit, solving for $\dot{\phi}$ and then integrating.
3. Ignoring friction, the equations of motion for a particle in a hoop spinning about a line a distance $\epsilon>0$ off center are given by

$$
\ddot{\theta}=\omega^{2}\left(\sin \theta-\frac{\epsilon}{R}\right) \cos \theta-\frac{g}{R} \sin \theta .
$$

Show graphically that If ω is large enough, there will be four equilibrium points and if ω is small enough there are only two equilibrium points.
4. Find the general solution of

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

and sketch the phase portrait.
5. Find the general solution of

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

and sketch the phase portrait.
6. Find the general solution of

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

and sketch the phase portrait.
7. Let T be an invertible $n \times n$ matrix and $\|T\|$ be its operator norm. Show that

$$
\left\|T^{-1}\right\| \geq \frac{1}{\|T\|}
$$

8. Let T be an $n \times n$ matrix satisfying $\|I-T\|<1$. Show that T is invertible and that the series

$$
\sum_{k=0}^{\infty}(I-T)^{k}
$$

converges to T^{-1}.
9. Write the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

as the sum of two commuting matrices and use this to compute e^{A}.
10. Show that all solutions of the linear system

$$
\begin{aligned}
& \dot{x}=-2 x-y \\
& \dot{y}=x-2 y \\
& \dot{z}=-z
\end{aligned}
$$

converge to the origin as $t \rightarrow \infty$.

