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tangle: excellent way to view for periodic systems.
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Transient Chaos

• Poincaré’s homoclinic tangle corresponds to transient 
chaos—dynamic events over intermediate time scales.

• Infinite time notions like strange attractors, inertial 
manifolds, etc are not relevant in this context

• First, a bit more about the tangle
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Smale Horseshoe

• Smale abstracted what was going on in the tangle

• Proved lots of nice things—eg, an invariant Cantor set.
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Look at lobes, mixing, dynamically
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