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1 Linear Systems

Before beginning our study of linear dynamical systems, it only seems fair to ask
the question “why study linear systems?” One might hope that most/all real-
world systems are linear systems, so that our development of linear systems
theory is directly applicable to physical problems. Unsurprisingly, however,
most real systems are nonlinear. However, developing a robust theory of linear
systems is advantageous for a number of reasons:

• It gives us practice in analyzing dynamical system.

• It builds up a set of general techniques that can be used to analyze both
linear and nonlinear systems.

• In nonlinear systems, we often are interested in local behaviors, which done
using a linear approximation of the system near the point of interest.

1.1 Definition

An autonomous linear dynamical system (simply a linear system from now on) is
a collection of autonomous linear ordinary differential equations. Such systems
can be written in first-order form:

{

ẋ (t) = Ax (t)

x (0) = x0

(1.1.1)

where x maps R to Rn, A is an n × n matrix, and b ∈ Rn. We call x (t) the
state of the system at time t. Whenever b = 0, we call the system homogeneous,
otherwise it is inhomogeneous. If A is diagonal, the equations in the system
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decouple into n independent equations, each one in a single variable. In this
case we say the system is uncoupled.

We will consider only homogeneous systems until 1.12. Also, we will restrict
our analysis to the reals, and will explicitely note whenever we need to utilize
complex numbers.

1.2 Formal Solution

Consider the ordinary differential equation d
dt

x (t) = αx (t) with x (0) = x0. We
know that this problem has x (t) = eαtx0 as its solution. Motivated by this, we
can consider formally writing the solution to our problem (Equation 1.1.1) in
the same way:

x (t) = eAtx0 (1.2.1)

However, as yet we do not have a definition for the exponential of a matrix.
For a square matrix A, we define the matrix exponential to be the Taylor-series
expansion of the real-valued exponential:

eA = I + A +
A2

2!
+

A3

3!
+ · · · (1.2.2)

where I is, as usual, the n×n identity matrix. As we will see in Section 1.5, this
series converges for all matrices. Although the series is defined and converges for
all square matrices A, it is computationally intractible to calculate the matrix
exponential by using the series expansion. Instead, we will develop techniques
to exponentiate matrices without resorting to the series definition. To explore
these methods, let’s first look at some special cases and examples.

1.3 Diagonal matrices

Let A be a diagonal matrix with diagonal elements λ1, . . . , λn:

A =







λ1 0
. . .

0 λn






(1.3.1)

Then referring back to Equation 1.1.1, we can explicitely write the linear system
as a set of differential equations:

ẋ1 (t) = λ1x1 (t)

...

ẋn (t) = λnxn (t)

(1.3.2)
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Since these equations are completely decoupled, we can immediately write down
their solutions as:

x1 (t) = eλ1tx1 (0)

...

xn (t) = eλntxn (0)

(1.3.3)

Taking for granted that the solutions to linear differential equations are unique
(we will prove this in Section 1.8), inspection shows that the matrix exponential
eAt is:

eAt =







eλ1t 0
. . .

0 eλnt






(1.3.4)

Alternately, we can derive this same expression by applying Equation 1.2.2 and
using induction on the diagonal entries.

Note that in the n = 2 case, solutions to the problem have a special property.
Examining Equation 1.3.3, we can see that any solution of the linear system
(x1 (t) , x2 (t)) =

(

eλ1tx1 (0) , eλ2tx2 (0)
)

always satisfies

x1 (t)
λ2

x2 (t)
λ1

= constant

We can classify linear systems according to the eigenvalues of the matrix A.
Let’s look first at two-dimensional systems with two distinct real eigenvalues
(more generally, two linearly independent eigenvectors). There are three cases.
eigenvalues.

1.3.1 Example: λ1 > 0, λ2 > 0

Consider the system

ẋ1 (t) = x1 (t)

ẋ2 (t) = 2x2 (t)

By inspection we see that λ1 = 1 and λ2 = 2. Thus the solution to the system
is:

x1 (t) = etx1 (0)

x2 (t) = e2tx2 (0)

See Figure 1.3.1 for a phase portrait. Because the trajectories appear to start at
the origin and move away, we call the origin an “unstable node” or a “source”
(this will be defined formally later).
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Figure 1.3.1: Phase Portrait and Selected Solution Curves for Example 1.3.1
with λ1 > 0, λ2 > 0

1.3.2 Example: λ1 < 0, λ2 < 0

Consider the system

ẋ1 (t) = −0.5x1 (t)

ẋ2 (t) = −x2 (t)

By inspection we see that λ1 = −0.5 and λ2 = −1. Thus the solution to the
system is:

x1 (t) = e−0.5tx1 (0)

x2 (t) = e−tx2 (0)

See Figure 1.3.2 for a phase portrait. Note that the phase portrait is qualita-
tively similar to Figure 1.3.1, with the direction of the arrows pointing toward
the origin instead of away from it. Because all the trajectories appear to con-
verge to the origin, we call this type of equilibrium solution a “stable node” or
a “sink” (this will be defined formally later).
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Figure 1.3.2: Phase Portrait and Selected Solution Curves for Example 1.3.2
with λ1 < 0, λ2 < 0

1.3.3 Example: λ1 > 0, λ2 < 0

Consider the system

ẋ1 (t) = −1.5x1 (t)

ẋ2 (t) = x2 (t)

By inspection we see that λ1 = −1.5 and λ2 = 1. Thus the solution to the
system is:

x1 (t) = e−1.5tx1 (0)

x2 (t) = etx2 (0)

See Figure 1.3.3 for a phase portrait. Notice that the solution curves appear to
be hyperbolas. In this case we say that the origin is a “hyperbolic” point or a
“saddle” point (this will be defined formally later).

1.4 Diagonalizable Matices

The technique for exponentiating diagonal matrices may seem to be of limited
use, but it can also be used with a much larger class of matrices. These matri-
ces are known as diagonalizable and are, in some sense, equivalent to diagonal
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Figure 1.3.3: Phase Portrait and Selected Solution Curves for Example 1.3.3
with λ1 < 0, λ2 > 0

matrices. First recall that two matrices A and B are said to be similar if there
exists an invertible matrix S such that A = SBS−1. Then A and B are said to
be equivalent up to a similarity transformation.

Given a matrix A ∈ Rn×n with n linearly independent eigenvectors (equiva-
lently, the eigenvectors for the matrix span R

n), then A is similar to a diagonal
matrix and said to be diagonalizable. More specifically, define Λ and P :

Λ =







λ1 0
. . .

0 λn






(1.4.1)

P =





| |
v1, · · · , vn

| |



 (1.4.2)

where {λ1, . . . , λn} are the eigenvalues and {v1, . . . , vn} are the corresponding
eigenvectors of A. Then

A = PΛP−1 (1.4.3)

Consider the definition of the matrix exponential (Equation 1.2.2) and noticing
that for A similar to B,

Ak = SBkS−1 (1.4.4)
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Figure 1.4.1: Coordinate Transformation of an ODE System

it is clear that for A diagonalizable

eA = PIP−1 + PΛP−1 +
PΛ2P−1

2!
+

PΛ3P−1

3!
+ · · ·

= PeΛP−1

(1.4.5)

Thus by Equation 1.2.1, the solution for a system with a diagonalizable matrix
A is

x (t) = PeΛtP−1x (0) (1.4.6)

If we define a new set of variables y by

y = P−1x (1.4.7)

then it is clear that the system can be recast in terms of these new variables

ẏ (t) = Λy (t) (1.4.8)

with initial conditions y (0) = y0 = P−1x0, which has the solution

y = eΛty0 (1.4.9)

This means that we can solve a diagonalizable system by rewriting the problem
in a different coordinate system, solving the diagonal system in the new coordi-
nates, then applying a transformation to return back to the original coordinates
(see Figure 1.4.1).
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1.5 Matrix Exponential Convergence Analysis

Before examining nondiagonalizable matrices, we take a brief detour to prove
the convergence of the matrix exponential. In order to show that the matrix
exponential defined in Equation 1.2.2 exists (i.e. for all matrices A the series
converges), we need to endow our vector space with some topological structure.
We will define a norm on the vector space.

For B ∈ Rn×n we defined its norm as:

‖B‖ = sup
‖x‖=1

‖Bx‖ (1.5.1)

where the norm of the vector is the standard Euclidean norm. This norm is
often referred to as the operator norm. Together with this norm, the space of
n × n matrices (for an arbitrary fixed n ∈ Z+) forms a normed linear space.
That is, ∀B, C ∈ Rn×n, α ∈ R, the following properties hold:

‖B‖ ≥ 0

‖αB‖ = |α| ‖B‖
‖B + C‖ ≤ ‖B‖ + ‖C‖

Additionally, the operator norm also satisfies

‖BC‖ ≤ ‖B‖ ‖C‖ (1.5.2)

Because of (1.5.2), we see that

∥

∥

∥

∥

Aktk

k!

∥

∥

∥

∥

≤
∣

∣tk
∣

∣

k!

∥

∥Ak
∥

∥

≤ |t|k
k!

‖A‖k

Since each term in the series that defines the matrix exponential is dominated
by an equivalent term in the series expansion for e‖A‖|t|, and because we know
that eαt is everywhere convergent for all values of α, by the comparison test, we
know that the series in Equation 1.2.2 is everywhere convergent and thus eAt is
defined for any n × n matrix A.

1.6 More on the Matrix Exponential

Proposition 1.1. Given S, N ∈ Rn×n that commute (i.e. SN = NS), eS+N

= eSeN



1 LINEAR SYSTEMS 9

This can be proved by examining the power series expansion for eS+N , but
convergence of the series needs to be carefully considered. Another method to
prove convergence is to examine a particular system of differential equations
and take advantage of the uniqueness of solutions to linear ODEs (yet to be
proved).

Proof. Consider the system ẋ = (S + N)x. From our earlier discussion it’s clear
that x (t) = e(S+N)tx0 solves the system.

Now consider x (t) = eSteNtx0. Then by using the power rule for derivatives,
ẋ (t) = SeSteNtx0 + eStNeNtx0. Since S and N commute, by looking at the
power series expansion for eSt, we see that N commutes with eSt, and so we
have ẋ (t) = (S + N) eSteNtx0 = (S + N)x (t).

By the uniqueness of solutions to linear ODEs, we have e(S+N)t = eSteNt, and
by setting t = 1, eS+N = eSeN .

Proposition 1.2. Given T ∈ Rn×n,
(

eT
)−1

= e−T

Proof. I = e0 = eT+(−T ) = eT e−T

∴

(

eT
)−1

= e−T

These two propositions will be useful for computing the matrix exponential for
nondiagonalizable matrices.

1.7 Nondiagonalizable Matrices

Some matrices are nondiagonalizable, but nonetheless, they can be written in
a one of two forms that are very convenient for exponentiating: real canonical
form and Jordan form.

In the two dimensional case, the semi-simple form reduces to a rotation ma-
trix, which will be trated in this section. The general semi-simple form will be
analyzed in Section 1.10.1

1.7.1 Jordan Form Matrices

One simple example of a nondiagonalizable matrix is:

A =

[

1 1
0 1

]

(1.7.1)
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Note that the matrix A has a single eigenvalue λ = 1 with multiplicity 2, but
only a one-dimensional eigenspace for that eigenvalue, namely v = (1, 0)

T
. It is

this deficiency that exactly characterizes nondiagonalizable matrices.

Note that the corollary discussed above gives a simple way of calculating etA.
First, note that A = S + N where

S =

[

1 0
0 1

]

N =

[

0 1
0 0

] (1.7.2)

Since S commutes with N (S = I and the identity matrix commutes with every
matrix), we know that etA = etS+tN = etSetN . Since S is diagonal, we can
compute that easily:

etS =

[

et 0
0 et

]

(1.7.3)

Note also that N is nilpotent. That is, Nk = 0 for some k ∈ Z+ (in this case
k = 2). Because of this property, the infinite series definition for etN becomes a
finite sum which can easily be computed. In this cases

etN = I + tN =

[

1 t

0 1

]

(1.7.4)

Thus we have computed the matrix exponential for a nondiagonalizable matrix

etA = etSetN =

[

et tet

0 et

]

(1.7.5)

We can consider the general case of matrices of this form:

A =

[

a b

0 a

]

(1.7.6)

Then by applying the same reasoning as above, we get the matrix exponential

etA =

[

eat bteat

0 eat

]

(1.7.7)

As an example, consider a system with the matrix

A =

[

−1 2
0 −1

]

(1.7.8)

Then by the arguments above

etA =

[

e−t 2te−t

0 e−t

]
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Figure 1.7.1: Phase Portrait and Selected Solution Curves for System Defined
by Equation 1.7.8

See Figure 1.7.1 for a phase portrait. Notice that the solution curves appear
to converge to the origin, so as before we have a sink. However, note that
in this case the trajectories don’t approach the origin “monotonically”, they
appear to shoot past the origin, then turn around and return. This type of
node is occassionally known as a “degenerate” node. This behavior is known as
“secular” or “transient” behavior.

1.7.2 Rotation Matrices

Another type of nondiagonalizable matrix are those that have the form

A =

[

a −b

b a

]

(1.7.9)

Note that A = S + N , where

S =

[

a 0
0 a

]

= aI

N =

[

0 −b

b 0

] (1.7.10)

and since S = aI commutes with N, etA = etSetN . Since y (t) = etNy (0)
solves ẏ (t) = Ny (t), we can compute etN by solving the system of differential
equations directly.
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Explicitly writing out the differential equations, we have:
{

ẋ = −by

ẏ = bx
(1.7.11)

Notice that this simplifies to ẍ + bx = 0, the equation for simple harmonic
motion, which has a solution x (t) = αcos (bt) + βsin (bt) for some constants α,
β. Then the system of equations has the solution:

[

x (t)
y (t)

]

=

[

cos (bt) −sin (bt)
sin (bt) cos (bt)

] [

x (0)
y (0)

]

Therefore we have

etN =

[

cos (bt) −sin (bt)
sin (bt) cos (bt)

]

and accordingly,

etA = eat

[

cos (bt) −sin (bt)
sin (bt) cos (bt)

]

(1.7.12)

Notice that the trigonometric portion of the matrix is equivalent to a rotation
of bt radians about the origin in the phase plane.

As an example, consider a system with the matrix

A =

[

−1 2
−2 −1

]

(1.7.13)

Then by the arguments above

etA =

[

e−tcos (2t) e−tsin (2t)
−e−tsin (2t) e−tcos (2t)

]

See Figure 1.7.2 for a phase portrait. Notice that the solution curves appear to
rotate around the origin as they converge to the origin. In this case we say the
origin is a “spiral” point or a “focus” (this will be defined formally later).

1.8 Existence and Uniqueness

Up to this point we have taken for granted that solutions to linear homogeneous
ODEs exist and are unique. We will now prove both of these assertions.

Theorem 1.3. If A ∈ Rn×n and x0 ∈ Rn, then
{

ẋ = Ax

x (0) = x0

has a unique solution
x (t) = eAtx0
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Figure 1.7.2: Phase Portrait and Selected Solution Curves for System Defined
by Equation 1.7.13

Existence. Let x (t) = eAtx0. Clearly x (0) = x0. We now want to show dx
dt

=
Ax.

By the definition of the derivative

dx

dt
= lim

h→0

x (t + h) − x (t)

h

= lim
h→0

e(t+h)Ax0 − etAx0

h

= lim
h→0

etA ehA − I

h
x0

= lim
h→0

etA 1

h

(

hA +
h2A2

2!
+ · · ·

)

x0

= lim
h→0

etA

(

A +
hA2

2!
+

h2A3

3!
+ · · ·

)

x0

= lim
h→0

etAAx0 + hetA

(

A2

2!
+

hA3

3!
+

h2A4

4!
+ · · ·

)

x0

Because A and etA commute (since the matrix exponential is defined as a power-
series expansion in powers of A) and the series in the last line converges to a
matrix B, the second term in the limit above vanishes, leaving us with

dx

dt
= AetAx0

= Ax

(1.8.1)
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Uniqueness. Let x (t) and x̃ (t) be solutions to the ODE







d

dt
x (t) = Ax (t)

x (0) = x0

We will show that these two solutions must be the same.

Consider e−tAx̃ (t), which we will show is a constant function of t.

d

dt
e−tAx̃ (t) = −Ae−tAx̃ (t) + e−tAAx̃ (t)

= 0

since e−tA commutes with A.

∴ e−tAx̃ (t) isconstant

∴ e−tAx̃ (t) = e−0Ax̃ (0) = x0

∴ x̃ (t) = etAx0

∴ x̃ (t) = x (t)

1.9 Classification of Planar Linear Systems

Now that we have looked at a number of planar phase portraits and attempted
to qualitatively classify them, we seek to rigorously classify the phase plots of
all planar linear systems in terms of the matrix A. It turns out that the correct
way to do this is to examine the eigenvalues.

Consider the linear system
ẋ = Ax (1.9.1)

where

A =

[

a b

c d

]

(1.9.2)

Recall that the characteristic equation for the matrix A is

0 = det (A − λI)

= (a − λ) (d − λ) − bc

= λ2 − τλ + δ

(1.9.3)
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where τ = tr (A) = a+d, δ = det (A) = ad−bc. Recall that these quantities are
invariant under change of basis (a.k.a. similarity transformation). In the higher
dimensional case, the characteristic polynomial has only invariants as the coef-
ficients of lambda. In this particular case, this can be shown by remembering,
from linear algebra, that det (CD) = det (C) det (D) and tr (CD) = tr (DC).
Thus, for A = SBS−1,

det (A) = det
(

SBS−1
)

= det (S) det
(

S−1
)

det (B)

= det (B)

and

tr (A) = tr
(

SBS−1
)

= tr
(

BSS−1
)

= tr (B)

In other words, these quantities are a property of the linear transformation
represented by the matrix A, and so are the same for all matrix representations
of that particular linear transform. Thus, because τ and δ are invariants, it is a
good idea to try to classify the phase plots in terms of these quantities. Before
we begin, take note that

λ =
τ ±

√
τ2 − 4δ

2
(1.9.4)

Case 1: δ < 0 (Hyperbolic Points)

Recall that δ = λ1λ2. Then we know that λ1, λ2 ∈ R, and we can reorder the
eigenvalues so that λ1 < 0 and λ2 > 0. In this case we say the phase plot has a
“saddle point” or a “hyperbolic point.” See Figure 1.3.3 for an example.

Case 2: τ2 − 4δ ≥ 0, δ > 0 (Nodes)

Since the discriminant of the quadratic is positive, λ1, λ2 ∈ R. We also know
that sign (λ1) = sign (λ2) because δ > 0. Also, τ = λ1 + λ2, so sign (τ) =
sign (λ1) = sign (λ2). In this case we say that the phase plot has a “node.”
If the eigenvalues are positive, we further classify it as an “unstable node” or
“source.” Conversely, if the eigenvalues are negative, we classify it as a “stable
node” or “sink.” Examples of this include diagonalizable matrices, see Figures
1.3.1 and 1.3.2, and one type of nondiagonalizable matrices, see Figure 1.7.1.
This last case is an example of what is known as “transient” or “secular” growth.

Case 3: τ2 − 4δ < 0, δ ≥ 0 (Spirals)

In this case, since the discriminant of the quadratic is negative we have λ1, λ2 ∈
C. Furthermore, since the matrix is real-valued, λ1 = λ2 = λ. These matrices
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Figure 1.9.1: A Phase Plot Showing a Center

are similar to matrices of the form in Equation 1.7.9, with the correspondence
that λ = a±ib. With these eigenvalues the phase plots are said to have a “focus”
or a “spiral.” We further clasify them as “unstable” if τ > 0 (or equivalently
a > 0) and “stable” if τ < 0 (or a < 0). See Figure 1.7.2 for an example. If the
eigenvalues are pure-imaginary, we say the phase portrait exhibits a “center.”
See Figure 1.9.1 for an example.

Case 4: δ = 0 (Degenerate Cases)

Consider first the case when τ 6= 0. Then the matrix has the form

A =

[

0 0
0 λ

]

(1.9.5)

Rewriting this as a differential equation and we have
{

ẋ = 0

ẏ = λy

which has solutions of the form (x, y) =
(

x0, e
λty0

)

. In this case, then, trajec-
tories in the phase plot are just vertical lines that approach the x-axis. Also,
the x-axis consists completely of fixed-points. See Figure 1.9.2 for an example.

If we now consider the case when τ = 0, we have two more possibilities to
consider. One is the trivial case where A = 0, which is uninteresting from an
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Figure 1.9.2: Phase Portrait and Selected Solution Curves for System Defined
by Equation 1.9.5 with λ = −1

analysis point of view. Alternatively, we could have

A =

[

0 1
0 0

]

(1.9.6)

Rewriting this as a differential equation and we have
{

ẋ = y

ẏ = 0

which has solutions of the form (x, y) = (y0t + x0, y0) In this case, then, tra-
jectories in the phase plot are just horizontal liines. Also, the x-axis consists
completely of fixed-points. See Figure 1.9.3 for an example.

With this we have classified all possible phase portraits for planar linear systems.
The results of this section are summarized graphically in Figure 1.9.4. The (τ, δ)-
plane is divided into qualitatively similar regions and characterized accordingly.

1.10 Canonical Forms

One might ask, and rightly so, how do we know we’ve covered all the cases for a
planar system? That is, how do we know that by classifying systems according
to the eigenstructure of the matrices, we have classified every system? To do
this we need to appeal to linear algebra techniques and discus canonical forms.
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Figure 1.9.3: Phase Portrait and Selected Solution Curves for System Defined
by Equation 1.9.6
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Figure 1.9.4: Phase Plot Classification for a System with Matrix A Based on
Values of τ = tr (A) , δ = det (A)



1 LINEAR SYSTEMS 19

1.10.1 Real Canonical Form

Consider a matrix A ∈ R2n×2n with 2n distinct complex (non-real) eigenvalues.
Since the matrix is real-valued, we know that the eigenvalues come in complex-
conjugate pairs, so the collection of eigenvalues looks like:

λk = ak + ibk, λk = ak − ibk

and has eigenvectors:

wk = uk + ivk, wk = uk − ivk

where uk, vk ∈ R
2n.

If we consider the field associated with the vector space of matrices to be the
complex numbers C, then A is clearly diagonalizable. However, if we consider
the field to be the real numbers R, then A is not diagonalizable (consider, for
example, the rotation matrix discussed in Equation 1.7.9, which has eigenvalues
λ = a± ib and is not diagonalizable). However, if we construct the matrix P by

P =





| | | |
u1, v1, · · · , un, vn

| | | |



 (1.10.1)

(P turns out to be invertible), then the matrix B (which is similar to A under
P ):

B = PAP−1 =























[

a1 −b1

b1 a1

]

[

a2 −b2

b2 a2

]

. . .
[

an −bn

bn an

]























(1.10.2)

which is the real canonical form for the matrix A. This form is advantageous
because it is easy to exponentiate, since for a matrix K in block form i.e. for
square matrices C, D (not necessarily the same dimension),

K =

[

C 0
0 D

]

=⇒ eK =

[

eC 0
0 eD

]

More generally, if a matrix A has distinct eigenvalues

(λ1, . . . , λp, a1 + ib1, a1 − ib1, . . . , aq + ibq, aq − ibq)

with corresponding eigenvectors

(v1, . . . , vp, u1 + iw1, u1 − iw1, . . . , uq + iwq, uq − iwq)
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where λ1, . . . , λp, a1, . . . , aq, b1, . . . , bq ∈ R and v1, . . . , vp, u1, . . . , uq, w1, . . . , wq ∈
R2n (i.e. we have p real eigenvalues/eigenvectors and 2q complex eigenval-
ues/eigenvectors), then by forming

P =





| | | | | |
v1, · · · , vp, u1, w1, · · · , uq, wq

| | | | | |





we produce a canonical form

PAP−1 =





























λ1

. . . 0
λp

[

a1 −b1

b1 a1

]

. . .

0

[

aq −bq

bq aq

]





























(1.10.3)

If, by change of basis (similarity transform), an arbitrary matrix A can be
written in the form from Equation 1.10.3, then A is said to be semi-simple,
and this form is the real-canonical form for the matrix. Note that this class of
matrices is larger than the class used to define the semi-simple matrices in that
it allows for repeated eigenvalues, as long as there is no eigenspace deficiency1.

Theorem 1.4 (S + N Decomposition2). Any matrix A has a unique decom-
position A = S + N where S is semi-simple, N is nilpotent, and S and N

commute.

Note that the S + N decomposition is unnecessary if we permit C-valued ma-
trices, in that case every matrix is diagonalizable if the field over which it is
defined is algebraically-closed (i.e. C). However, because we require that all
matrices be R-valued, we need the S + N decomposition.

In order to compute this decomposition for a matrix A ∈ Rn×n, follow this
procedure (note: we assume that there is some eigenvalue λ that has algebraic
multiplicity r > 1, if all the eigenvalues have multiplicity unity, then S = A, N =
0)

1. Find all the eigenvalues

1We have an eigenspace deficiency when, for an eigenvalue that is repeated n times, there
are fewer than n linearly independent eigenvectors (or, when the algebraic and geometric
multiplicities of an eigenvalue differ)

2a.k.a. the Jordan-Chevalley Decomposition
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2. For each eigenvalue λ with algebraic multiplicity3 r > 1, compute r gener-
alized eigenvectors. That is, find r linearly independent vectors v1, . . . , vr

that each solves one of the equations:























(A − λI) v1 = 0

(A − λI) v2 = v1

...

(A − λI) vr = vr−1

It is necessary to search for generalized eigenvectors because there may be
a deficiency in the eigenspace, i.e. there are fewer than r eigenvectors for
the eigenvalue λ in A.

3. Form D, the semi-simple “diagonal” matrix consisting of the eigenvalues
as shown in Equation 1.10.3

4. Form the matrix P

P =
[

v1, . . . , vm, wm+1, um+1, . . . , w 1

2
(n−m), u 1

2
(n−m)

]

where vks are the eigenvectors associated with the real eigenvalues and
wk ± iuk are the eigenvectors associated with the complex eigenvalues.

5. Form S = PDP−1

6. Form N = A − S

We assert that this provides the S +N decomposition, although we have proven
neither that SN = NS nor that N is nilpotent.

1.10.2 Jordan Canonical Form

We will neither state the the general Jordan Canonical Form for a matrix, nor
prove its existence. Instead we will examine all the possible Jordan forms for a
matrix A ∈ R3×3 with real eigenvalues. From this it is fairly straightforward to
deduce the general form.

In essence, the Jordan Canonical Form states that all matrices are similar to
either a diagonal or an “almost-diagonal” matrices, and that this similarity
can be determined solely by examining the eigenvalues of a matrix and their
algebraic and geometric multiplicity.

3Recall that algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the
characteristic equation, and the geometric multiplicity for the eigenvalue is the nullity of
A − λI, defined as dim (ker (A − λI))
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If the eigenvectors form a basis for R3, then the matrix A is diagonalizable.

If we have eigenvalues (λ, µ, µ) and µ 6= λ, then, denoting similarity between
two matrices as A ∼ B, either A is diagonalizable as described above, or

A ∼





λ 0 0
0 µ 1
0 0 µ





In this case we have a one-dimensional eigenspace for λ and a one-dimensional
eigenspace for µ, so we have a deficient eigenspace for µ. To find the missing
basis vector for R3, we search for a generalized eigenvector:

1. Let v1 be an eigenvector for λ

2. Let v2 be an eigenvector for µ

3. Define v3 as a solution to (A − µI) v3 = v2

Note that the definition of v3 requires that the nullspace of A − λI be a subset
of the range of A− λI; otherwise we can’t assume that there is a v3 that solves
the equation. This turns out to be a non-issue. Then defining P by

P =





| | |
v1 v2 v3

| | |





we have

A = P





λ 0 0
0 µ 1
0 0 µ



P−1

Consider

J =





λ 0 0
0 µ 1
0 0 µ





then J has a S + N decomposition (by inspection)

S =





λ 0 0
0 µ 0
0 0 µ



 N =





0 0 0
0 0 1
0 0 0





If for some matrix A, P−1AP = J , then

A = PJP−1 = PSP−1 + PNP−1 = S0 + N0

Clearly S0 is semi-simple and N0 is nilpotent, so if we have the Jordan Form
of a matrix A and the S + N decomposition for the matrix J , we can easily
produce the S + N decomposition for the original matrix A.
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As a concrete example, consider

A =

[

2 10
0 2

]

∼
[

2 1
0 2

]

We could compute its S + N decomposition using the Jordan Form, or we can
write it by inspection:

A = S + N =

[

2 0
0 2

]

+

[

0 10
0 0

]

Finally, consider the case when A has a single eigenvalue λ with algebraic mul-
tiplicity three. Then either A is diagonalizable, or

A ∼





λ 1 0
0 λ 0
0 0 λ



 or





λ 1 0
0 λ 1
0 0 λ





Letting N be the nilpotent matrix in the S + N decomposition for A, note that
if A is diagonalizable, for K = ker (A − λI), dim (K) = 3 and N1 = 0. Since
there is no deficiency in the eigenspace, there are three linearly independent
eigenvectors. In the first of the two cases above, dim (K) = 2 and N2 = 0, and
we need to look for two linearly independent eigenvectors and one generalized
eigenvector. In the second case, dim (K) = 1 and N3 = 0, and we must look for
one eigenvector and linearly independent generalized eigenvectors.

Let’s go through the process of finding the generalized eigenvector in the case
where dim (K) = 2. In this case, we know we can find the eigenvectors v1

and v2. Let R = R (A − λI), then by the Rank-Nullity Theorem, n = 3 =
dim (K)+dim (R) = 2+dim(R) =⇒ dim (R) = 1. Thus, if we pick 0 6= v ∈ R,
then ∃u ∋ (A − λI) u = v. Then (A − λI) v ∈ R, but dim (R) = 1 =⇒
(A − λI) v = αv. Assuming α 6= 0, and since v 6= 0, then Av− (λ − α) v = 0, so
λ−α is an eigenvalue. Since we know it’s not an eigenvalue (all of the eigenvalues
are λ), we have a contradiction and so our assumption about α is wrong and

thus α = 0 and v is an eigenvector. Therefore (A − λI) v = (A − λI)
2
u = 0,

and so u is a generalized eigenvector. Note that in this case we have R ⊂ K.

Consider as an example

A =





2 1 1
0 2 0
0 0 2



 ∼





2 1 0
0 2 0
0 0 2





Note that in this case we can again write the S+N decomposition by inspection:

A = S + N =





2 0 0
0 2 0
0 0 2



 +





0 1 1
0 0 0
0 0 0
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Consider as another example the system of differential equations:











ẋ = −x + 2y + 3z

ẏ = −4y + 5z

ż = −4z

and the question, do all trajectories approach the origin as t → ∞? Then in
matrix form, letting x = (x, y, z)

T
, ẋ = Ax, where

A =





−1 2 3
0 −4 5
0 0 −4





Since the eigenvalues are {−1,−4}, the Jordan Canonical Form says that

A ∼





−1 0 0
0 −4 0
0 0 −4



 or





−1 0 0
0 −4 1
0 0 −4





We know that the trajectories of both of these matrices approach the origin as
t → ∞, so the trajectories of the system do as well (if you do the computations,
it turns out A is similar to the second Jordan matrix).

This examples serves as a warning about computing the S + N decomposition.
Naively, one might posit that the decomposition is

A = S + N =





−1 0 0
0 −4 0
0 0 −4



 +





0 2 3
0 0 5
0 0 0





based on inspection. However, S and N do not commute, so they do not form
the S + N decomposition of A.

1.11 General Classification

Given A ∈ Rn×n, let

• ES = the span of all generalized eigenvectors of A corresponding to eigen-
values with negative real part (Stable subspace)

• EC = the span of all generalized eigenvectors of A corresponding to eigen-
values with zero real part (Center subspace)

• EU = the span of all generalized eigenvectors of A corresponding to eigen-
values with positive real part (Unstable subspace)
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Z

X Y

Figure 1.11.1: A Solution Curve for Example Given By Equation 1.11.1

Since ES ∩EC = EC ∩EU = EU ∩ES = {0}, and Rn = ES ∪EC ∪EU , we can
write RN as a direct sum of these three subspaces RN = ES ⊕EC ⊕ EU . That
is, any point in the space R

N has a unique decomposition into components in
these three subspaces: ∀x ∈ RN ∃! α ∈ Ec, β ∈ Es, γ ∈ Eu ∋ x = α + β + γ.

Consider the example





−1 2 0
−2 −1 0
0 0 1



 ∼





−1 + 2i 0 0
0 −1 − 2i 0
0 0 1



 (1.11.1)

Then ES = xy − plane, EU = z − axis, and EC = {0}. See Figure 1.11.1 for a
plot with an example trajectory. Note that the trajectory approaches the z-axis.

It is important to remember that these three subspaces ES , EC , and EU are
invariant subspaces. That is, if your initial point lies solely in one of these three
subspaces, the trajetory will remain in that subspace indefinitely.

Theorem 1.5 (Stability Theorem). The following are equivalent:

1. ES = Rn

2. ∀x0 ∈ Rn, limt→∞ etAx0 = 0 (All trajectories approach the origin)

3. ∃ a, c, m, M > 0 ∋ me−at ‖x0‖ ≤
∥

∥etAx0

∥

∥ ≤ Me−ct ‖x0‖ (All trajectories
approach the origin exponentially)
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Figure 1.11.2: Eigenvalues (Crosses) for a Hypothetical System and their Sub-
space Classification

Considering the limit of trajectories as t approaches both +∞ and −∞, this
theorem states that the exponential growth rate of the system due to a particular
eigenvalue is determined solely by the real part of the eigenvalue (See Figure
1.11.2). We must be careful, however, when considering the growth rate of
points in the center subspace. While our language implies that trajectories
located in the center subspace are centers, this is not completely true. There
are also degenerate cases (i.e. see Figure 1.9.3, which has λ1 = λ2 = 0) which
do not exhibit rotation.

1.12 Variation of Constants/Duhamel’s Formula

Up to this point we have considered only homogeneous linear systems. In or-
der to solve nonhomogeneous linear systems, we apply a technique known as
Variation of Constants, or alternately Duhamel’s Formula.

Theorem 1.6 (Variation of Constants/Duhamel’s Formula). For the nonho-
mogeneous linear system

{

ẋ (t) = Ax (t) + b (t)

x (0) = x0

(1.12.1)
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the solution is given by

x (t) = eAtx0 + eAt

t
∫

0

e−Aτb (τ) dτ (1.12.2)

Proof. Since we have been given an explicit formula for the solution, we only
need to verify that it solves the system.

x (0) = eA0x0 + eA0

0
∫

0

e−Aτb (τ) dτ

= x0

ẋ = AeAtx0 + eAt
[

e−Atb (t)
]

+ AeAt

t
∫

0

e−Aτb (τ) dτ

= A



eAtx0 + eAt

t
∫

0

e−Aτb (τ) dτ



 + b (t)

= Ax (t) + b (t)

In addition to solving nonhomogeneous linear systems, Duhamel’s formula can
assist in solving nonlinear systems. Consider for example the system

ẋ = Ax + f (x) (1.12.3)

where Ax represents the entire linear portion of the system and f (x) is the
nonlinear portion of the system and consists of all the nonlinear terms. Then
by thinking about the system as

ẋ (t) = Ax (t) + f (x (t))

Duhamel says that we can write down an equation that the system must satisfy

x (t) = eAtx0 + eAt

t
∫

0

e−Aτf (x (τ)) dτ (1.12.4)

which is an integral equation. In some situations, there is enough information
given in the problem to, or the problem satisfies certain criteria that, help
characterize the solution when brought to bear on the integral equation.


