
1.3 Vector Fields and Flows. 21

1.3 Vector Fields and Flows.

This section introduces vector fields on Euclidean space and the flows they
determine. This topic puts together and globalizes two basic ideas learned
in undergraduate mathematics: the study of vector fields on the one hand
and differential equations on the other.

Definition 1.3.1. Let r ≥ 0 be an integer. A Cr vector field on Rn is a
mapping X : U → Rn of class Cr from an open set U ⊂ Rn to Rn. The set
of all Cr vector fields on U is denoted by Xr(U) and the C∞ vector fields
by X∞(U) or X(U).

We think of a vector field as assignning to each point x ∈ U a vector
X(x) based (i.e., bound) at that same point.

Example. Consider the force field determined by Newton’s law of gravi-
tation. Here the set U is R3 minus the origin and the vector field is defined
by

F(x, y, x) = −mMG

r3
r,

where m is the mass of a test body, M is the mass of the central body, G
is the constant of gravitation, r is the vector from the origin to (x, y, z),
and r = (x2 + y2 + z2)1/2; see Figure 1.3.1.

Figure 1.3.1. The gravitational force field.

!
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Consider a general physical system that is capable of assuming various
“states” described by points in a set Z. For example, Z might be R3 ×R3

and a state might be the position and momentum (q,p) of a particle. As
time passes, the state evolves. If the state is z0 ∈ Z at time t0 and this
changes to z at a later time t, we set

Ft,t0(z0) = z

and call Ft,t0 the evolution operator ; it maps a state at time t0 to what
the state would be at time t; i.e., after time t− t0 has elapsed. “Determin-
ism” is expressed by the law

Ft2,t1 ◦ Ft1,t0 = Ft2,t0 Ft,t = identity,

sometimes called the Chapman-Kolmogorov law .
The evolution laws are called time independent when Ft,t0 depends

only on t− t0; i.e.,

Ft,t0 = Fs,s0 if t− t0 = s− s0.

Setting Ft = Ft,0, the preceding law becomes the group property :

Fτ ◦ Ft = Fτ+t, F0 = identity.

We call such an Ft a flow and Ft,t0 a time-dependent flow , or an evo-
lution operator. If the system is defined only for t ≥ 0, we speak of a
semi-flow .

It is usually not Ft,t0 that is given, but rather the laws of motion . In
other words, differential equations are given that we must solve to find the
flow. In general, Z is a manifold (a generalization of a smooth surface), but
we confine ourselves here to the case that Z = U is an open set in some
Euclidean space Rn. These equations of motion have the form

dx

dt
= X(x), x(0) = x0

where X is a (possibly time-dependent) vector field on U .

Example. The motion of a particle of mass m under the influence of the
gravitational force field is determined by Newton’s second law:

m
d2r
dt2

= F;

i.e., by the ordinary differentatial equations

m
d2x

dt2
= −mMGx

r3
;

m
d2y

dt2
= −mMGy

r3
;

m
d2z

dt2
= −mMGz

r3
;
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Letting q = (x, y, z) denote the position and p = m(dr/dt) the momentum,
these equations become

dq
dt

=
p
m

;
dp
dt

= F(q)

The phase space here is the open set U = (R3\{0})× R3. The right-hand
side of the preceding equations define a vector field by

X(q,p) = ((q,p), (p/m,F(q))).

In courses on mechanics or differential equations, it is shown how to in-
tegrate these equations explicitly, producing trajectories, which are planar
conic sections. These trajectories comprise the flow of the vector field. !

Relative to a chosen set of Euclidean coordinates, we can identify a vec-
tor field X with an n-component vector function (X1(x), . . . , Xn(x)), the
components of X.

Definition 1.3.2. Let U ⊂ Rn be an open set and X ∈ Xr(U) a vector
field on U . An integral curve of X with initial condition x0 is a differen-
tiable curve c defined on some open interval I ⊂ R containing 0 such that
c(0) = x0 and c′(t) = X(c(t)) for each t ∈ I.

Clearly c is an integral curve of X when the following system of ordinary
differential equations is satisfied:

dc1

dt
(t) = X1(c1(t), . . . , cn(t))

...
...

dcn

dt
(t) = Xn(c1(t), . . . , cn(t))

We shall often write x(t) = c(t), an admitted abuse of notation. The
preceding system of equations are called autonomous, when X is time
independent. If X were time dependent, time t would appear explicitly
on the right-hand side. As we have already seen, the preceding system
of equations includes equations of higher order by the usual reduction to
first-order systems.

Theorem 1.3.3 (Local Existence, Uniqueness, and Smoothness).
Suppose that U ⊂ Rn is open and that X is a Cr vector field on U for some
r ≥ 1. For each x0 ∈ U , there is a curve c : I → U with c(0) = x0 such
that c′(t) = X(c(t)) for all t ∈ I. Any two such curves are equal on the
intersection of their domains. Furthermore, there is a neighborhood U0 of
the point x0 ∈ U , a real number a > 0, and a Cr mapping F : U0× I → U ,
where I is the open interval ] − a, a [, such that the curve cu : I → U ,
defined by cu(t) = F (u, t) is a curve satisfying cu(0) = u and the differential
equations c′u(t) = X(cu(t)) for all t ∈ I.
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This theorem has many variants. We refer to Coddington and Levinson
[1955] and Hartman [2002] for a thorough discussion of most of them. For
example, with just continuity of X one can get existence (the Peano exis-
tence theorem) without uniqueness. The equation in one dimension given
by ẋ =

√
x, x(0) = 0 has the two C1 solutions x1(t) = 0 and x2(t) which is

defined to be 0 for t ≤ 0 and x2(t) = t2/4 for t > 0. This shows that one
can indeed have existence without uniqueness for continuous vector fields.

The proof of the preceding theorem is based on the following.

Theorem 1.3.4 (Local Existence and Uniqueness). Let U ⊂ Rn be
an open set, and X : U → Rn be a Lipschitz map; i.e., there is a constant
K > 0 such that

‖X(x)−X(y)‖ ≤ K‖x− y‖

for all x, y ∈ U . Let x0 ∈ U and suppose the closed ball of radius b, Bb(x0) =
{x ∈ Rn| ‖x− x0‖ ≤ b} lies in U , and that ‖X(x)‖ ≤ M for a constant M
and all x ∈ Bb(x0). Let t0 ∈ R and let α = b/M . Then there is a unique
C1 curve x(t), t ∈ [t0 − α, t0 + α] such that

x(t) ∈ Bb(x0) and

{
x′(t) = X(x(t))
x(t0) = x0.

Proof. The conditions x′(t) = X(x(t)), x(t0) = x0 are equivalent to the
integral equation

x(t) = x0 +
∫ t

0
X(x(s)) ds (1.3.1)

Put x0(t) = x0 and define inductively

xn+1(t) = x0 +
∫ t

t0

X(xn(s)) ds.

This process is called Picard iteration. Clearly xn(t) ∈ Bb(x0) for all n
and t ∈ [t0 − α, t0 + α] by definition of α. We claim that

‖xn+1(t)− xn(t)‖ ≤ MKn|t− t0|n+1

(n + 1)!
. (1.3.2)

To see this, we proceed by induction. For n = 0 this reads

‖x1(t)− x0‖ ≤ M |t− t0|

However, this follows since by definition of x1(t):

x1(t)− x0 =
∫ t

t0

X(x0) ds
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and since ‖X(x0)‖ ≤ M . Now assume that equation (1.3.2) holds for n. To
prove it for n + 1, we estimate as follows:

‖xn+2(t)− xn+1(t)‖ =
∥∥∥∥
∫ t

t0

(X(xn+1(s))−X(xn(s))) ds

∥∥∥∥

≤
∫ t

t0

(K‖xn+1(s)− xn(s)‖) ds

≤
∫ t

t0

(
K

MKn|t− t0|n+1

(n + 1)!

)
ds

≤ MKn+1|t− t0|n+2

(n + 2)!

and so we have proved equation (1.3.2) for n + 1 as required. Since

MKn

(n + 1)!
(t− t0)n+1 ≤ MKn

(n + 1)!
αn+1

and the series with these quantities as terms is convergent, we see, writ-
ing ‖xn+p − xn‖ as a telescoping sum, that the functions xn(t) form a
uniformly Cauchy sequence and hence converge uniformly to a continuous
function x(t). This curve x(t) satisfies the integral equation (1.3.1). Since
x(t) is continuous, the integral equation in fact shows that it is C1 from
the fundamental theorem of Calculus. This proves existence.

For uniqueness, let y(t) be another solution. By induction we find that
‖xn(t) − y(t)‖ ≤ MKn|t − t0|n+1/(n + 1)!; thus, letting n → ∞ gives
x(t) = y(t). "

A local existence result may alternatively be proven by making use of the
contraction mapping principle, at least if we “give a little” and assume that
α also satisfies α < 1/K. The idea is to consider the space C of continuous
curves c(t) defined on the closed interval [t0−α, t0+α]. These curves should
satisfy c(t0) = x0 and lie in a closed ball of radius b. We consider C as a
complete metric space with the distance function given by the supremum
of the distance between two curves. Now we set up a mapping

F : C → C

defined by

F(c(·))(t) = x0 +
∫ t

t0

X(c(s)) ds

Then one checks, using the fact that α is less than or equal to b/M that F
maps C to itself, and the Lipschitz condition on X provides an estimate on
F(c1(·))−F(c2(·)) in the sup norm. The condition that α is less than 1/K
shows that F is a contraction. The unique fixed point is the desired integral
curve. Notice, however, that the time of existence given by this technique is
not as good as what was given in the local existence result, Theorem 1.3.4.
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Dependence on Parameters and Time. The same argument holds if
X depends explicitly on t and/or on a parameter ρ, is jointly continuous in
(t, ρ, x), and is Lipschitz in x uniformly in t and ρ. Since xn(t) is continuous
in (x0, t0, ρ) so is x(t), being a uniform limit of continuous functions; thus
the integral curve is jointly continuous in (x0, t0, ρ). 3

The following inequality is of basic importance in not only existence and
uniqueness theorems, but also in making estimates on solutions.

Theorem 1.3.5 (Gronwall’s Inequality). Let f, g : [a, b[→ R be con-
tinuous and nonnegative. Suppose there is a constant A ≥ 0 such that for
all t satisfying a ≤ t ≤ b,

f(t) ≤ A +
∫ t

a
f(s) g(s) ds.

Then

f(t) ≤ A exp
(∫ t

a
g(s) ds

)
for all t ∈ [a, b[.

Proof. First suppose A > 0. Let

h(t) = A +
∫ t

a
f(s) g(s) ds;

thus h(t) > 0. Then h′(t) = f(t)g(t) ≤ h(t)g(t). Thus h′(t)/h(t) ≤ g(t).
Integration gives

h(t) ≤ A exp
(∫ t

a
g(s) ds

)
.

This gives the result for A > 0. If A = 0, then we get the result by replacing
A by ε > 0 for every ε > 0; thus h and hence f is zero. "

Lemma 1.3.6. Let X be as in Theorem 1.3.4. Let Ft(x0) denote the
solution (= integral curve) of x′(t) = X(x(t)), x(0) = x0. Then there is a
neighborhood V of x0 and a number ε > 0 such that for every y ∈ V there
is a unique integral curve x(t) = Ft(y) satisfying x′(t) = X(x(t)) for all
t ∈ [−ε, ε], and x(0) = y. Moreover,

‖Ft(x)− Ft(y)‖ ≤ eK|t|‖x− y‖.

Proof. Choose V = Bb/2(x0) and ε = b/2M . Fix an arbitrary y ∈ V .
Then Bb/2(y) ⊂ Bb(x0) and hence ‖X(z)‖ ≤ M for all z ∈ Bb/2(y). By

3The reader who is familiar with Banach spaces will notice that this proof works
essentially unchanged in that context with Rn replaced by a Banach space. However,
one has to be cautious not to think that this will always enable one to deal with partial
differential equations (such as dealing with equations like the heat equation (∂u/∂t =
∇2u) by just choosing the Banach space to be a space of functions.
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Theorem 1.3.4 with x0 replaced by y, b by b/2, and t0 by 0, there exists an
integral curve x(t) of x′(t) = X(x(t)) for t ∈ [−ε, ε] and satisfying x(0) = y.
This proves the first part. For the second, let f(t) = ‖Ft(x) − Ft(y)‖.
Clearly,

f(t) =
∥∥∥∥
∫ t

0
[X(Fs(x))−X(Fs(y))] ds + x− y

∥∥∥∥

≤ ‖x− y‖+ K

∫ t

0
f(s) ds,

so the result follows from Gronwall’s inequality. "

This result shows that Ft(x) depends in a continuous, indeed Lipschitz,
manner on the initial condition x and is jointly continuous in (t, x). Again,
the same result holds if X depends explicitly on t and on a parameter ρ is
jointly continuous in (t, ρ, x), and is Lipschitz in x uniformly in t and ρ. We
let F ρ

t,λ(x) be the unique integral curve x(t) satisfying x′(t) = X(x(t), t, ρ)
and x(λ) = x. By the remarks following Theorem 1.3.4, F ρ

t,t0(x) is jointly
continuous in the variables (t0, t, ρ, x), and is Lipschitz in x, uniformly in
(t0, t, ρ).

We now want to work towards showing that Ft is Cr if X is. We will do
this first locally and later will also show this for all t for which the flow is
defined.

For the next lemma, recall that by the mean value theorem, a C1-function
is locally Lipschitz.

Lemma 1.3.7. Let X in Theorem 1.3.4 be of class Ck, where 1 ≤ k ≤ ∞,
and let Ft(x) be defined as before. Then locally in (t, x), Ft(x) is of class
Ck in x and is Ck+1 in the t-variable.

Proof. We define ψ(t, x) taking values in the vector space L(Rn, Rn)
consisting of the set of linear maps of Rn to Rn (this space is isomorphic to
Rn2

), to be the solution of the “linearized” or “first variation” equations:

d

dt
ψ(t, x) = DX(Ft(x)) ◦ ψ(t, x),

with ψ(0, x) = identity, where DX(y) : Rn → Rn is the derivative of X
taken at the point y. Using the standard Euclidean coordinates, DX is the
matrix with entries ∂Xi/∂xj .

Since the vector field ψ ,→ DX(Ft(x)) ◦ ψ on L(Rn, Rn) (depending
explicitly on t and on the parameter x) is Lipschitz in ψ, uniformly in (t, x)
in a neighborhood of every (t0, x0), by the remark following 1.3.6 it follows
that ψ(t, x) is continuous in (t, x).
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We claim that DFt(x) = ψ(t, x). To show this, fix t and x, set θ(s, h) =
Fs(x + h)− Fs(x), and write

θ(t, h)− ψ(t, x) · h =
∫ t

0
{X(Fs(x + h))−X(Fs(x))} ds

−
∫ t

0
[DX(Fs(x)) ◦ ψ(s, x)] · h ds

=
∫ t

0
DX(Fs(x)) · [θ(s, h)− ψ(s, x) · h] ds

+
∫ t

0
{X(Fs(x + h))−X(Fs(x))

−DX(Fs(x)) · [Fs(x + h)− Fs(x)]} ds.

Since X is of class C1, given ε > 0, there is a δ > 0 such that ‖h‖ < δ
implies the second term is dominated in norm by

∫ t

0
ε‖Fs(x + h)− Fs(x)‖ ds,

which is, in turn, smaller than Aε‖h‖ for a positive constant A by lemma
1.3.6. By Gronwall’s inequality we obtain

‖θ(t, h)− ψ(t, x) · h‖ ≤ Cε‖h‖,

for a constant C. It follows that DFt(x) · h = ψ(t, x) · h. Thus both partial
derivatives of Ft(x) exist and are continuous; therefore Ft(x) is of class C1.

We prove Ft(x) is Cr by induction on r. Begin with the equation defining
Ft :

d

dt
Ft(x) = X(Ft(x))

so
d

dt

d

dt
Ft(x) = DX(Ft(x)) · X(Ft(x))

and
d

dt
DFt(x) = DX(Ft(x)) ·DFt(x)).

Since the right-hand sides are Cr−1, so are the solutions by induction.
Thus F itself is Cr. "

Again there is an analogous result for the evolution operator F ρ
t,t0(x) for a

time-dependent vector field X(x, t, ρ), which depends on extra parameters
ρ in some other Euclidean space, say Rm . If X is Cr, then F ρ

t,t0(x) is Cr

in all variables and is Cr+1 in t and t0.
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Suspenstion Trick. The variable ρ can be easily dealt with by suspend-
ing X to a new vector field obtained by appending the trivial differential
equation ρ′ = 0; this defines a vector field on Rn × Rm and the basic exis-
tence and uniqueness theorem may be applied to it. The flow on Rn ×Rm

is just Ft(x, ρ) = (F ρ
t (x), ρ).

Other Approaches and Results. For another more “modern” proof
of the basic existence and uniquenss theorem based directly on the implicit
function theorem applied in function spaces, see Abraham, Marsden, and
Ratiu [1988]. That alternative proof has a technical advantage: it works
easily for other types of differentiability assumptions on X or on Ft, such
as Hölder or Sobolev differentiability; this result is due to Ebin and Marsden
[1970].

An interesting result called the rectification theorem, whose proof can be
found in Arnold [1983] and Abraham, Marsden, and Ratiu [1988], shows
that near a point x0 satisfying X(x0) -= 0, the flow can be transformed
by a change of variables so that the integral curves become straight lines
moving with unit speed. This shows that, in effect, nothing interesting
happens with flows away from equilibrium points as long as one looks at
the flow only locally and for short time.

The Notion of a Flow. The mapping F gives a locally unique integral
curve cu for each u ∈ U0, and for each t ∈ I, Ft = F |(U0 × {t}) maps U0

to some other set. It is convenient to think of each point u being allowed
to “flow for time t” along the integral curve cu (see Figure 1.3.2). This is
a picture of a U0 “flowing,” and the system (U0, a, F ) is a local flow of X,
or flow box .

Figure 1.3.2. The flow of a vector field
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Global Uniqueness of Integral Curves. While integral curves need
not always exist globally, if they do, they are always unique.

Proposition 1.3.8 (Global Uniqueness). Suppose c1 and c2 are two
integral curves of X in U and that for some time t0, c1(t0) = c2(t0). Then
c1 = c2 on the intersection of their domains.

Proof. Suppose c1 : I1 → U and c2 : I2 → U . Let I = I1 ∩ I2, and let
K = {t ∈ I | c1(t) = c2(t)};K is closed since c1 and c2 are continuous. We
will now show that K is open. From the basic existence and uniqueness
result in Theorem 1.3.3, K contains some neighborhood of t0. For t ∈ K
consider ct

1 and ct
2, where ct(s) = c(t + s). Then ct

1 and ct
2 are integral

curves satisfying c1(t) = c2(t). By local uniqueness, they agree on some
neighborhood of 0. Thus some neigborhood of t lies in K, and so K is
open. Since I is connnected, K = I. "

Completeness and the Lifetime of a Trajectory. Other global issues
center on considering the flow of a vector field as a whole, extended as far
as possible in the t-variable. In fact, by uniqueness, it makes sense to look
at the largest interval in the positive and negative t-directions on which
one has a solution. We make this formal as follows.

Definition 1.3.9. Given an open set U and a vector field X on U , let
DX ⊂ U ×R be the set of (x, t) ∈ U ×R such that there is an integral curve
c : I → U of X with c(0) = x with t ∈ I. The vector field X is complete if
DX = U ×R. A point x ∈ U is called σ-complete, where σ = +,−, or ±,
if DX ∩ ({x} × R) contains all (x, t) for t > 0, < 0, or t ∈ R, respectively.
Let T+(x) (resp. T−(x)) denote the sup (resp. inf) of the times of existence
of the integral curves through x; T+(x) resp. T−(x) is called the positive
(negative) lifetime of x.

Thus, X is complete iff each integral curve can be extended so that its
domain becomes ] − ∞,∞ [; i.e., T+(x) = ∞ and T−(x) = −∞ for all
x ∈ U .

Examples

A. Any linear vector field A on Rn is complete. Indeed, the integral curve
through an initial condition x0 ∈ Rn, namely etAx0 is defined for all
t.

B. For U = R2, let X be the constant vector field X(x, y) = (0, 1).
Then X is complete since the integral curve of X through (x, y) is
t ,→ (x, y + t).

C. On U = R2\{0}, the same vector field is not complete since the
integral curve of X through (0,−1) cannot be extended beyond t = 1;
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in fact as t → 1 this integral curve tends to the point (0, 0). Thus
T+(0,−1) = 1, while T−(0,−1) = −∞.

D. On R consider the vector field X(x) = 1 + x2. This is not complete
since the integral curve c with c(0) = 0 is c(θ) = tan θ and thus it
cannot be continuously extended beyond −π/2 and π/2; i.e., T±(0) =
±π/2. !

Here are some general properties of flow domains.

Proposition 1.3.10. Let U ⊂ Rn be open and X ∈ Xr(M), r ≥ 1. Then

i DX ⊃ U × {0};

ii DX is open in U × R;

iii there is a unique Cr mapping FX : DX → U such that the mapping
t ,→ FX(x, t) is an integral curve at x for all x ∈ U ;

iv for (x, t) ∈ DX , (FX(x, t), s) ∈ DX iff (m, t + s) ∈ DX ; in this case

FX(x, t + s) = FX(FX(x, t), s).

The idea of the proof is as follows. Parts i and ii follow from the local
existence theory. In iii, we get a unique map FX : DX → U by the global
uniqueness and local existence of integral curves: (x, t) ∈ DX when the
integral curve x(s) through x exists for s ∈ [0, t]. We set FX(x, t) = x(t).
To show FX is Cr, note that in a neighborhood of a fixed x0 and for small
t, it is Cr by local smoothness. To show FX is globally Cr, first note that
iv holds by global uniqueness. Then in a neighborhood of the compact set
{x(s)|s ∈ [0, t]} we can write FX as a composition of finitely many Cr maps
by taking short enough time steps so the local flows are smooth. "
Definition 1.3.11. Let U ⊂ Rn be open and X ∈ Xr(U), r ≥ 1. Then
the mapping FX is called the integral of X, and the curve t ,→ FX(x, t)
is called the maximal integral curve of X at x. In case X is complete,
FX is called the flow of X.

Thus, if X is complete with flow F , then the set {Ft | t ∈ R} is a group
of diffeomorphisms on U , sometimes called a one-parameter group of
diffeomorphisms. Since Fn = (F1)n (the n-th power), the notation F t is
sometimes convenient and is used where we use Ft. For incomplete flows, iv
says that Ft ◦ Fs = Ft+s wherever it is defined. Note that Ft(x) is defined
for t ∈ ]T−(x), T+(x)[. The reader should write out similar definitions for
the time-dependent case and note that the lifetimes depend on the starting
time t0.
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Criteria for Completeness. There are a number of conditions that are
convenient for checking completeness. We begin with one of the most basic
ones.

Proposition 1.3.12. Let X be a Cr vector field on an open subset U
of Rn, where r ≥ 1. Let c(t) be a maximal integral curve of X such that
for every finite open interval ]a, b[ in the domain ]T−(c(0)), T+(c(0))[ of
c, c(]a, b[) lies in a compact subset of U . Then c is defined for all t ∈ R. If
U = Rn, this holds provided c(t) lies in a bounded set.

Proof. It suffices to show that a ∈ I, b ∈ I, where I is the inteval of
definition of c. Let Tn ∈ ]a, b[, tn → b. By compactness we can assume some
subsequence c(tn(k)) converges, say, to a point x in U . Since the domain of
the flow is open, it contains a neighborhood of (x, 0). Thus, there are ε > 0
and τ > 0 such that integral curves starting at points (such as c(tn(k))) for
large k) closer than ε to x persist for a time longer than τ . This serves to
extend c to a time greater than b, so b ∈ I since c is maximal. Similarly,
a ∈ I. "

A direct corollary of this result relies on the notion of the support of
a vector field. The support of a vector field X defined on an open set
U ⊂ Rn is defined to be the closure of the set {x ∈ U |X(x) -= 0} regarded
as a subset of Rn.

Corollary 1.3.13. A Cr vector field on an open set U with compact
support contained in U is complete.

Completeness corresponds to well-defined dynamics persisting eternally.
In some circumstances (shock waves in fluids and solids, singularities in
general relativity, etc.) one has to live with incompleteness or overcome it
in some other way. Because of its importance we give two additional criteria.
In the first result we use the notation X[f ] = df ·X for the derivative of f
in the direction X. Here f : U → R and df stands for the derivative map.
In standard coordinates on Rn,

df(x) =
(

∂f

∂x1
, . . . ,

∂f

∂xn

)
and X[f ] =

n∑

i=1

Xi ∂f

∂xi
.

Proposition 1.3.14. Suppose X is a Cr vector field on Rn, and f :
Rn → R is a C1 proper map; that is, if {xn} is any sequence in Rn such
that f(xn) → a, then there is a convergent subseqence {xn(i)}. Suppose
there are constants K, L ≥ 0 such that

|X[f ](m)| ≤ K|f(m)| + L for all m ∈ E.

Then the flow of X is complete.
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Proof. From the chain rule we have (∂/∂t)f(Ft(m)) = X[f ](Ft(m)), so
that

f(Ft(m))− f(m) =
∫ t

0
X[f ](Fτ (m)) dτ

Applying the hypothesis and Gronwall’s inequality we see that |f(Ft(x))|
is bounded and hence relatively compact on any finite t-interval, so as f is
proper, a repetition of the argument in the proof of 1.3.12 applies. "

Proposition 1.3.15. Let X be a Cr vector field on Rn. Let σ be an
integral curve of X. Assume ‖X(σ(t))‖ is bounded on finite t-intervals.
Then σ(t) exists for all t ∈ R.

Proof. Suppose ‖X(σ(t))‖ ≤ A for t ∈ ]a, b[ and let tn → b. For tn < tm
we have

‖σ(tn)− σ(tm)‖ ≤
∫ tm

tn

‖σ′(t)‖ dt =
∫ tm

tn

‖X(σ(t))‖ dt ≤ A|tm − tn|.

Hence σ(tn) is a Cauchy sequence and therefore, converges. Now argue as
in 1.3.12. "

Examples

A. Let X be a Cr vector field, r ≥ 1, on the manifold U admitting a first
integral , i.e., a function f : U → R such that X[f ] = 0. If all level
sets f−1(r), r ∈ R are compact, X is complete. Indeed, each integral
curve lies on a level set of f so that the result follows by Proposition
1.3.14.

B. Suppose
X(x) = A · x + B(x),

where A is a linear operator of Rn to itself and B is sublinear ; i.e.,
B : Rn → Rn is Cr with r ≥ 1 and satisfies ‖B(x)‖ ≤ K‖x‖+ L for
constants K and L. We shall show that X is complete. Let x(t) be
an integral curve of X on the bounded interval [0, T ]. Then

x(t) = x(0) +
∫ t

0
(A · x(s) + B(x(s))) ds

Hence

‖x(t)‖ ≤ ‖x(0)‖
∫ t

0
(‖A‖+ K)‖x(s)‖ ds + Lt.

By Gronwall’s inequality,

‖x(t)‖ ≤ (LT + ‖x(0)‖)e(‖A‖+K)t.
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Hence x(t) remains bounded on bounded t-intervals, so the result
follows by Proposition 1.3.12.

C. We claim that the flow of the equations

ẋ = v

ẏ = x− x3 − v

is complete. To see this, note that, as we saw in equation (1.1.8) and
the following discussion of dissipation, that the energy

E(x, v) =
1
2
v2 − 1

2
x2 +

1
4
x4.

is decreasing. However, because of the positive quadratic term in v
and the positive quartic term in x, any sublevel set E(x, v) ≤ C is
compact. However, any trajectory that starts in such a set stays in
that set. Hence trajectories a priori stay bounded, and hence can be
continued indefinitely in time.

D. Here is a more sophisticated version of the preceding example. Con-
sider the equations for a moving particle of mass m in a potential field
in Rn, namely q̈(t) = −(1/m)∇V (q(t)), for V : Rn → R a smooth
function. We shall prove that if there are constants a, b ∈ R, b ≥ 0
such that (1/m)V (q) ≥ a − b‖q‖2, then every solution exists for all
time. To show this, rewrite, as usual, the second order equations as
a first order system

q̇ = (1/m)p
ṗ = −∇V (q)

and note, as before that the energy

E(q,p) =
1

2m
‖p‖2 + V (q)

is a first integral—that is, is constant in time. Thus, for any solution
(q(t),p(t)) we have β = E(q(t),p(t)) = E(q(0),p(0)) ≥ V (q(0)).
We can assume β > V (q(0)), i.e., p(0) -= 0, for if p(t) ≡ 0, then
the conclusion is trivially satisifed; thus there exists a t0 for which
p(t0) -= 0 and by time translation we can assume that t0 = 0. Thus
we have

‖q(t)‖ ≤ ‖q(t)− q(0)‖+ ‖q(0)‖ ≤ ‖q(0)‖+
∫ t

0
‖q̇(s)‖ ds

= ‖q(0)‖+
∫ t

0

√

2
[
β − 1

m
V (q(s))

]
ds

≤ ‖q(0)‖+
∫ t

0

√
2(β − a + b‖q(s)‖2) ds
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or in differential form

d

dt
‖q(t)‖ ≤

√
2(β − a + b‖q(t)‖2)

whence

t ≤
∫ ‖q(t)‖

‖q(0)‖

du√
2(β − a + bu2)

(1.3.3)

Now let r(t) be the solution of the differential equation

d2r(t)
dt2

= − d

dr
(a− br2)(t) = 2br(t),

which, as a second order equation with constant coefficients, has so-
lutions for all time for any initial conditions. Choose

r(0) = ‖q(0)‖, [̇r(0)]2 = 2(β − a + b‖q(0)‖2)

and let r(t) be the corresponding solution. Since

d

dt

(
1
2
ṙ(t)2 + a− br(t)2

)
= 0,

it follows that (1/2)ṙ(t)2 + a− br(t)2 = (1/2)ṙ(0)2 + a− br(0)2 = β,
i.e.,

dr(t)
dt

=
√

2(β − a + br(t)2)

whence

t =
∫ r(t)

‖q(0)‖

du√
s(β − α + βu2

(1.3.4)

Comparing these two expressions (see the Exercises) and taking into
account that the integrand is > 0, it follows that for any finite time
interval for which q(t) is defined, we have ‖q(t)‖ ≤ r(t), i.e., q(t)
remains in a compact set for finite t-intervals. But then q̇(t) also lies
in a compact set since ‖q̇(t)‖ ≤ 2(β − a + b‖q(s)‖2). Thus by 1.3.12,
the solution curve (q(t),p(t)) is defined for any t ≥ 0. However,
since (q(−t),p(−t)) is the value at t of the integral curve with initial
conditions (−q(0),−p(0)), it follows that the solution also exists for
all t ≤ 0.
The following counterexample shows that the condition V (q) ≥ a −
b‖q‖2 cannot be relaxed much further. Take n = 1 and V (q) =
−ε2q2+(4/ε)/8, ε > 0. Then the equation

q̈ = ε(ε + 2)q1+(4/ε)/4

has the solution q(t) = 1/(t−1)ε/2, which cannot be extended beyond
t = 1. !
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The following is proved by a study of the local existence theory; we state
it for completeness only.

Proposition 1.3.16. Let X be a Cr vector field on U, r ≥ 1, x0 ∈ U ,
and T+(x0)(T−(x0)) the positive (negative) lifetime of x0. Then for each
ε > 0, there exists a neighborhood V of x0 such that for all x ∈ V, T+(x) >
T+(x0)− ε (respectively, T−(x0) < T−(x0) + ε). [One says that T+(x0) is
a lower semi-continuous function of x.]

Corollary 1.3.17. Let Xt be a Cr time-dependent vector field on U, r ≥
1, and let x0 be an equilibrium of Xt, i.e., Xt(x0) = 0, for all t. Then for
any T there exists a neighborhood V of x0 such that any x ∈ V has integral
curve existing for time t ∈ [−T, T ].


