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Invariant Manifolds and Liapunov
Functions

Invariant Manifolds

The motivation for invariant manifolds comes from the study of critical
elements of linear differential equations of the form

ẋ = Ax, x ∈ Rn.

Let Es, Ec, and Eu be the (generalized) real eigenspaces of A associated
with eigenvalues of A lying on the open left half plane, the imaginary axes,
and the open right half plane, respectively. As we have seen in the section
on linear systems, each of these spaces is invariant under the flow of ẋ = Ax
and represents, respectively, a stable, center, and unstable subspace.

Let us call a subset S ⊂ Rn a k-manifold if it can be locally represented
as the graph of a smooth function defined on a k-dimensional affine sub-
space of Rn. As in the calculus of graphs, k manifolds have well defined
tangent spaces at each point and these are independent of how the mani-
folds are represented as graphs. Although the notion of a manifold is much
more general, this will serve our purposes.

A k-manifold S ⊂ Rn is said to be invariant under the flow of a vector
field X if for x ∈ S, Ft(x) ∈ S for small t > 0; i.e., X is tangent to S.
One can thus say that an invariant manifold is a union of (segments of)
integral curves.

Invariant manifolds are intuitively “nonlinear eigenspaces.” A little more
precisely, we may define invariant manifolds S of a critical element γ; that
is, γ is a fixed point or a periodic orbit, to be stable or unstable depending
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on whether they are comprised of orbits in S that wind toward γ with
increasing, or with decreasing time.

Let us focus on fixed points, say, xe to begin. In a neighborhood of
xe, the tangent spaces to the stable and unstable manifolds are provided
by the generalized eigenspaces Es, Ec, and Eu of the linearization A =
DX(xe). We are going to start with hyperbolic points; that is, points
where the linearization has no center subspace. Let the dimension of the
stable subspace be denoted k.

Theorem (Local Invariant Manifold Theorem for Hyperbolic Points). As-
sume that X is a smooth vector field on Rn and that xe is a hyperbolic
equilibrium point. There is a k- manifold W s(xe) and a n − k-manifold
Wu(xe) each containing the point xe such that the following hold:

i. Each of W s(xe) and Wu(xe) is locally invariant under X and con-
tains xe.

ii. The tangent space to W s(xe) at xe is Es and the tangent space to
Wu(xe) at xe is Eu.

iii. If x ∈ W s(xe), then the integral curve with initial condition x tends
to xe as t→∞ and if x ∈Wu(xe), then the integral curve with initial
condition x tends to xe as t→ −∞.

iv The manifolds W s(xe) and Wu(xe) are (locally) uniquely; they are
determined by the preceding conditions.

A rough depiction of stable and unstable manifolds of a fixed point are
shown in the next figure.

stable and unstable manifolds of a critical point with one eigenvalue 

of the linearization in the right half plane and two in the left

In this case of hyperbolic fixed points we only have the locally unique
manifolds W s(xe) and Wu(xe). These can be extended to globally unique,
immersed submanifolds by means of the flow of X. This is the Global
Stable Manifold Theorem of Smale.
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Invariant Manifolds for Periodic Orbits. We mention that there is
a similar result for invariant manifolds of periodic orbits γ. We indicate the
idea of this result in the following figure.

stable and unstable manifolds of a periodic orbit whose Poincare 

map has one eigenvalue inside and one outside the unit circle. 

Invariant Manifolds for Mappings Recall that mappings rather than
flows arise in at least three basic ways:

(a) Many systems are directly described by discrete dynamics: xn+1 =
f(xn). For example, the standard map, the Henon map, many in-
tegration algorithms for dynamical systems, and many population
problems may be understood this way. Delay and difference equa-
tions can be viewed in this category as well.

(b) The Poincaré map of a closed orbit has already been discussed in
lecture.

(c) Suppose we are interested in nonautonomous systems of the form
ẋ = f(x, t) where f is T -periodic in t. Then the map P that advances
solutions by time T , also called the Poincaré map, is basic to a qual-
itative study of the orbits. (See the following Figure.) This map is
often used in the study of forced oscillations.

t

x

x

Poincare map

state space M

trajectory of

state space M

The Poincaré map of a time-periodic dynamical system.
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The Center Manifold Theorem

First we state the Center Manifold Theorem. For simplicity of exposition,
let us assume we are dealing with an equilibrium point at the origin.

Theorem (Local Center Manifold Theorem for Flows). Let X be a Ck

vector field on Rn (k ≥ 1) such that X(0) = 0. Let φt(x) denote the
corresponding flow. Assume that the spectrum of DX(0) is of the form
σ = σ1∪σ2 where σ1 lies on the imaginary axis and σ2 lies off the imaginary
axis. Let E1 ⊕ E2 be the corresponding splitting of Rn into generalized
eigenspaces.

Then there is a neighborhood U of 0 in Rn and a Ck submanifold W c ⊂ U
of dimension d passing through 0 and tangent to E1 at 0 such that

i. If x ∈W c and φt(x) ∈ U for all t ∈ [0, t0], then φt0(x) ∈W c.

ii. If φt(x) ∈ U for all t ∈ R, then φt(x) ∈ W c. The manifold W c

is locally the graph of a Ck map h : E1 → E2 with ξ(0) = 0 and
Dh(0) = 0. (See the following Figure.)

h

The center manifold W c(xe) of a fixed point.

The manifold W c is called a center manifold. Property i says that W c

is locally invariant under the flow φt, and ii means that all orbits of φt that
are globally defined and contained in U for all t are actually contained in
W c. Letting d = dimE1, the problem of finding orbits of x that remain
near 0 reduces to the discussion of a d dimensional vector field H that is
obtained by restricting the original vector field X to W c and then pulling
it back to E1. In coordinates, we have

H(x1) = QX(x1 + h(x1)),
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where Q is the projection of Rn onto E1 relative to the splitting Rn =
E1 ⊕ E2.

Go to in class notes for further discussion and examples ToDo

Proofs of the Center Manifold Theorem
(Optional Discussion)

This is a technical job, but the technicalities can lead to (and historically
did lead to) fundamental advances and new ideas. After giving an overview
of the main methods that have been used to prove the theorem, we give
the details of each of three approaches. Following this, further properties
of smoothness and attractivity are given.

In this section we will discuss some of the main techniques that are
available to prove the center manifold theorem.

The first main division is that between maps and flows. One can take
the approach of first proving the invariant manifold theorems for maps
and then, using the time t map associated to any flow, deduce the center
manifold theorems for flows. This approach is certainly useful since the
invariant manifold theorems for maps are important in their own right.
However, in our introductory approach, we have chosen to proceed directly
with proofs for differential equations. By consulting the references cited,
the reader will have no trouble tracking down the corresponding theorems
for maps, should they require that.

There are several approaches in the literature to proving the invariant
manifold theorems. We shall not attempt to survey them all here, but rather
we shall focus on three main ideas:

1. The invariance equation approach.

2. The trajectory selection method (sometimes called the Liapunov-
Peron method).

3. The normal form method.

Each of these methods sets up the problem in a different way, but once the
problem is set up, there is a nonlinear equation to solve. To solve it, there
are two main approaches that can be used:

A. The contraction mapping approach.

B. The deformation method.
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Thus, in principle, one can follow six general lines of proof to the end. Each
line has its own merits, as we shall see.

The contraction mapping principle is a familiar method for solving non-
linear equations. One formulates the equation as a fixed point problem on
an appropriate complete metric space (often a Banach space) and then
applies the contraction mapping principle.

As we learn in elementary analysis, one can often replace the contraction
mapping argument by the inverse function theorem. Irwin [1970, 1970] has
shown, this is indeed the case for the stable and unstable manifold theorems.
However, it does not seem possible for the center manifold case. (Although
a Lipschitz version of the inverse function following Pugh and Shub [1970]
might be appropriate). We shall give an idea of the difficulties involved
below.

The deformation method is a powerful and general method that was de-
veloped in singularity theory that has been applied to prove sharp versions
of various normal form theorems, including the Morse lemma (Golubit-
sky and Marsden [1983]) and the Darboux theorem in mechanics (Moser
[1965]). The general idea is to join the nonlinar problem to a simpler (often
linear) one by a parameter, and then to flow out, using an ordinary differ-
ential equation, the solution of the simpler problem, to one for the desired
problem. We shall give an abstract context for the method below.

Let us now go into the various approaches in a bit more detail. We start
with equations of the form

ẋ = Ax+ f(x, y) =: φ1(x, y) (0.0.1)

ẏ = By + g(x, y) =: φ2(x, y) (0.0.2)

where x and y belong to real Banach spaces X and Y (for us, these will
generally be X = Rk and Y = Rl), A and B are linear operators on X and
Y respectively and f and g are nonlinear maps of a neighborhood of (0, 0)
in X × Y to X and Y , respectively. We assume that:

A1. The spectrum of A is on the imaginary axis and the spectrum of B
lies at a positive distance from the imaginary axis, as in Figure 0.0.1,
for example.

A2. The mappings f and g are of class Ck, k ≥ 2 or of class Ck
lip, k ≥

1. (Ck
lip denotes the functions of class Ck whose kth derivative is

Lipschitz.)

A3. f(0, 0) = 0, Df(0, 0) = 0, g(0, 0) = 0, and Dg(0, 0) = 0.

Remarks.
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spectrum of B

spectrum of A

Figure 0.0.1. The spectrum at a fixed point can have a stable, and unstable
and a center part.

1. If we begin with a differential equation ż = F (z) on a Banach space
Z and F (0) = 0, we divide DF (0) by spectral theory into parts with
spectrum on the imaginary axis and the rest, then this defines the
linear operators A and B and the functions f and g are the remainder
terms after subtracting the linear terms. This is how a general system
produces one of the form (5.1.1) and (5.1.2).

2. One can modify A1-A3 to allow the possibility of dependence on pa-
rameters. For example, one then asks that the spectrum of A lie near
the imaginary axis and that Df(0) and Dg(0) are small. However,
this is mainly useful for the most technically sharp theorems that are
needed when PDE’s are considered. For this book we are concentrat-
ing on the finite dimensional case and then A1-A3 suffice by using
the suspension trick.

�

Now comes an important point. The next three sections will put assump-
tions on f and g in addition to the above that involve their behavior as
(x, y) → ∞. In this global setting one proves that the center manifold is
unique. However, without these assumptions, which one does not want to
make in general, the center manifold (unlike the stable and unstable man-
ifolds) is not unique, nor need it be smooth, even if f and g are. We will
give some examples of this below.

One gets the local theorem stated from the global one in a very simple
way. One simply multiplies f and g by a function ϕ that vanishes outside
a neighborhood U of (0, 0), and is 1 on a smaller neighborhood V . The
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new system has a center manifold (depending on ϕ!) that is a valid center
manifold for the original system on V .

If the spectrum of B lies in the strict left hand plane, then the center
manifold is an attracting set (unless trajectories leave the neighborhood
where it is defined) and moreover, trajectories approach orbits on the center
manifold in the strong sense of an asymptotic phase: A trajectory z(t) is
said to converge ot a trajectory z0(t) with an asymptotic phase if there is
a number t∞ such that ‖z(t)− z0(t+ t∞)‖ → 0 as t→∞. These dynamic
properties, along with smoothness results for center manifolds, are proved
in the last two sections of the chapter.

Next we describe the general idea of each of the methods 1, 2 and 3.

1. The Invariance Method
Here we search for an invariant manifold of the form y = h(x), as in

Figure 0.0.2.

x

y

y=h(x)

Figure 0.0.2. The idea of the invariance method.

The condition that y = h(x) be invariant under the flow is obtained by
differentiating it in time: ẏ = Dh(x)ẋ, or

φ2(x, h(x)) = Dh(x) · φ1(x, h(x)). (0.0.3)
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This, together with the tangency requirement h(0) = 0, Dh(0) = 0 can be
regarded as the equation we have to solve.

An immediate difficulty with (0.0.3) is the loss of derivatives in h due to
the term Dh(x). Second, h occurs in a nonlinear way due to the composition
in both φ1 and φ2.

To understand the difficulties with solving (0.0.3), consider a simple ex-
ample. Let A = 0 (so the spectrum is at zero) and X = R, Y = R, so (5.1.1)
and (5.1.2) read

ẋ = f(x, y)
ẏ = By + g(x, y)

and (0.0.3) reads

Bh(x) + g(x, h(x)) = f(x, h(x))h′(x). (0.0.4)

As an ode for h, this equation is singular since the coefficient (and even its
derivative) of h′(x) vanishes at x = 0! This is an essential difficulty that
has to be overcome.

At this point, there are two techniques we shall consider to solve (0.0.4).
The first is to reformulate it as a fixed point problem and, on a suitable
space Ck

lip, apply the contraction mapping theorem. To formulate it as a
fixed point problem, one proceeds in two steps.

Step 1. The second method is the deformation method. We insert a pa-
rameter ε in (5.1.1) and (5.1.2):

ẋ = Ax+ εf(x, y) =: φ1(x, y), (0.0.5)

ẏ = By + εg(x, y) =: φ2(x, y). (0.0.6)

For ε = 0 there is a solution of (5.1.3), namely h0(x) = 0. We then
seek a solution hε(x) for the above system. The procedure is to dif-
ferentiate (5.1.3) in ε to obtain an equation for dhε/dε which can be
solved as an evolution equation in the “time” ε. We get what we want
at ε = 1.

Remarks to be added here ToDo

2. The Trajectory Selection Method
If one looks at Figure 0.0.2, it is reasonable to think of the center manifold

as the “slow manifold”. For example, trajectories near, but not on the
center manifold appear to spiral out, away from the origin as t → −∞ at



10

an exponential rate (depending on the distance of the spectrum of B to
the imaginary axis). Points on the center manifold are characterized by the
fact that they either linger on the center manifold, or if they do leave a
neighborhood of the origin, they do so at a slower rate.

Thus, in this method, one sets up function spaces with growth rates built
in as t → ±∞ and initial conditions are sought with “slow” growth rates.
Gluing these together produces the center manifold.

More on eq’n one has to solve?

3. The Normal Form Method
The idea here, borrowed from normal form theory (some easy cases of

which are given in Chapter 6), is to seek a certain change of variables of
the form

u = x+ χ(x, y) (0.0.7)

v = y + ψ(x, y) (0.0.8)

where χ and ψ vanish, along with their derivaties at (0, 0). Thus, this is
a near identity change of variables near the origin. The equations (5.1.1)
and (5.1.2) now become

u̇ = Au+ f̃(u, v) (0.0.9)

v̇ = Bu+ g̃(u, v) (0.0.10)

for new functions f̃ and g̃ that depend on χ and ψ. What we seek is to
choose χ and ψ so that

g̃(u, 0) = 0. (0.0.11)

This is an implicit equation for χ and ψ which, in principle, can be solved
by either the contraction mapping argument or the deformation method.
Once it is done, the invariant manifold is simply

v = 0

which implicitly defines the center manifold as y = h(x) through the change
of variables.

Examples

We now give some examples of center manifolds that show the delicacy of
the situation.

A. Both this example and the next will be systems with parameters and
exhibiting an interesting bifurcation. This first example shows the
non-uniqueness of the center manifold. We consider the system

ẋ = −x2 + α

ẏ = −y
α̇ = 0

(0.0.12)
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The phase protraits for α < 0, α = 0 and α > 0 are shown in
Figure 0.0.3.

x

y

x

y

x

y

Figure 0.0.3. Missing Caption

Center manifolds in (x, y, α)-space are obtained by gluing together
one of the curves tending to (0, 0) at α = 0 as t → ∞ from x > 0
with the negative x-axis and with their counterparts for α < 0 and
α > 0. One of these choices is highlighted in the figure.

As α = 0, notice that the curves from the right half plane are given
by

x =
1

t− t0
, y = y0e

t−t0

for any t0 and y0; i.e., y = y0e
1/x. Notice that this curve is tangent

to the x-axis to all orders. This is a general property of all center
manifolds, as was proved by Wan [198?]. �

Remark. Note that the center manifold is unique at α = 0 in the
half plane x < 0 and for α > 0 between the two fixed points created
in the bifurcation. Features like this in fact are true generally when
unstable manifolds are created by a bifurcation in an attracting center
manifold, as follows from uniqueness of the unstable manifold of the
bifurcated fixed point. These are part of the center manifold for the
suspended system. �

B. Next we give an example showing that the center manifold need not
be C∞. It will be, for any k ≥ 0, of class Ck on some neighborhood
of the origin, but as k → ∞, this neighborhood shrinks to a point.
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We consider
ẋ = −x3 − εx,
ẏ = −y + x2,

ε̇ = 0.

(0.0.13)

The phase portraits for ε < 0, ε = 0 and ε > 0 are shown in Fig-
ure 0.0.4.

x x x

yyy

Figure 0.0.4. Missing Caption

In this example we can see, as in Example A, that the center mani-
fold is not unique. One such choice is emphasized in the figure. (The
portion containing the unstable manifold of the origin for ε < 0 is
unique.) Let us now investigate the smoothness of this manifold.

First, we claim that at ε = 0, it is not analytic. Represent it by
y = h(x). If it were analytic, we could write

y = h(x) =
∞∑

n=2

anx
n. (0.0.14)

The invariance condition is obtained by differentiating: ẏ = h′(x)ẋ,
or −y + x2 = h′(x)(−x3), or

x2 −
∞∑

n=2

anx
n = −

∞∑
n=2

anx
n+2. (0.0.15)

Solving this recursively determines an and hence h. We get a2 = 1,
a3 = 0 and an = (n − 2)an−2 for n ≥ 4. Thus, the odd coefficients
vanish, while the even ones are a2m = 2m−1(m − 1)!. In particular,
the radius of convergence of this series is zero, so it proves our claim.

Second, we claim that for ε > 0, the center manifold loses its differ-
entiability of class Ck on a neighborhood of the origin that shrinks
to a point as k →∞.
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Consider the invariant manifold for ε > 0 in parametrized form as
y = hε(x). The invariance condition is

− y + x2 = h′ε(x)(−x3 − εx). (0.0.16)

If hε is of class C2m+1 in a neighborhood of x = 0, then

hε(x) =
2m∑
i=1

aix
i +O(x2m+1) (0.0.17)

and

h′ε(x) =
2m∑
i=1

aiix
i−1 +O(x2m). (0.0.18)

Substituting these in the preceding equation gives

− a1x− (a2 − 1)x2 −
2m∑
i=3

aix
i +O(x2m+1)

=

[(
2m∑
i=1

iaix
i−1

)
+O(x2m)

]
(−x3 − εx).

Thus, a1 = 0, a2 = 1/(1− iε) and (1− iε)ai = (i− 2)ai−2 and so

ai =
i− 2
1− iε

ai−2.

For 1 − 2mε = 0, or ε = 1/2m, a2m → ∞, so h can’t be C2m+1 on
a neighborhood of 0 if ε = 1/2m. Therefore, the neighborhood on
which h is Ck shrinks as k →∞. �

Liapunov Functions

Besides the Liapunov spectral theorem, there is another method of proving
stability that is a generalization of the energy method we have seen in the
basic examples.

Definition 0.0.1. Let X be a Cr vector field on Rn, r ≥ 1, and let m
be an equilibrium point for X, that is, X(m) = 0. A Liapunov function
for X at m is a continuous function L : U → R defined on a neighborhood
U of m, differentiable on U\{m}, and satisfying the following conditions:

(i) L(m) = 0 and L(m′) > 0 if m′ 6= m;

(ii) X[L] ≤ 0 on U\{m};
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(iii) there is a connected chart ϕ : V → E where m ∈ V ⊂ U , ϕ(m) = 0,
and an ε > 0 satisfying Bε(0) = {x ∈ E | ‖x‖ ≤ ε } ⊂ ϕ(V ), such
that for all 0 < ε′ ≤ ε,

inf{L(ϕ−1(x)) | ‖x‖ = ε′ } > 0.

The Liapunov function L is said to be strict , if (ii) is replaced by (ii)′

X[L] < 0 in U\{m}.

Conditions (i) and (iii) are called the potential well hypothesis. In
finite dimensions, (iii) follows automatically from compactness of the sphere
of radius ε′ and (i). By the Chain Rule for the time derivative of V along
integral curves, condition (ii) is equivalent to the statement: L is decreasing
along integral curves of X.

Theorem. Let X be a Cr vector field on Rn, r ≥ 1, and let m be an
equilibrium point for X, that is, X(m) = 0. If there exists a Liapunov
function for X at m, then m is stable.

Proof. Since the statement is local, we can assume m = 0. By the local
existence theory, there is a neighborhood U of 0 in E such that all solutions
starting in U exist for time t ∈ [−δ, δ], with δ depending only on X and U ,
but not on the solution. Now fix ε > 0 as in (iii) such that the open ball
Dε(0) is included in U . Let ρ(ε) > 0 be the minimum value of L on the
sphere of radius ε, and define the open set U ′ = {x ∈ Dε(0) | L(x) < ρ(ε) }.
By (i), U ′ 6= ∅, 0 ∈ U ′, and by (ii), no solution starting in U ′ can meet the
sphere of radius ε (since L is decreasing on integral curves of X). Thus all
solutions starting in U ′ never leave Dε(0) ⊂ U and therefore by uniformity
of time of existence, these solutions can be extended indefinitely in time.
This shows 0 is stable. �

Theorem. Let X be a Cr vector field on Rn, r ≥ 1, and let m be an equi-
librium point for X, that is, X(m) = 0. Suppose that L a strict Liapunov
function for X at m. Then m is asymptotically stable.

Proof. We can assume m = 0. By the preceding Theorem, 0 is stable, so
if tn is an increasing sequence, tn →∞, and x(t) is an integral curve of X
starting in U ′, it lies in a bounded set and so the sequence {x(tn)} ∈ Rn has
a convergent subsequence. Thus, there is a sequence tn → +∞ such that
x(tn)→ x0 ∈ Dε(0), some ε disk. We shall prove that x0 = 0. Since L(x(t))
is a strictly decreasing function of t by (ii)′, L(x(t)) > L(x0) for all t > 0. If
x0 6= 0, let c(t) be the solution of X starting at x0, so that L(c(t)) < L(x0),
again since t 7→ L(x(t)) is strictly decreasing. Thus, for any solution c̃(t)
starting close to x0, L(c̃(t)) < L(x0) by continuity of L. Now take c̃(0) =
x(tn) for n large to get the contradiction L(x(tn + t)) < L(x0). Therefore
x0 = 0 is the only limit point of {x(t) | t ≥ 0 } if x(0) ∈ U ′, that is, 0 is
asymptotically stable. �
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The same method can be used to detect the instability of equilibrium
solutions.

Theorem. Let X be a Cr vector field on Rn, r ≥ 1, and let m be an
equilibrium point for X, that is, X(m) = 0. Assume there is a continuous
function L : U → R defined in a neighborhood of U of m, which is differen-
tiable on U\{m}, and satisfies L(m) = 0, X[L] > 0 (respectively, ≤ a < 0)
on U\{m}. If there exists a sequence mk → m such that L(mk) > 0 (re-
spectively, < 0), then m is unstable.

Proof. We need to show that there is a neighborhood W of m such that
for any neighborhood V of m, V ⊂ U , there is a point mV whose integral
curve leaves W . By local compactness, we can assume that X[L] ≥ a > 0.
Since m is an equilibrium, there is a neighborhood W1 ⊂ U of m such
that each integral curve starting in W1 exists for time at least 1/a. Let
W = {m ∈ W1 | L(m) < 1/2 }. We can assume as usual that m = 0. Let
cn(t) denote the integral curve of X with initial condition mn ∈W . Then

L(cn(t))− L(mn) =
∫ t

0

X[L](cn(λ)) dλ ≥ at

so that
L(cn(1/a)) ≥ 1 + L(mn) > 1,

that is, cn(1/a) 6∈ W . Thus all integral curves starting at the points mn ∈
W leaveW after time at most 1/a. Sincemn → 0, the origin is unstable. �

LaSalle’s Invariance Principle

A key ingredient in proving more general global asymptotic stability results
is the LaSalle invariance principle. It allows one to prove attractivity of
more general invariant sets than equilibrium points.

Theorem 0.0.2. Consider the smooth dynamical system on an n-manifold
M given by ẋ = X(x) and let Ω be a compact set in M that is (positively)
invariant under the flow of X. Let V : Ω → R, V ≥ 0, be a C1 function
such that

V̇ (x) =
∂V

∂x
·X ≤ 0

in Ω. Let S be the largest invariant set in Ω where V̇ (x) = 0. Then every
solution with initial point in Ω tends asymptotically to S as t → ∞. In
particular, if S is an isolated equilibrium, it is asymptotically stable.

In the statement of the theorem, V (x) need not be positive definite, but
rather only semidefinite, and that if in particular S is an equilibrium point,
the theorem proves that the equilibrium is asymptotically stable. The set Ω
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in the LaSalle theorem also gives us an estimate of the region of attraction
of an equilibrium. This is one of the reasons that this is a more attractive
methodology than that of spectral stability tests, which could in principle
give a very small region of attraction.

Examples.

A. The vector field on the plane with components

X(x, y) = (−y − x5, x− 2y3)

has the origin as an isolated equilibrium. The eigenvalues of the lineariza-
tion of X at (0, 0) are ±i and so Liapunov’s Spectral Stability Criterion
does not give any information regarding the stability of the origin. If we
suspect that (0, 0) is asymptotically stable, we can try searching for a Li-
apunov function of the form L(x, y) = ax2 + by2, so we need to determine
the coefficients a, b, 6= 0 in such a way that X[L] < 0. We have

X[L] = 2ax(−y − x5) + 2by(x− 2y3) = 2xy(b− a)− 2ax6 − 4by4,

so that choosing a = b = 1, we get X[L] = −2(x6 + 2y4) which is strictly
negative if (x, y) 6= (0, 0). Thus the origin is asymptotically stable.

B. Consider the vector field in the plane with components

X(x, y) = (−y + x5, x+ 2y3)

with the origin as an isolated critical point and characteristic exponents ±i.
Again Liapunov’s Stability Criterion cannot be applied, so that we search
for a function L(x, y) = ax2 + by2, a, b 6= 0 in such a way that X[L] has a
definite sign. As above we get

X[L] = 2ax(−y + x5) + 2by(x+ 2y3) = 2xy(b− a) + 2ax6 + 4by4,

so that choosing a = b = 1, it follows that X[L] = 2(x6 + y4) > 0 if
(x, y) 6= (0, 0). Thus, the origin is unstable.

These two examples show that if the spectrum of X lies on the imaginary
axis, the stability nature of the equilibrium is determined by the nonlinear
terms.

C. Consider Newton’s equations in R3, q̈ = −(1/m)∇V (q) written as a
first order system q̈ = v, v̈ = −(1/m)∇V (q) and so define a vector field X
on R3 × R3. Let (q0,v0) be an equilibrium of this system, so that v0 = 0
and ∇V (q0) = 0. In previous lectures we have seen that the total energy

E(q,v) =
1
2
m‖v‖2 + V (q)
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is conserved, so we try to use E to construct a Liapunov function L. Since
L(q0,0) = 0, define

L(q,v) = E(q,v)− E(q0,0) =
1
2
m‖v‖2 + V (q− V (q0),

which satisfies X[L] = 0 by conservation of energy. If V (q) > V (q0) for
q 6= q0, then L is a Liapunov function. Thus we have proved

The Dirichlet-Lagrange Stability Theorem: An equilibrium point (q0,0)
of Newton’s equations for a particle of mass m, moving under the influence
of a potential V , which has a local absolute minimum at q0, is stable.
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Akad. Nauk. SSSR 21, 247–251.

Andronov, A. A. and L. Pontriagin [1937], Systémes grossiers, Dokl. Akad.
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tionären eines Differentialsystems, Ber. Verh. Sächs. Akad. Wiss.
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Stokes, C. R. Acad. Sci. Paris 275, 935–938.

Iooss, G. and D. Joseph [1980], Unknown *****.

Irwin, M. C. [1970], On the stable manifold theorem, Bull. London Math.
Soc. 2, 196–198.

Joseph, D. D. and D. H. Sattinger [1972], Bifurcating time periodic solu-
tions and their stability, Arch. Ration. Mech. Anal. 45, 79–109.



22

Judovich, V. I. [1960], Periodic motions of a viscous incompressible fluid,
Sov. Math. Dokl. 1, 168–172.

Judovich, V. I. [1965], Stability of stress flows of viscous incompressible
fluids, Dokl. Akad. Nauk. SSSR, (Russian) 16, 1037–1040. Soviet Phys.
Dokl. 16, 104, 293-295 (English).

Kato, T. [1966], Perturbation theory for linear operators. Springer-Verlag,
New York.

Kato, T. and H. Fujita [1961], On the nonstationary Navier-Stokes system,
Rendiconti Sem. Mat. 32, 243–260.

Keener, P. and H. B. Keller [1973], J Perturbed bifurcation theory, Arch.
Rat. Mech. Anal. 50, 159–175.

Keller, J. B. and S. Antman [1969], Bifurcation Theory and Nonlinear
Eigenvalue Problems.
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Milnor, J. [1963], Morse Theory. Princeton University Press.

Moon, F. C. and P. J. Holmes [1980], Addendum: A magnetoelastic strange
attractor, J. Sound Vib. 69(2), 339.

Moser, J. [1965], On the volume elements on a manifold, Trans. Amer.
Math. Soc. 120, 286–294.

Nirenberg, L. [1974], Topics in nonlinear analysis, Courant Institute Lecture
Notes.
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