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Preface

This book was born out of recent exciting activity that is bringing the in-
sights of geometric mechanics and dynamical systems theory to bear on the
design of trajectories for space missions already launched or being planned
by NASA and ESA.

The pace of space-based achievement is set by capability and afford-
ability. The desire to expand space mission capabilities, and at low cost,
has required new approaches to the old problem of space travel. Many
recent space missions have complex and highly non-Keplerian orbits that
are related to the subtle dynamics of the three- and N -body gravitational
problems.

The Future of Space Exploration. For instance, recent initiatives for
space exploration involve developing a robust and flexible capability to visit
several potential destinations. A Lunar Gateway Station near L1, a point of
balance between the Earth and Moon, has been proposed as a 21st century
hub for science and a jumping off point for deep space missions, eventually
to land humans on Mars. Furthermore, scientists want to obtain samples
from the Moon, asteroids, and Mars, and return them to Earth for analysis
to better understand the origin, history, and future of our solar system.

Looking beyond our celestial neighborhood, space agencies envision plac-
ing new kinds of telescopes into deep space, such as NASA’s Terrestrial
Planet Finder and ESA’s Darwin project, whose goal would be to find
Earth-like planets around other stars, planets which may harbor life.

One need not look beyond our own solar system to find tantalizing hints
of life. Less than a billion kilometers away orbiting Jupiter are some of the
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most interesting sites of future exploration. The four planet-sized moons
of Jupiter—Io, Europa, Ganymede, and Callisto—are fascinating worlds in
their own right. These moons, first seen by Galileo Galilei when he invented
the telescope four centuries ago, have recently revealed a diversity and
complexity that was not expected.

One of these icy moons, Europa, has provided the most evidence that it
may have an ocean, perhaps as deep as 100 kilometers. In fact, the ocean
may come close enough to the surface at points that a future spacecraft
could burrow through the ice layer, deploying a submarine robotic explorer
to show us the first pictures of a extraterrestrial ocean. Before such a mis-
sion could take place, an exploratory mission to orbit the Galilean moons
is necessary for identifying possible landing sites.

The Challenge of Space Mission Design. Space missions which reach
these destinations are complex and challenging to design, requiring new and
unusual kinds of orbits to meet their goals, orbits that cannot be found by
classical approaches to the problem.

Classical approaches to spacecraft trajectory design have been quite suc-
cessful: for instance, Hohmann transfers for the Apollo Moon landings, and
swingbys of the outer planets for Voyager. But these missions were costly
in terms of fuel, e.g., large burns for orbit entry were required for Apollo.

The minimization of fuel (i.e., energy) requirements for a spacecraft’s
trajectory is important for the feasibility of its mission. An unreasonably
high fuel requirement can render a mission infeasible.

The Promise of Low Energy Trajectories. Fortunately, a new class
of low energy trajectories have recently been discovered and employed which
make possible missions which classical approaches could not. Such trajec-
tories are achieved by making use of gravity as much as possible, using
the natural dynamics arising from the presence of a third body (or more
bodies). The term “low-energy” is used to refer to the low fuel and there-
fore low energy required to control the trajectory from a given starting
condition to a targeted final condition.

Low energy trajectory technology allows space agencies to envision mis-
sions in the near future involving long duration observations and/or con-
stellations of spacecraft using little fuel. A proper understanding of low
energy trajectory technology begins with a study of the restricted three-
body problem, a classic problem of astrodynamics.

The Point of View Taken in This Book. This monograph focuses
on research conducted by the authors and related topics by co-workers.
The general point of view is to consider global solutions to the restricted
three-body problem from a geometric point of view. We seek dynamical
channels in the phase space which wind around the planets and moons
and naturally connect them. These low energy passageways could slash the
amount of fuel spacecraft need to explore and develop our solar system.
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In order to effectively exploit these passageways, we will discuss the global
transport mechanism in the restricted three-body problem involving the
stable and unstable invariant manifolds associated to two libration points,
equilibrium locations in a rotating two-body gravity field situated along a
line joining the two attracting bodies.

Our hope is the book can serve as a valuable resource for graduate stu-
dents and advanced undergraduates in aerospace engineering, as well as
a manual for practitioners who work on libration point and deep space
missions in industry and at government laboratories. We include a wealth
of background material, but also bring the reader up to a portion of the
research frontier. Moreover, students and professionals in dynamical as-
tronomy and applied dynamics will also find material of interest.

We expect that this book will prepare the reader for other in-depth works
related to libration point orbit mission design, such as the four volume set
Dynamics and Mission Design Near Libration Points by Gómez, Jorba,
Llibre, Mart́ınez, Masdemont, and Simó [2001].

Furthermore, the book goes beyond the traditional scope of libration
point mission design, developing tools for the design of trajectories which
take full advantage of natural three or more body dynamics, thereby saving
precious fuel and gaining flexibility in mission planning. This is key for the
development of some innovative mission trajectories, such as low energy
lunar missions and low energy tours of outer planet moon systems, such as
a mission to tour and explore in detail the icy moons of Jupiter.

Book Websites. We urge the reader to look at the book’s websites:
http://www.cds.caltech.edu/~marsden/books/Mission_Design.html,
http://www.cds.caltech.edu/~koon/book/ or http://www.shaneross.
com/books/space, where convenient and relevant links to literature, soft-
ware, and updates will be posted.

Acknowledgments. We thank Gerard Gómez and Josep Masdemont
for many helpful discussions and for sharing their wonderful software tools
with us which made many of the illustrations possible. We thank Kathleen
Howell, Brian Barden, and Roby Wilson for the inspirational work on the
Genesis Discovery Mission. Much of their work is reflected in this book.

The work which has gone into this book was done over the course of a
decade and in that time we have received input from many people. The
following is a partial list of colleagues we wish to thank for helpful dis-
cussions and comments: Kyle Alfriend, Al Barr, Edward Belbruno, Julia
Bell, Erik Bollt, Joel Burdick, Alan Chamberlin, Kwing Lam Chan, Siu
Yuen Cheng, Gerald Condon, Fred Culick, Michael Dellnitz, Donald Dich-
mann, Eusebius Doedel, David Dunham, Robert Farquhar, Mathieu Des-
brun, David Farrelly, Dave Folta, Harmon Fowler, Frederic Gabern, Peter
Goldreich, Martin Hechler, Bambi Hu, Andrew Ingersoll, Charles Jaffé,
Àngel Jorba, Oliver Junge, Jean Kechichian, Herb Keller, Erica Klarreich,
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1
Introduction

In the first chapter we present an overview of the main themes of the book,
astrodynamics, Hamiltonian dynamical systems and the methods used to
compute sets of trajectories in dynamical systems. The chapter is written
more in a review style than are the subsequent ones and, hence, serves the
main purpose of introducing topics covered more thoroughly later in the
book. At the end of the chapter, we outline the topics to be covered in the
chapters that follow.

1.1 Astrodynamics and Dynamical
Astronomy

Astrodynamics and dynamical astronomy apply the principles of me-
chanics, including the law of universal gravitation to the determination
of the motion of objects in space. Orbits of astronomical bodies, such as
planets, asteroids, and comets are calculated, as are spacecraft trajectories,
from launch through atmospheric re-entry, including all the needed orbital
maneuvers.

While there are no sharp boundaries, astrodynamics has come to denote
primarily the design and control of spacecraft trajectories, while dynamical
astronomy is concerned with the motion of other bodies in the solar system
(origin of the moon, Kuiper belt objects, etc). From a dynamical systems
perspective of interest to us, it is quite useful to mix these subjects. There
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is one obvious commonality: the model used for studying either a spacecraft
or, say, the motion of an asteroid is the restricted N + 1 body problem,
where N celestial bodies move under the influence of one another and the
spacecraft or asteroid moves in the field of these bodies, but has a mass
too small to influence their motion.

The Ephemeris and Its Approximations. In the case of motion
within the solar system, the motion of the N bodies (planets, moons, etc)
can be measured and predicted to great accuracy, producing an ephemeris.
An ephemeris is simply a listing of positions and velocities of celestial
bodies as a function of time with respect to some coordinate system. An
ephemeris can be considered as the solution of the N -body gravitational
problem, and forms the gravitational field which determines a spacecraft
or asteroid’s motion.

While the final trajectory design phase of a space mission or the long
term trajectory of an asteroid will involve a solution considering the most
accurate ephemeris, insight can be achieved by considering simpler, ap-
proximate ephemerides (the plural of ephemeris). An example of such an
ephemeris is a simplified solution of the N -body problem, where N is small,
for example, the motion of the Earth and Moon under their mutual grav-
itation, a two-body solution. The simplest two-body solution of massive
bodies which gives rise to interesting motion for a spacecraft is the circular
motion of two bodies around their common center of mass. The problem
of the spacecraft’s motion is then known as the circular restricted three-
body problem, or the CR3BP. One goal of this book is to instill the reader
with intuition regarding this problem, as well as provide analytical and
computational tools for its solution.

Introduction to the Trajectory Design Problem. The set of possi-
ble spacecraft trajectories in the three-body problem can be used as build-
ing blocks for the design of spacecraft trajectories in the presence of an
arbitrary number of bodies. Consider the situation shown in Figure 1.1.1,
where we have a spacecraft, approximated as a particle, P , in the gravita-
tional field of N massive bodies. We assume P has a small enough mass
that it does not influence the motion of the N massive bodies, which move
in prescribed orbits under their mutual gravitational attraction. In the so-
lar system, one can think of a moon, M2, in orbit around a planet, M1,
which is in orbit around the Sun, M0.

The goal of trajectory design is to find a transfer trajectory, such as the
one shown in Figure 1.1.2(a), which takes the spacecraft from a prescribed
initial orbit to a prescribed final orbit using controls. The initial orbit may
be an orbit around the Earth and the final orbit an orbit around one of the
moons of Jupiter, for instance. To effect this transfer, we could use high
thrust or low thrust propulsion systems. In the low thrust case, we have a
small continuous control which can operate at all times. In the high thrust
case, we assume that the control is discretized into several instantaneous
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P

Figure 1.1.1. A spacecraft P in the gravitational field of N massive bodies which

move in prescribed orbits.

P P

(a) (b)

Figure 1.1.2. (a) The goal is to find a transfer trajectory which takes the spacecraft

from an initial orbit to a final orbit using controls. (b) Assuming impulsive controls, i.e.,

several instantaneous changes in the spacecraft’s velocity, with norm ∆vi at time ti, we

can effect such a transfer.

changes in the spacecraft’s velocity. These instantaneous changes have a
magnitude ∆vi at time ti. Under a high thrust assumption, the ∆v’s are
proportional to the fuel consumption:

∆v = −ve
∆m

m

where m is the mass of the rocket and ∆m is the mass of propellant ejected
at an exhaust velocity ve (Roy [1988]). As spacecraft are limited in the
amount of fuel that they can carry on-board for their journey, we often
want to consider an optimal control problem: minimize the fuel consumed
(equivalently, energy). In other words, we want to find the maneuver times
ti and sizes ∆vi to minimize ∑

i

∆vi,
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the total change in velocity, or “∆V ” as it is called.
It is typical in space missions to use the magnitude of the required ∆V

as a measure of the spacecraft fuel performance. The propellant mass is a
much less stable quantity as a measure of spacecraft performance, since it
is dependent on the spacecraft mass and various other parameters which
change frequently as the spacecraft is being built. The ∆V comes from
astrodynamics considerations only and is independent of the mass and
type of spacecraft. Thus, for a given mission objective, one generally wants
to minimize ∆V .

1.2 The Patched Three-Body
Approximation

To get a spacecraft from, say, Earth to other parts of the solar system,
it is necessary to find solutions for the motion of the spacecraft under
the influence of N bodies, a notoriously difficult problem. Furthermore,
one needs to find solutions with a desired behavior, e.g., flying by the
giant outer planets as Voyagers 1 and 2 did, while satisfying engineering
constraints, e.g., low fuel consumption, short time of flight, low radiation
dose, etc.

The Patched Conic Approximation and the Voyager Trajectory.
For many purposes it is satisfactory to simplify the general trajectory prob-
lem by considering the gravitational force between the spacecraft and only
one other body at a time. Even for the case of interplanetary transfer,
this simplification will suffice for many calculations. That is, one may con-
sider escape from or capture by a planet to be an interaction between the
spacecraft and that particular planet alone, whereas the transfer process
is considered an interaction between the spacecraft and the Sun alone.
NASA’s spectacular multiple flyby missions such as Voyager and Galileo
are based on this Keplerian decomposition of the solar system, known as
the patched conic approximation (or patched two-body approximation), dis-
cussed in Bate, Mueller, and White [1971].

The strategy of the designers of the Voyager missions was to initially
approximate the fullN -body solution of the spacecraft’s motion as a linkage
of several two-body solutions, the well known conic solutions discovered
by Kepler. The spacecraft’s trajectory as it coasted between two planets
was considered as a heliocentric hyperbolic trajectory. The heliocentric
trajectory was cleverly chosen to come close to the destination planet,
in order to fly by it. When the spacecraft came within the “sphere of
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influence”1 of a planet, it was considered as a hyperbolic conic section
trajectory centered on the planet. This patched conic solution could be
used as an initial guess for a numerical procedure which produced a fully
integrated N -body solution.

High vs. Low Relative Velocities. For missions such as Voyager and
Galileo, the speed of the spacecraft relative to the bodies is high and there-
fore the time during which the acceleration on the spacecraft due to two
bodies is comparable is very short, and results in a minor perturbation
away from a conic solution. But when one needs to deal with the unpro-
pelled, or ballistic, capture regime of motion,2 where the relative speed is
low, a three-body decomposition of the solar system is necessary.

Some Missions Cannot Be Approximated by the Patched Conic
Approach. For Voyager and Galileo, the patched conic approach worked
very well. But as space missions have become more demanding, other ap-
proaches have become necessary. For example, the Genesis, L1 Gateway,
and multi-moon orbiter trajectories discussed below resemble solutions of
the restricted three- and four-body problems much more than two-body
problems. In fact, methods based on a patched conic approximation would
have a very difficult time finding these complicated trajectories, as they
are fundamentally non-Keplerian, restricted N -body solutions.

Taking Better Advantage of N-Body Dynamics. It is possible to
satisfy mission constraints using spacecraft solutions which do not take ad-
vantage of the N -body dynamics of a system. But this may require using
more fuel than is necessary.3 Worse yet, because of the fuel restrictions
on interplanetary spacecraft, some missions may not be possible if only a
patched conic approach is used. An interesting example in this category,
which also served as motivation for much of our group’s work, is the “res-
cue” of a malfunctioned Japanese space mission to the moon by Belbruno
and Miller of JPL in June, 1990. The mission originally had two spacecraft,
MUSES-A and MUSES-B; B was to go into orbit around the moon, with A
remaining in earth orbit as a communications relay. But B failed and A did
not have sufficient fuel to make the journey. However, by utilizing a tra-
jectory concept originally discovered by Belbruno in 1986, which is more
energy-efficient than the one planned for B, MUSES-A (renamed Hiten)
left Earth orbit in April, 1991 and reached the moon that October. As a

1The sphere of influence of a planet is the radius at which the acceleration on a

spacecraft due to the planet and the Sun are approximatedly equal (Roy [1988]).
2Ballistic capture means that no propulsion is necessary (i.e., no ∆V ) to achieve a

capture orbit at the destination body. In general, this “capture” is temporary.
3For example, Dunn [1962] proposed to use a satellite for lunar far side communica-

tions by placing it in a position where it would requre approximately 1500 m/s per year
for stationkeeping. A few years later, Farquhar [1966] proposed a trajectory for the same

mission which used only 100 m/s per year by taking advantage of three-body dynamics.
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result, Japan became the third nation to send a spacecraft to the moon.
After a series of scientific experiments, Hiten was purposely crashed into
the Moon in April, 1993. See Belbruno [2004] for additional details of this
fascinating story and a historical perspective on ballistic capture transfers.

SMART-1 is a recent ESA (European Space Agency) mission from the
Earth to the Moon (2003–2006). It also uses some of these same ideas; see
http://sci.esa.int/science-e/www/area/index.cfm?fareaid=10.

A Hierarchy of Models. We want to make use of the natural dynamics
in the solar system as much as possible; that is, we wish to take advan-
tage of the phase space geometry, integrals of motion, and lanes of fast
unpropelled travel. We envision generating a trajectory via a hierarchy of
models. One starts with simple models which capture essential features of
natural dynamics. One then uses simple model solutions as initial guess
solutions in more realistic models. The approach described above does this
conceptually, using the patched conic approximation to generate the first
guess solution. But there are regimes of motion where conics are simply not
a good approximation to the motion of the spacecraft. There is much to be
gained by starting with not two-body solutions, but three-body solutions
to the spacecraft’s motion.

The Patched Three-Body Approximation. Motivated by the Bel-
bruno and Miller work, we consider a restricted four-body problem wherein
a spacecraft moves under the influence of three massive bodies whose mo-
tion is prescribed, as shown schematically in Figure 1.1.1. For Belbruno
and Miller, these four bodies were the Sun, the Earth, the Moon and the
spacecraft.

To begin with, we restrict the motion of all the bodies to a common
plane, so the phase space is only four-dimensional. As in the patched conic
approach, the patched three-body approach uses solutions obtained from
two three-body problems as an initial guess for a numerical procedure called
differential correction which converges to a full four-body solution.

As an example of such a problem where there is no control, consider
the four-body problem where two adjacent giant planets compete for con-
trol of the same comet (e.g., Sun-Jupiter-comet and Sun-Saturn-comet).
When close to one of the planets, the comet’s motion is dominated by the
corresponding planet’s perturbation. Between the two planets, the comet’s
motion is mostly heliocentric and Keplerian, but is precariously poised be-
tween two competing three-body dynamics, leading to complicated transfer
dynamics between the two adjacent planets.

When we consider a spacecraft with control instead of a comet, we can
intelligently exploit the transfer dynamics to construct low energy trajec-
tories with prescribed behaviors, such as transfers between adjacent moons
in the Jovian and Saturnian systems (Lo and Ross [1998]). For example,
by approximating a spacecraft’s motion in the N + 1 body gravitational
field of Jupiter and N of its planet-sized moons into several segments

http://sci.esa.int/science-e/www/area/index.cfm?fareaid=10
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of purely three body motion—involving Jupiter, the ith moon, and the
spacecraft—we can design a trajectory for the spacecraft which follows a
prescribed itinerary in visiting the N moons. In an earlier study of a trans-
fer from Ganymede to Europa, we found our fuel consumption for impulsive
burns, as measured by the total norm of velocity displacements, ∆V , to
be less than half the Hohmann transfer value (Koon, Lo, Marsden, and
Ross [1999]). We found this to be the case for the following example multi-
moon orbiter tour shown schematically in Figure 1.2.1: starting beyond

Europa’s
  Orbit

 Capture
at EuropaJupiter

Ganymede’s
    Orbit

Spacecraft
Trajectory

Figure 1.2.1. Leap-frogging mission concept: a multi-moon orbiter tour of Jupiter’s

moons Ganymede and Europa (schematic).

Ganymede’s orbit, the spacecraft is ballistically captured by Ganymede,
orbits it once, escapes in the direction of Europa, and ends in a ballistic
capture at Europa.

One advantage of this multi-moon orbiter approach as compared with the
Voyager-type flybys is the “leap-frogging” strategy. In this new approach
to mission design, the spacecraft can orbit a moon for a desired number
of circuits, escape the moon, and then perform a transfer ∆V to become
ballistically captured by a nearby moon for some number of orbits about
that moon, etc. Instead of brief flybys lasting only seconds, a scientific
spacecraft can orbit several different moons for any desired duration. Fur-
thermore, the total ∆V necessary is much less than that necessary using
purely two-body motion segments. One can also systematically construct
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low energy transfers (i) from the Earth to the Moon using the Sun’s grav-
itational field, and (ii) from lunar libration point orbits to Earth libration
point orbits.

Three-Body Dynamics. To patch three-body solutions (the spacecraft’s
motion in the presence of two bodies), one needs a good handle on what
those solutions are. Studying the CR3BP solutions in detail is an interest-
ing topic in its own right. This is a topic that goes back to the basic work of
Poincaré in the late 1800s and provided the context in which he developed
modern dynamical systems theory and the notion of chaos.

In the CR3BP, we thus have two primaries that move in circles; the
smaller third body moves in the gravitational field of the primaries (without
affecting them). We typically view the motion in a rotating frame so that
the primaries appear stationary. It is important to consider both the planar
and the spatial problems, but we shall focus on the planar problem for the
moment.

One may derive the equations of motion using a little elementary me-
chanics as follows. Let the masses of the two primaries be denoted m1 and
m2 and set µ = m2/(m1 +m2). We can normalize the distance between the
primaries to be unity and then in the rotating frame, normalized to rotate
with unit angular velocity, the two bodies may be located on the x-axis
at the points (−µ, 0) and (1− µ, 0). Let the position of the third body be
denoted (x, y) in the rotating frame. The kinetic energy of this third body
(whose mass we take to be unity) with respect to an inertial frame but
written in a frame rotating with unit angular velocity is the usual 1

2mv
2

expression:

K(x, y, ẋ, ẏ) =
1

2

[
(ẋ− y)2 + (ẏ + x)2

]
Let r1 be the distance from the third body to the first primary; that is,
r1 =

√
(x+ µ)2 + y2 and let r2 be the distance to the second primary, that

is, r2 =
√

(x− 1 + µ)2 + y2). Then the gravitational potential energy of
the third body is, again in normalized units,

U(x, y) = −1− µ
r1
− µ

r2
.

The Lagrangian of the third body is its kinetic minus potential energies,
namely

L(x, y, ẋ, ẏ) = K(x, y, ẋ, ẏ)− U(x, y).

Now one gets the equations of motion simply by writing down the corre-
sponding Euler–Lagrange equations:

ẍ− 2ẏ = −∂Ū
∂x

, ÿ + 2ẋ = −∂Ū
∂y

(1.2.1)

where the effective potential is

Ū = U − x2 + y2

2
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Being Euler–Lagrange equations, there is a conserved energy that one com-
putes via the Legendre transformation to be

E =
1

2

(
ẋ2 + ẏ2

)
+ Ū(x, y).

Equilibria. These occur when the third body moves in a circular orbit
with the same frequency as the primaries, so that it is stationary in the
rotating frame. We find these points by finding the equilibrium points, in
the standard sense of ODE’s, of the equations (1.2.1). It is clear that this
task is equivalent to finding the critical points of the effective potential, an
analysis that is found in every book on celestial mechanics. The result is
that there are five such points. There are three collinear points on the x-
axis that were discovered by Euler around 1750 and are denoted L1, L2, L3

and there are two equilateral points discovered by Lagrange around 1760
and are denoted L4, L5.4 They are indicated in Figure 1.2.2.

Equations (1.2.1) may be interpreted as those of a particle moving in an
effective potential plus a magnetic field. The graph of the effective potential
is shown in Figure 1.2.3. This figure also shows the region one gets by
imposing conservation of energy and the simple inequality that the kinetic
energy is positive. Thus, at a given energy level E, the third body can
only move in the region given by the inequality E − Ū ≥ 0; this is called
the Hill’s region and is obtained by intersecting the graph of the effective
potential with a horizontal plane. An example is shown in the right hand
side of Figure 1.2.3 for the Sun-Jupiter-third body system. In this figure,
one can see three realms, namely the Sun realm, the Jupiter realm and the
exterior realm that are connected by the neck regions, the left hand neck
containing L1 and the right hand neck containing L2. For other values of the
energy, one or more of these realms may be prohibited due to conservation
of energy; that is, the necks may close off.

Of special interest are the two points L1 and L2 closest to the secondary
body, which a linearized analysis shows are center-saddle points. The fa-
mous Lyapunov theorem says that there is a family of periodic orbits sur-
rounding each of these points; one can think of this as meaning that one can
“go into orbit about these points”. These planar periodic orbits are called
Lyapunov orbits, while their counterparts in the 3D problem are called halo
and Lissajous orbits (which, by the way involves an interesting bifurcation
analysis).

Tubes. In the 3 body problem, a key role is played by the invariant mani-
folds of these periodic orbits, which we call the Conley–McGehee tubes. Also
key is a network of homoclinic and heteroclinic orbits connecting these pe-
riodic orbits, also discovered in a preliminary way in work of Conley and

4Euler [1767] discovered L1, L2, and L3 just a few years before Lagrange [1772]
discovered L4 and L5, but it is common in the literature to refer to L1, L2, L3 as the

“Lagrangian” or “Lagrange points” as well, despite being historically inaccurate.
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Figure 1.2.2. Equilibrium points for the three body problem.

McGehee and was extended and thoroughly investigated in Koon, Lo, Mars-
den, and Ross [2000]. Some of the reasons that these tubes are important
can be seen in the context of specific space missions described below.

In fact, the invariant manifold structures of L1 and L2 provide the frame-
work for understanding and categorizing the motions of spacecraft as well
as, for example, comets that undergo resonance hopping. Moreover, the
stable and unstable invariant manifold tubes associated to periodic orbits
around L1 and L2 are the phase space conduits transporting material be-
tween different realms in a single three body system as well as between
primary bodies for separate three-body systems. These tubes can be used
to construct new spacecraft trajectories as we will indicate below. It is
remarkable that the connecting orbits as well as the associated Conley–
McGehee tubes are critical for understanding transport in the solar system
as well as in molecular systems. It is quite interesting that some of the same
techniques used in the celestial context can also be used in the molecular



1.2 The Patched Three-Body Approximation 11

S

Effective Potential

J

Level set shows the Hill region

Figure 1.2.3. The graph of the effective potential in the 3-body problem. Its critical

points are the equilibria.

context, and conversely, techniques from chemistry can be used in celes-
tial problems, as was done by Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer
[2002].

Figure 1.2.4 shows some tubes (projected from phase space to configura-
tion space) associated with periodic orbits about L1, L2 for the Earth-Moon
system. As this figure indicates, it is the tubes that control the capture and
escape properties as well as transit and non-transit orbits.

 

Earth

Moon

orbit

P
Moon

  Ballistic
 Capture Into
Elliptical Orbit

Figure 1.2.4. Tube leading to ballistic capture around the Moon (seen in rotating

frame).
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Supplement: Some Specific Missions

For the complex space missions planned for the near future, greater de-
mands are placed on the trajectory design. In many instances, standard
trajectories and classical methods such as the patched two-body approxi-
mation are inadequate to support the new mission concepts. Without ap-
propriate and economical trajectories, these missions cannot be achieved.
For nearly half a century, space mission planners have depended on trajec-
tory concepts and tools developed in the 1950s and 1960s, based largely
on a two-body decomposition of the solar system, the patched conic ap-
proach. While that approach remains very valuable for some missions, new
trajectory paradigms must be developed to meet today’s challenges.

A detailed understanding of the three-body problem, and in particular
the dynamics associated with libration points, is absolutely necessary to
continue the exploration and development of space.

Figure 1.2.5 shows in metro map format connections between hubs in
Earth’s neighborhood and beyond. NASA desires to develop a robust and
flexible capability to visit several potential destinations. As shown in the
figure, NASA has recognized that libration points L1 and L2 in the Sun-
Earth and Earth-Moon system are important hubs and/or destinations.
The fortuitous arrangement of low energy passageways in near-Earth space
implies that lunar L1 and L2 orbits are connected to orbits around Earth’s
L1 or L2 via low energy pathways.5 Therefore, a Lunar Gateway Station at
the lunar L1 would be a natural transportation hub to get humanity beyond
low-Earth orbit, a stepping stone to the moon, Earth’s neighborhood, Mars,
the asteroids, and beyond. We will discuss the Lunar L1 Gateway Station
further below.

Because of its unobstructed view of the sun, the Sun-Earth L1 is a good
place to put instruments for doing solar science. NASA’s Genesis Discov-
ery Mission has been there, designed completely using invariant manifolds
and other tools from dynamical systems theory (Howell, Barden, and Lo
[1997]). Other libration point missions include the Solar and Heliospheric
Observatory (SOHO),6 WIND, Advanced Composition Explorer (ACE),
WMAP, and ISEE-3/ICE (discussed in Chapter 6).

Genesis Discovery Mission. Launched in August 2001, the Genesis
Discovery Mission spacecraft swept up specks of the sun—individual atoms

5We will sometimes refer to the Sun-Earth L1 and L2 as the Earth’s L1 and L2, since

they are much closer to the Earth than the Sun. Similarly, we will occasionally refer to

the Earth-Moon L1 and L2 as the lunar or the Moon’s L1 and L2.
6SOHO is a spacecraft mission designed to study the internal structure of the Sun, its

extensive outer atmosphere and the origin of the solar wind, the stream of highly ionized
gas that blows continuously outward through the solar system. It is a joint project of
the European Space Agency (ESA) and NASA. See http://soho.estec.esa.nl for more

information.

http://soho.estec.esa.nl
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Figure 1.2.5. A metro map representation showing hubs connected by low energy pas-

sageways in the near-Earth neighborhood and beyond (source: Gary L. Martin, NASA

Space Architect).

of the solar wind—on five collector arrays the size of bicycle tires and in
an ion concentrator. The goal was to collect solar wind samples and return
them safely to the Earth for study into the origins of the solar system.
Genesis returned its solar wind cargo to Earth via a sample-return cap-
sule which returned to Earth in September 2004 (see Lo, Williams, Boll-
man, Han, Hahn, Bell, Hirst, Corwin, Hong, Howell, Barden, and Wilson
[2001]).7 The sample was the first extraterrestrial material brought back
to Earth from deep space since the last of the Apollo landings in 1972, and
the first to be collected from beyond the moon’s orbit.

A reason Genesis was feasible as a mission is that it was designed using
low energy passageways. Figure 1.2.6 shows a three-dimensional view of
the Genesis trajectory (kindly supplied by Roby Wilson). The spacecraft
was launched to a halo orbit in the vicinity of the Sun-Earth L1 and uses a
“heteroclinic-like return” in the three-body dynamics to return to Earth.8

As noted above, L1 is the unstable equilibrium point between the Sun
and the Earth at roughly 1.5 million km from the Earth in the direction
of the Sun. Genesis took a low energy path to its halo orbit, stayed there
collecting samples for about 2 years, and returned home on another low

7See http://genesismission.jpl.nasa.gov/ for further information.
8The orbit is called a “halo orbit” because, as seen from Earth, the flight path

follows a halo around the sun. Such orbits were originally named for lunar halo orbits
by Farquhar [1968]. Note, setting a spacecraft exactly to the L1 point is not a good idea,

as the spacecraft’s radio signals would be lost in the Suns glare.

http://genesismission.jpl.nasa.gov/
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to the three projections shown in Figure 1.2.7.

energy path.
Figure 1.2.7 shows three orthographic projections of the Genesis trajec-

tory. These figures, plotted in a rotating frame, show the key parts of the
trajectory: the transfer to the halo, the halo orbit itself, and the return to
Earth. The rotating frame is defined by fixing the x-axis along the Sun-
Earth line, the z-axis in the direction normal to the ecliptic, and with the
y-axis completing a right-handed coordinate system. The y-amplitude of
the Genesis orbit, which extends from the x-axis to the maximum y-value
of the orbit, is about 780,000 km (see Figures 1.2.6 and 1.2.7). Note that
this is bigger than the radius of the orbit of the Moon, which is about
380,000 km.

As Figures 1.2.6 and 1.2.7 show, the trajectory travels between neigh-
borhoods of L1 and L2; L2 is roughly 1.5 million km on the opposite side
of the Earth from the Sun. In dynamical systems theory, this is closely
related to the existence of a heteroclinic connection between the L1 and L2

regions.
The deeper dynamical significance of the heteroclinic connection for the

planar three-body problem is that it allows a classification and a con-
struction of orbits using symbolic dynamics, as was shown in Koon, Lo,
Marsden, and Ross [2000], and similar phenomena are seen when the third
degree of freedom is included, as discussed in Gómez, Koon, Lo, Marsden,
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Figure 1.2.7. The xy, xz, and yz projections of the three-dimensional Genesis trajec-

tory shown in the preceding figure.

Masdemont, and Ross [2004].
One of the attractive and interesting features of the Genesis trajectory

design is that the three year mission, from launch all the way back to Earth
return, requires no deterministic maneuver whatsoever and automatically
injects into the halo orbit

It is difficult to use traditional classical algorithms9 to find a near-optimal
solution like that of Genesis, so the design of such a low energy trajectory
is facilitated by using dynamical systems methods. This is achieved by
using the stable and unstable manifolds as guides in determining the end-
to-end trajectory. That Genesis performs its huge exotic trajectory using a
deterministic ∆V of zero (i.e., no fuel) has created a great deal of interest
in both the astronautical and mathematical communities.

Lunar L1 Gateway Station. The work on Genesis has inspired deeper
exploration of the dynamics in Earth’s neighborhood (see Lo and Ross
[2001]). NASA desires to develop a robust and flexible capability to visit

9See, for example, Farquhar and Dunham [1981], Farquhar, Muhonen, Newman, and

Heuberger [1980], and Farquhar, Muhonen, and Richardson [1977].
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several potential destinations, as suggested by the metro map, Figure 1.2.5.
A Lunar Gateway Station in the vicinity of the lunar L1 libration point
(between the Earth and the Moon) was proposed as a way station for
transfers into the solar system and into the Earth-Sun halo orbits. This is
enabled by an historical accident: the energy levels of the Sun-Earth L1

and L2 points differ from those of the Earth-Moon system by only 50 m/s
(as measured by maneuver velocity). The significance of this coincidence to
the development of space cannot be overstated. For example, this implies
that the lunar L1 halo orbits are connected to halo orbits around Earth’s
L1 and L2 via low energy pathways, as illustrated in Figure 1.2.8.

(a) (b)

Figure 1.2.8. (a) The fortuitous arrangement of low energy passageways in near-Earth

space implies that lunar L1 and L2 halo orbits are connected to halo orbits around

Earth’s L1 or L2 via low energy pathways. Many of NASA’s future space telescopes

located around the Earth’s L1 or L2 may be built in a lunar L1 orbit and conveyed to

the final destination with minimal fuel requirements. (b) Shown in this close-up are two

halo orbits at the lunar L1 and L2, respectively, and the set of invariant manifolds that

provide the low energy departures from the lunar L1 orbit.

Many of NASA’s future space observatories located around the Earth’s
L1 or L2 may be built in a lunar L1 orbit and conveyed to the final des-
tination with minimal propulsion requirements. When the spacecraft or
instruments require servicing, they may be returned from Earth libration
orbits to the lunar L1 orbit where human servicing may be performed,
which was shown to be of vital importance for keeping the Hubble Space
Telescope operable. Since a lunar L1 orbit may be reached from Earth in
only three days, the infrastructure and complexity of long-term space travel
is greatly mitigated. The same orbit could reach any point on the surface
of the Moon within hours, making it a perfect location for the return of
humans to the Moon. A lunar L1 orbit is also an excellent point of depar-
ture and arrival for interplanetary flights to Mars, the asteroids, and the
outer solar system. Several lunar and Earth encounters may be added to
further reduce the launch cost and open up the launch period. A lunar L1
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is therefore a versatile hub for a space transportation system. We discuss
the dynamics associated with transfers between Earth and lunar libration
points in Chapter 5.

Multi-Moon Orbiters. Using low energy passageways is in no way lim-
ited to the inner solar system. For example, consider a spacecraft in the
gravity field of Jupiter and its planet-sized moons. A possible new class
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Figure 1.2.9. A multi-moon orbiter space mission concept for the Jovian moons. (a)

We show a spacecraft trajectory coming into the Jupiter system and transferring from

Ganymede to Europa using a single impulsive maneuver, shown in a Jupiter-centered

inertial frame. (b) The spacecraft performs one loop around Ganymede, using no propul-

sion at all, as shown here in the Jupiter-Ganymede rotating frame. (c) The spacecraft

arrives in Europa’s vicinity at the end of its journey and performs a final propulsion

maneuver to get into a high inclination circular orbit around Europa, as shown here in

the Jupiter-Europa rotating frame.

of missions to the outer planet moon systems has been proposed by the
authors (Koon, Lo, Marsden, and Ross [1999]; Ross, Koon, Lo, and Mars-
den [2003]). These are missions in which a single spacecraft orbits several
moons of Jupiter (or any of the outer planets), allowing long duration
observations. Using this multi-moon orbiter approach, a single scientific
spacecraft orbits several moons of Jupiter (or any of the outer planets) for



18 1. Introduction

any desired duration, allowing long duration observations instead of flybys
lasting only seconds. For example, a multi-moon orbiter could orbit each
of the galilean moons—Callisto, Ganymede, Europa, and Io—one after the
other, using a technologically feasible amount of fuel. This approach should
work well with existing techniques, enhancing trajectory design capabilities
for missions such as a future tour to Jupiter’s icy moons.

Figure 1.2.9 shows a low energy transfer trajectory from an initial Jovian
insertion trajectory to Ganymede. After one orbit around Ganymede in-
cluding a close approach, the spacecraft heads onward to Europa, ending in
a high inclination orbit around the icy moon. The design of such missions
is described in Chapter 9.

The low energy trajectory shown in Figure 1.2.9 still requires a signif-
icant fuel expenditure. But a very low energy trajectory can be designed
using hardly any fuel using the additional technique of low energy inter-
moon transfer via resonant gravity assists. By using very small impulsive
thrusts, a spacecraft initially injected into a jovian orbit can be directed into
an inclined, elliptical capture orbit around Europa. Enroute, the spacecraft
orbits both Callisto and Ganymede for long duration using the ballistic cap-
ture and escape methodology described in previous chapters. This example
tour is shown in Figure 1.2.10. The design of these kinds of trajectories are
discussed in Chapter 10.

1.3 Organization of the Book

In Chapter 2, we develop some basic terminology for the restricted three-
body problem (R3BP) and describe the local dynamics near saddle-center
equilibrium points, building on the work of Conley [1968]. In Chapters 2
through 5, we look at the planar, circular R3BP (i.e., the PCR3BP), where
a particle moves in the field of two massive bodies on circular orbits about
their common center of mass and is restricted to move in their plane of
motion. The PCR3BP has five equilibria, Li, i = 1, . . . , 5. We focus our
attention on two of these equilibrium points, L1 and L2. Periodic orbits
about these points are shown to exist. Furthermore, stable and unstable
manifolds of these periodic orbits in phase space with a S1 ×R1 (cylindri-
cal) geometry are shown to exist. The periodic orbits considered reside in
bottleneck regions of the energy manifold, separating large zones, other-
wise known as realms, associated with motion about one mass, the other
mass, or both masses. The cylinders have the physical property that all
motion through the bottleneck in which the periodic orbit resides must oc-
cur through the interior of these surfaces. The cylinders thus mediate the
global transport of test particles between large zones of the energy surface
which are separated by the bottlenecks.
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Figure 1.2.10. The multi-moon orbiter mission concept for the jovian moons

involves long duration orbits of Callisto, Ganymede, and Europa, allowing for extensive

observation. By utilizing resonant gravity assists with the moons, in addition to ballistic

capture and escape orbits leading toward or away from temporary capture orbits about

a moon, a tour can be constructed using very little fuel. The trajectory shown is a

simulation of a restricted 5-body problem and requires a ∆V of only 22 m/s. The

multi-moon orbiter is a general concept applicable for any multi-moon system and is

not limited to the specific example shown.

In Chapter 3, the local picture is extended to larger regions of phase
space. The cylindrical stable and unstable invariant manifolds of L1 and
L2, referred to as tubes, are shown to play a crucial role in our under-
standing of the global connectivity of the phase space. In particular, the
existence of a heteroclinic connection between pairs of periodic orbits is nu-
merically demonstrated, one around L1 and the other around L2, with the
two periodic orbits having the same energy. This heteroclinic connection,
along with previously known homoclinic connections, allows us to prove a
theorem on the global orbit structure of the PCR3BP. This theorem can
also be taken as a proof of “horseshoe-like” chaos in the system.

In Chapter 4, we use the tubes and their intersections to compute orbits
of desired itineraries with respect to the aforementioned realms of the phase
space and make the connection to the design of space mission trajectories.

In Chapter 5, we construct solutions of the restricted four-body problem
using solutions of the restricted three-body problem as building blocks.
This approach, which is appropriate for some low energy space mission
trajectories, is the patched three-body approximation. We demonstrate the
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approach with the numerical construction of a low energy Earth-to-Moon
trajectory which uses the Sun’s gravitational field. We also look at transfers
from a Lunar L1 Gateway Station to a libration orbit around the Earth-Sun
L2 point.

Earlier chapters focus on the two degree-of-freedom problem, but in
Chapter 6 we begin to discuss the three degree-of-freedom circular re-
stricted three-body problem (CR3BP). With the addition of a third degree
of freedom, new phenomena emerge. In particular, the orbital taxonomy
near the libration points gets more complicated. Actual missions require
three-dimensional capabilities, such as control of the latitude and longitude
of a spacecraft’s escape from and entry into a planetary or moon orbit. For
example, a future mission to send a probe to orbit Europa may desire a cap-
ture into a high inclination polar orbit around Europa (Sweetser, Maddock,
Johannesen, Bell, Penzo, Wolf, Williams, Matousek, and Weinstein [1997];
Ludwinski, Guman, Johannesen, Mitchell, and Staehle [1998]; Scheeres,
Guman, and Villac [2001]; Villac and Scheeres [2001]). Three-dimensional
capability is also required when decomposing an N -body system into three-
body subsystems which are not co-planar, such as the Earth-Sun-spacecraft
and Earth-moon-spacecraft systems. (The tilt in the orbital planes of the
Earth around the sun and the moon around the Earth is about 5 degrees.)
These demands necessitate dropping the restriction to planar motion, and
extension of earlier results to the spatial model.

In particular, Chapter 6 introduces halo orbits and how to compute them.
Halo orbits are large three dimensional orbits shaped like the edges of a
potato chip. The computation of halo orbits follows standard nonlinear
trajectory computation algorithms based on parallel shooting. Due to the
sensitivity of the problem, an accurate first guess is essential, since the halo
orbit is actually an unstable orbit (albeit with a fairly long time constant
in the Sun-Earth system, about 180 days). This first guess is provided by
a high order analytic expansion using the Lindstedt–Poincaré method.

In Chapter 7, we discuss the numerical computation of the end-to-end
trajectory for the Genesis mission. We will discuss the computation of
invariant manifolds using various methods, e.g., Floquet theory, and how
to find solutions in more realistic (ephemeris) models using differential
correction.

In Chapter 8, we discuss optimal control, trajectory correction maneu-
vers, and station keeping for three-body spacecraft trajectories. When one
computes spacecraft trajectories, several idealistic assumptions are made.
When a ∆V is computed for an impulsive burn trajectory, the calculation
assumes that the rocket can instantaneously and flawlessly deliver the exact
amount ∆V necessary to impart the boost in velocity. In practice, however,
errors are introduced by the rocket engine and other sources which must
be corrected by subsequent maneuvers.

In Chapter 9, we show that the invariant manifold structures of the
collinear libration points in the three degree-of-freedom problem still act
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as the separatrices between two types of motion (as they do in the two
degree-of-freedom problem): (i) inside the invariant manifold tubes, the
motion consists of transit through a neck, a set of paths called transit or-
bits; (ii) outside the tubes, no such transit motion is possible. We design
an algorithm for constructing orbits with any prescribed itinerary and ob-
tain some initial results for a basic itinerary. Furthermore, we apply these
new techniques to the construction of a three-dimensional multi-moon or-
biter tour of the Jovian moon system. By approximating the dynamics of
the Jupiter-Europa-Ganymede-spacecraft four-body problem as two three-
body subproblems, we seek intersections (in position space only) between
the tubes of transit orbits enclosed by the stable and unstable manifold
tubes. We design an example low energy transfer trajectory from an initial
Jovian insertion trajectory, leading to Ganymede and finally to Europa,
ending in a high inclination orbit around Europa.

Besides providing a full description of different kinds of libration motions
in a large vicinity of these points, in Chapter 9 we numerically demonstrate
the existence of heteroclinic connections between pairs of libration orbits,
one around the libration point L1 and the other around L2. Since these
connections are asymptotic orbits, no maneuver is needed to perform the
transfer from one libration point orbit to the other. The knowledge of these
orbits may provide the backbone for many interesting orbits in the future.
The numerical demonstration is achieved using normal form methods which
we describe at the end of the chapter.

In Chapter 10, we discuss advanced topics related to spacecraft trajec-
tory design using multi-body effects. The incorporation of resonant gravity
assists to further reduce ∆V is discussed, from the point of view of lobe dy-
namics in the restricted three-body problem. The design of very low energy
multi-moon orbiters is discussed. What is found is that there is an inverse
relationship between time-of-flight and fuel consumption. The longer the
trajectory, the more the cumulative effect of multi-body dynamics and the
lower the fuel needed. We also discuss the incorporation of low thrust into
the framework described in this book, by which we mean the design of
low thrust control laws which best take advantage of natural multi-body
effects.
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2
Motion near the Collinear Equilibrium
Points

2.1 Introduction

In Chapter 1 we motivated the study of the gravitational interaction of
three bodies from the field of spacecraft trajectory design. In this chapter
and the next, we begin the detailed analysis of a simplification of the general
three-body problem, one in which we study the motion of a test particle
with negligible mass compared to the other two.

Suppose the two massive bodies move in circular orbits about their com-
mon center of mass and the mass of the third body is too small to affect
the motion of the two more massive bodies. The problem of the motion
of the third body is called the circular, restricted, three-body problem,
henceforth referred to as the CR3BP. If we further restrict the motion of
the third body to be in the orbital plane of the other two bodies, the prob-
lem is called the planar circular restricted three-body problem, or the
PCR3BP.

At first glance this problem may seem to have little application to motion
in the solar system. After all, the observed orbits of solar system objects
are non-circular, albeit with small eccentricities. However, the hierarchy
of orbits and masses in the solar system (e.g., sun, planet, satellite, ring
particle) means that the CR3BP provides a good approximation for certain
systems, especially the qualitative behavior of those systems. In fact, we
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need consider only the lower dimensional PCR3BP to understand a wide
range of dynamical behaviors for the third body.

This chapter is roughly divided into two parts. In the first part (§2.2-2.5),
we describe the equations for the problem with particular reference to a
constant of the motion, the Hamiltonian energy. We demonstrate the rela-
tionship between curves defined by the Hamiltonian energy and the orbital
path of the particle. We discuss the location and stability of equilibrium
points.

In the second part (§2.6-2.9), we consider the motion of particles near
two important equilibria, the libration points L1 and L2, which will be
explained shortly. By considering the motion near these two equilibria in
detail, we lay the foundation for understanding the global picture of the
PCR3BP phase space, to be covered in Chapter 3.

We will be focusing on particular aspects of the three-body problem
which are important for the discussion in later chapters. The books by
Szebehely [1967] and Marchal [1990] provide authoritative coverage of the
literature on the subject. For other general introductions to the three-body
problem, see Abraham and Marsden [2008], Meyer and Hall [1992], Holmes
[1990], or Simó [1999].

2.2 Planar Circular Restricted Three-Body
Problem

Problem Description. Consider the motion of a particle P of negligi-
ble mass moving under the gravitational influence of two masses m1 and
m2, referred to as the primary masses, or simply the primaries. In some
cases, we refer to m1 as the primary and m2 as the secondary. Assume
that m1 and m2 have circular orbits about their common center of mass.
The particle P is free to move in the plane defined by the circular orbits
of the primaries, but cannot affect their motion.

In the context of this chapter, we can imagine that m1 represents the
sun and m2 represents a planet, and we are concerned with the motion of
P , a comet or spacecraft of much smaller mass.

The system is made nondimensional by the following choice of units: the
unit of mass is taken to be m1 + m2; the unit of length is chosen to be
the constant separation between m1 and m2 (e.g., the distance between
the centers of the sun and planet); the unit of time is chosen such that
the orbital period of m1 and m2 about their center of mass is 2π. The
universal constant of gravitation then becomes G = 1. It then follows that
the common mean motion, n, of the primaries is also unity. We will refer to
this system of units as nondimensional or normalized units throughout
the book.
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We will use the normalized units for nearly all the discussions in this
book. When appropriate, we can convert to dimensional units (e.g., km,
km/s, seconds) to scale a problem. This will be particularly important in
Chapter 5 when we will decompose a N -body problem into several 3-body
subproblems. The conversion from units of distance, velocity, and time in
the unprimed, normalized system to the primed, dimensionalized system is

distance d′ = Ld,
velocity s′ = V s,
time t′ = T

2π t,
where L is the distance between the centers of m1 and m2, V is the orbital
velocity of m1, T is the orbital period of m1 and m2.

The only parameter of the system is the mass parameter,

µ =
m2

m1 +m2
.

If we assume that m1 > m2, then the masses of m1 and m2 in this system
of units are, respectively,

µ1 = 1− µ and µ2 = µ,

where µ ∈ [0, 1
2 ], and thus µ1 ≥ µ2. The phase space of the system is

highly dependent on the mass parameter. A table of mass parameters and
dimensional values L (in km), V (in km/s), and T (in seconds), for several
pairs of masses in the solar system is provided below in Table 2.2.1.

System µ L V T

Sun-Jupiter 9.537× 10−4 7.784× 108 13.102 3.733× 108

Sun-(Earth+Moon) 3.036× 10−6 1.496× 108 29.784 3.147× 107

Earth-Moon 1.215× 10−2 3.850× 105 1.025 2.361× 106

Mars-Phobos 1.667× 10−8 9.380× 103 2.144 2.749× 104

Jupiter-Io 4.704× 10−5 4.218× 105 17.390 1.524× 105

Jupiter-Europa 2.528× 10−5 6.711× 105 13.780 3.060× 105

Jupiter-Ganymede 7.804× 10−5 1.070× 106 10.909 6.165× 105

Jupiter-Callisto 5.667× 10−5 1.883× 106 8.226 1.438× 106

Saturn-Mimas 6.723× 10−8 1.856× 105 14.367 8.117× 104

Saturn-Titan 2.366× 10−4 1.222× 106 5.588 1.374× 106

Neptune-Triton 2.089× 10−4 3.548× 105 4.402 5.064× 105

Pluto-Charon 1.097× 10−1 1.941× 104 0.222 5.503× 105

TABLE 2.2.1. Table of m1-m2 systems in the solar system. Source: The
first three are the values used in Koon, Lo, Marsden, and Ross [2000, 2001b]. The
others are from the Jet Propulsion Laboratory’s solar system dynamics website:
http://ssd.jpl.nasa.gov/.

http://ssd.jpl.nasa.gov/
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Aside: When is the PCR3BP an Appropriate Starting Model?

For astronomical phenemena like resonance transition of Jupiter comets,
the PCR3BP is considered an adequate starting model (see Koon, Lo,
Marsden, and Ross [2000]). The comets of interest are mostly heliocentric,
i.e., their motion is dominated by the sun’s gravitational force, but their
perturbations from purely two-body motion about the sun are dominated
by Jupiter’s gravitation. Their motion is nearly in Jupiter’s orbital plane,
and the small eccentricity of Jupiter’s orbit (i.e., it is nearly circular) plays
little role during resonant transition. In a more detailed study, and for
verification that one can really believe the PCR3BP model, one need to
take into account Jupiter’s eccentricity, the effect of three-dimensionality
of the motion, and, for instance, the perturbation from Saturn.

For the design of the spacecraft trajectory for the Genesis Discovery
Mission, knowledge of heteroclinic behavior provided the necessary insight
in searching for the desired solution. The Genesis trajectory is an example
of a trajectory which takes into account the gravity field of multiple bodies,
in this case the Earth, moon, and sun, which at times have comparable and
competing effects on the spacecraft’s motion. Other examples of trajectories
in N -body gravitational fields will be considered in this book, including a
trajectory to orbit several of Jupiter’s planet-sized moons. As we will see,
the study of PCR3BP provides a systematic method for the numerical
construction of initial pieces from which the final trajectory in the N -body
field can be generated.

2.3 Equations of Motion

In this section, we familiarize the reader with some of the terminology of
the PCR3BP and the all important concept of viewing the motion in the
rotating frame. However, for the benefit of later chapters, the equations of
motion will be derived for the general problem, the CR3BP. The planar
version can be obtained simply by restricting the motion of the particle to
the orbital plane of the primaries.

There are several ways to derive the equations of motion for P in the
field of m1 and m2. We will go over a few of the ways, emphasizing the
Hamiltonian structure for this system.1 A simple technique is to use the

1For example, Whittaker [1927] and Abraham and Marsden [2008] use time dependent
canonical transformation theory to transform the problem from an inertial frame to a

rotating frame.
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covariance of the Lagrangian formulation and use the Lagrangian written
using coordinates in a moving frame, as given in Marsden and Ratiu [1999].
This method directly gives the equations in Lagrangian form and the asso-
ciated Hamiltonian form is given by the Legendre transformation. We shall
discuss this approach later in this section, but we begin with a derivation
starting with Newton’s equations, F = d

dt (mv), where m and v are the
mass and velocity of the particle and F is the sum of external forces on
the particle. If the particle’s mass is constant in time, this reduces to the
familiar F = ma, where a = v̇

Transformation between the Inertial and Rotating Frames. Let
X-Y -Z be an inertial frame with origin at the m1-m2 center of mass, as
in Figure 2.3.1, where the X-Y plane is the orbital plane of the primaries.
Consider the set of axes x and y depicted in Figure 2.3.1. The x-axis lies
along the line fromm1 tom2 with the y-axis perpendicular to it, completing
a right-handed coordinate system. The x-y frame rotates

y

X

x

Y

P

t

Figure 2.3.1. Inertial and rotating frames. The rotating coordinate system with

coordinates x and y moves counterclockwise with unit angular velocity relative to the

inertial frame with coordinates X and Y . The z-axis (which coincides with the Z-axis)

is pointing out of the plane and is not shown here.

with respect to the X-Y inertial frame with an angular velocity equal to
the mean motion, n, of either mass (unity in the normalized units). We will
refer to this coordinate frame throughout the book as the rotating frame
or the m1-m2 rotating frame. Assume that the two frames coincide at
t = 0. Let (X,Y, Z) and (x, y, z) be the position of P in the inertial and
rotating frames, respectively. In normalized units, we have the following
transformation of the particle’s position between the two frames:

 X
Y
Z

 = At

 x
y
z

 , (2.3.1)
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where

At =

 cos t − sin t 0
sin t cos t 0

0 0 1

 . (2.3.2)

Differentiating gives us the transformation of velocity components from the
rotating to the inertial frame: Ẋ

Ẏ

Ż

 = Ȧt

 x
y
z

+At

 ẋ
ẏ
ż

 ,

= −AtJ

 x
y
z

+At

 ẋ
ẏ
ż

 ,

= At

 ẋ− y
ẏ + x
ż

 , (2.3.3)

where

J =

 0 1 0
−1 0 0
0 0 0

 .

Rotating Frame. The rotating frame is shown in Figure 2.3.2. The
larger mass, m1, is located at (−µ2, 0, 0) and the smaller mass, m2, at
(µ1, 0, 0). This is also true in the inertial frame when t = 0. At general
times t,

(X1, Y1, Z1) = (−µ2 cos t,−µ2 sin t, 0),

(X2, Y2, Z2) = (µ1 cos t, µ1 sin t, 0),

are the inertial frame positions of m1 and m2, respectively.
The rotating system of coordinates takes some getting used to, especially

for those comfortable with conic section orbits in the inertial frame from
the two-body problem. We emphasize that in Figure 2.3.2, (x, y, z) are the
position coordinates of P relative to the positions of the m1 and m2, not
relative to an inertial frame.

Aside: Why Use the Rotating Frame?

It is quite common to see much more structure in carefully chosen rotat-
ing frames than in stationary inertial frames, even in cases where there is
no “obvious” preferred rotating frame. This example of pattern evocation
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x

y

P

Figure 2.3.2. Rotating coordinate frame. The planar circular restricted three-body

problem as viewed, not in an inertial frame, but in the rotating frame, where m1 and

m2 are at fixed positions along the x-axis. As with the previous figure, the z-axis is not

shown.

is well illustrated by the double spherical pendulum.2

For example, in the comet resonance problem considered in Koon, Lo,
Marsden, and Ross [2000], the inertial frame, Figure 2.3.3(a), gives little
insight into the dynamics of the comet resonance transition. However, when
the comet undergoing a resonance transition has its motion viewed in the
sun-Jupiter rotating frame, one can clearly observes more structure. For
example, comets come near to the libration points, L1 and L2, to pass
from beyond Jupiter’s orbit to within Jupiter’s orbit, getting temporarily
gravitationally captured by the planet in the process.

As seen in Figures 2.3.3(b) and (c), one can see how closely the orbit
of comet Oterma follows the plots of invariant manifolds related to L1

and L2 in the position space of the rotating frame. Analytically, in this
preferred sun-Jupiter rotating frame, the equations of motion of the comet
are time-independent. The system of equations have an integral of motion
and equilibrium points which allow us to bring in all the tools of dynamical
system theory.

Gravitational Potential. The gravitational potential which the parti-
cle experiences due to m1 and m2 (in normalized units) is

U = −µ1

r1
− µ2

r2
− 1

2
µ1µ2 (2.3.4)

2Marsden and Scheurle [1995]
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Figure 2.3.3. (a) Orbit of comet Oterma in sun-centered inertial frame during time

interval AD 1910–1980 (ecliptic projection). (b) Some manifolds associated to L1 and

L2 for the energy of Oterma in the planar, circular, restricted three-body problem, as

seen in the rotating frame with the sun and Jupiter fixed. (c) The orbit of Oterma,

transformed into the rotating frame, follows closely the invariant manifolds associated

to L1 and L2. Distances are in Astronomical Units (AU).

where r1 and r2 are the distances of P from m1 and m2, respectively, given
by

r2
1 = (X + µ2 cos t)2 + (Y + µ2 sin t)2 + Z2,

r2
2 = (X − µ1 cos t)2 + (Y − µ1 sin t)2 + Z2.

The constant last term in the expression for V is added by convention (see,
e.g., Llibre, Martinez, and Simó [1985]), and will not affect the equations
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of motion.

Newtonian Approach: Inertial Frame. In the inertial frame, the
Newtonian equations of motion are

Ẍ = −UX , Ÿ = −UY , Z̈ = −UZ , (2.3.5)

where UX , UY , and UZ are the partial derivatives of U with respect to
X,Y, Z respectively. This system is time-dependent. One can now make a
transformation of variables to the variables (x, y, z) by direct computation.3

This procedure leads to the same equations of motion in terms of (x, y, z)
as the methods below.

Lagrangian Approach: Inertial Frame. Consider the Euler–Lagrange
equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (2.3.6)

where the mechanical system is described by generalized coordinates (q1,
. . . , qn). One usually chooses the Lagrangian L to be of the form kinetic
minus potential energy. See Marsden and Ratiu [1999] or other books on
mechanics for a discussion.

In the inertial frame, the Lagrangian L is kinetic minus potential energies
and is given by

L(X,Y, Z, Ẋ, Ẏ , Ż, t) =
1

2
(Ẋ2 + Ẏ 2 + Ż2)− U(X,Y, Z, t).

Lagrangian Approach: Rotating Frame. In the rotating frame, the
Lagrangian L is given by

L(x, y, z, ẋ, ẏ, ż) =
1

2

(
(ẋ− y)2 + (ẏ + x)2 + ż2

)
− U(x, y, z).

The Lagrangian is now time-independent, simplifying the analysis of solu-
tions.

We obtain this formula for L by simply rewriting the kinetic and potential
energy of the inertial frame Lagrangian L in rotating coordinates. From
Eq. (2.3.3), the kinetic energy is

1

2
(Ẋ2 + Ẏ 2 + Ż2) =

1

2

(
(ẋ− y)2 + (ẏ + x)2 + ż2

)
.

Also, since both the distances r1 and r2 are invariant under rotation, the
gravitational potential is

U(x, y, z) = −µ1

r1
− µ2

r2
− 1

2
µ1µ2, (2.3.7)

3See Marsden and Ratiu [1999] for this type of calculation.
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where r1 and r2 are expressed in rotating coordinates as

r2
1 = (x+ µ2)2 + y2 + z2,

r2
2 = (x− µ1)2 + y2 + z2.

The theory of moving systems says that one can simply write down the
Euler–Lagrange equations in the rotating frame and one will get the correct
equations. It is a very efficient generic method for computing equations for
either moving systems or for systems seen from moving frames. See Marsden
and Ratiu [1999] for more information.

In the present case, the Euler–Lagrange equations are given by

d

dt
(ẋ− y) = ẏ + x− Ux,

d

dt
(ẏ + x) = −(ẋ− y)− Uy.

d

dt
ż = −Uz.

After simplification, we have

ẍ− 2ẏ = −Ūx,
ÿ + 2ẋ = −Ūy,

z̈ = −Ūz,
(2.3.8)

where

Ū(x, y) = −1

2
(x2 + y2) + U(x, y, z),

= −1

2
(x2 + y2)− µ1

r1
− µ2

r2
− 1

2
µ1µ2, (2.3.9)

= −1

2
(µ1r

2
1 + µ2r

2
2)− µ1

r1
− µ2

r2
, (2.3.10)

is the augmented or effective potential and the subscripts in (2.3.8)
denote its partial derivatives. The planar version of (2.3.8) can be obtained
by setting z = ż = 0. This form of the equations has been studied in detail
in Szebehely [1967].

Hamiltonian Approach: Rotating Frame. Whenever one has a La-
grangian system, one can transform it to Hamiltonian form by means of
the Legendre transformation:

pi =
∂L

∂q̇i
; H(qi, pi) =

n∑
i=1

piq̇
i − L(qi, pi),

to get the equations in Hamiltonian form

q̇i =
∂H

∂pi
; ṗi = −∂H

∂qi
.
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In our case, the Legendre transformation is given by

px =
∂L

∂ẋ
= ẋ− y,

py =
∂L

∂ẏ
= ẏ + x,

pz =
∂L

∂ż
= ż,

and so we obtain the Hamiltonian function

H(x, y, z, px, py, pz) = pxẋ+ py ẏ + pz ż − L

=
1

2
((px + y)2 + (py − x)2 + p2

z) + Ū , (2.3.11)

where px, py, and pz are the momenta conjugate to x, y, and z, respectively.
Hence the Hamiltonian equations are given by

ẋ =
∂H

∂px
= px + y,

ẏ =
∂H

∂py
= py − x,

ż =
∂H

∂pz
= pz,

ṗx = −∂H
∂x

= py − x− Ūx,

ṗy = −∂H
∂y

= −px − y − Ūy,

ṗz = −∂H
∂z

= −Ūz.

(2.3.12)

One can also transform from the inertial frame to the rotating frame by
using the theory of canonical transformations. This method, while the one
classically used, is more complicated. See Whittaker [1927] for details.

Notice that both the Lagrangian and the Hamiltonian form of the equa-
tions in rotating coordinates (x, y, z) give a time-independent system. Viewed
as a dynamical system, it is a dynamical system in a six-dimensional phase
space, viewed as either (x, y, z, ẋ, ẏ, ż) or (x, y, z, px, py, pz) space, subsets
of R6 which exclude the singularities at the positions of the primaries.

Energy Integral and Jacobi Constant. Since the equations of motion
of the CR3BP (2.3.12) are Hamiltonian and independent of time, they have
an energy integral of motion. We use the symbol H when we regard the
energy as a function of positions and momenta, as in (2.3.11), and E when
we regard it as a function of the positions and velocities,

E(x, y, ẋ, ẏ, ż) =
1

2
(ẋ2 + ẏ2 + ż2) + Ū(x, y, z) (2.3.13)
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Physically, the measurement of the particle’s position and velocity in either
the inertial or rotating frames determines the value of the energy associated
with the particle’s motion.

The celestial mechanics and dynamical astronomy communities uses−2E,
which is called the Jacobi integral and is given by

C(x, y, z, ẋ, ẏ, ż) = −(ẋ2 + ẏ2 + ż2)− 2Ū . (2.3.14)

Usually in those communities, the existence of the Jacobi integral is de-
rived directly from the equations of motion. The computation is straight-
forward:

d

dt
(ẋ2 + ẏ2 + ż2) = 2(ẋẍ+ ẏÿ + żz̈)

= 2[ẋ(2ẏ − Ūx) + ẏ(−2ẋ− Ūy) + ż(−Ūz)] = 2
d

dt
(−Ū),

so we get
d

dt
C =

d

dt

(
−(ẋ2 + ẏ2 + ż2)− 2Ū

)
= 0.

Throughout the book, we will use the terms “energy,” “energy integral,”
“Jacobi integral,” and “Jacobi constant” to refer to the same concept—the
most important integral determining the motion of the particle. As they
differ in sign, we will make it clear from the context when we are referring
to increasing energy (decreasing Jacobi constant), etc. In general, there
are no other integrals constraining the motion of the particle, making the
PCR3BP a non-integrable problem.

2.4 Energy Surface and Realms of Possible
Motion

In the two-body Kepler problem, one may divide the phase space into two
major categories, based on the values of the Keplerian energy, EKep = − 1

2a ,
where a is the semimajor axis of the test particle’s orbit around the central
massive body. The following two cases divide the phase space into two
major categories of possible motion for the test particle.

• (i) EKep < 0 : Negative Keplerian energies correspond to bound mo-
tion of the test particle about the single massive body, i.e., elliptical
and circular orbits.

• (ii) EKep > 0 : Positive Keplerian energies correspond to unbound
motion, i.e., hyperbolic orbits coming from and going to infinity.
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The critical case of zero energy orbits between these two are the unbound
parabolic orbits. If we restrict ourselves to the planar Kepler problem, we
have a four-dimensional phase space, which we can view as an open set in
R4: two position coordinates and their two corresponding velocities. For
each real value, e, the equation, EKep = e, describes a three-dimensional
set in the four-dimensional phase space, termed the energy surface corre-
sponding to energy e. The phase space can be viewed as a many layered
“onion,” each layer or leaf corresponding to a value of the energy. One says
that the energy surfaces foliate the phase space.

In the three-body problem, the picture is more complicated, but we can
follow a similar strategy of categorizing the possible motion of the test
particle by energy, this time the three-body energy given in (2.3.13). In the
next few chapters, we will concentrate on the study of the PCR3BP with
z = ż = 0.

Energy Surface. Let M be the energy manifold or energy surface
given by setting the energy integral (2.3.13) equal to a constant, i.e.,

M(µ, e) = {(x, y, ẋ, ẏ) | E(x, y, ẋ, ẏ) = e}, (2.4.1)

where e is a constant. For a fixed µ and energy e, one can consider the sur-
faceM(µ, e) as a three-dimensional surface embedded in the four-dimensional
phase space.

Hill’s Region: the Region of Possible Motion. The projection of
this surface onto position space in the rotating frame, the x-y plane, is the
region of possible motion for a particle of energy e in the field of two masses
with mass parameter µ. Let M(µ, e) denote this projection,4

M(µ, e) = {(x, y) | Ū(x, y) ≤ e}, (2.4.2)

known historically as the Hill’s region. The boundary of M(µ, e) is known
as the zero velocity curve, and plays an important role in placing bounds
on the motion of the particle.

Zero Velocity Curves: the Boundaries of the Hill’s Region. The
zero velocity curves are the locus of points in the x-y plane where the kinetic
energy, and hence the velocity, v =

√
ẋ2 + ẏ2, vanishes, i.e., 1

2v
2(x, y) =

e − Ū(x, y) = 0. From (2.4.2), it is clear that the particle is only able to
move on the side of this curve for which the kinetic energy is positive. The
other side of the curve, where the kinetic energy is negative and motion is
not possible, is known as the forbidden realm.

Recall that the energy E is given by (2.3.13). Fixing the energy function
to be a constant, i.e., E(x, y, ẋ, ẏ) = e, is like fixing a height in the plot of

4Note that our convention is to use script letters for a region in the energy surface
(including the energy surface itself, M) and italicized capital letters for that region’s

projection onto the position space (e.g., M).
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the effective potential, Ū(x, y), given in Figure 2.4.1. Consider the surface
of the effective potential in Figure 2.4.1 and note the following features.

Figure 2.4.1. The plot of the effective potential Ū(x, y) for µ = 0.3. The critical

points are at the locations of the five equilibrium points, Li, i = 1, . . . , 5.

• Near either m1 or m2, we have a potential well.

• Far away from either m1 or m2, the term that corresponds to the
centrifugal force dominates Ū in (2.3.9), i.e., || 12 (x2 + y2)||/|| 1−µr1 +
µ
r2
|| � 1, and we have another potential well.

• By multivariable calculus, one finds that there are five critical points
where the slope is zero: three saddle points along the x axis and
two symmetric points off the x axis. As will be covered in the next
section, these points are the x-y locations of the equilibrium points
for a particle in the rotating frame, i.e., a particle placed here at rest
with respect to m1 and m2 (zero initial velocity), will stay at rest for
all time (zero acceleration). We label these points Li, i = 1, . . . , 5, as
in Figure 2.4.1.

• Let Ei be the energy of a particle at rest at Li, then E5 = E4 > E3 >
E2 > E1. Thus, L1 is the location of the lowest energy equilibrium
point and L4 and L5 are the highest energy equilibrium points. Since
the energy is measured in a rotating frame, we cannot determine the
stability properties of all the equilibrium points from their ordering
by energy (e.g., L4 and L5 are spectrally stable for small µ, despite
being energy maxima, as covered in Szebehely [1967]).

The Five Cases of the Hill’s Region. For a given µ there are five
basic configurations for the Hill’s region, corresponding to five intervals of
energy value, e, in (2.4.1). We refer to these basic configurations as energy
cases, or simply cases. The cases are shown in Figure 2.4.2. We will show
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Case 1: Case 2: Case 3:

Case 4: Case 5:

P

P

P

P
P

Figure 2.4.2. Realms of possible motion. Zero velocity curves for five values of

the energy, one in each of the cases as described in the text, are shown on the x-y plane

for µ = 0.3. These curves bound the zone, in white, accessible by the particle, P , for

a given energy value, E = e. The part of the x-y plane which is shaded is inaccessible

for a given energy, and known as the forbidden realm. The outermost accessible realm,

known as the exterior realm, extends to infinity. In the fifth case (e), the forbidden realm

vanishes and motion over the entire x-y plane is possible.

how to compute the energy intervals corresponding to these cases.
Contour plots of the effective potential give the five cases of Hill’s region.

The white areas in Figure 2.4.2 are the Hill’s region and the shaded areas
are the forbidden realm.

• Case 1, E < E1 : If the energy of the particle is below E1, the
particle cannot move between the realms around m1 and m2.

• Case 2, E1 < E < E2 : If the energy is just above E1, a “neck”
between the realms around m1 and m2 opens up, permitting the
particle to move between the two realms. The L1 point is in this
neck. We will see in §2.6 that the transport between the two adjacent
realms is controlled by invariant manifold structures associated to L1.
The particle is still barred from moving between these two realms and
the exterior realm extending to infinity.

• Case 3, E2 < E < E3 : This is the case that concerns us the most;
when the energy is just above E2. The particle can move between the
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vicinity of m1 and m2 and the exterior realm via a neck around L2.

• Case 4, E3 < E < − 3
2 = E4 = E5 : In this case the energy is above

E3 but below that of E4 and E5, which is always − 3
2 . The particle

can pass directly from the vicinity of m1 to the exterior realm via a
neck around L3.

• Case 5, − 3
2 < E : If the energy is above E4 = E5 = − 3

2 , the
forbidden realm disappears. Case 5 is where the particle is free to
move in the entire x-y plane.

Realms of Possible Motion. A glance at Figure 2.4.2 reveals that,
beginning in case 1, there are three main realms of possible motion, or
simply realms. Considering, for example, Figure 2.4.2(a), the large region
surrounding m1 is referred to as the m1 realm, sometimes referred to as
the interior realm. The small region surrounding m2 is the m2 realm.
The realm which lies outside both the m1 and m2 realms, and extends
to infinity, is the exterior realm. For case 1, the realms are separated.
Moving up in energy to case 2, a neck around L1 opens up between the
m1 and m2 realms, permitting the particle to pass between the two. An
additional neck opens up around L2 when we move up in energy to case 3,
permitting travel between all three realms. Our main interest in this book
will be case 3; but for comparison we shall occasionally bring up case 2.

The critical values of E which separate these five cases are the values
Ei, i = 1, . . . , 4 previously mentioned, corresponding to the equilibrium
points Li, i = 1, . . . , 4. These values can be easily calculated for small µ as
will be shown in the following section. The graphs of the Ei as a function
of µ are shown in Figure 2.4.3. For instance, for case 3 the energy value
lies between E2 and E3 which are the energy values of the libration points
L2 and L3, respectively.

2.5 Location of the Equilibrium Points

Written in first-order form, the equations of motion for the PCR3BP are

ẋ = vx,

ẏ = vy,

v̇x = 2vy − Ūx,
v̇y = −2vx − Ūy.

(2.5.1)

To find equilibrium points, we set the right-hand sides of the system equal
to zero. We see that equlibria in (x, y, vx, vy) space are of the form (xe, ye, 0, 0),
where (xe, ye) are critical points of the effective potential function Ū(x, y)
shown in Figure 2.4.1.
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Figure 2.4.3. The graphs of the Ei as a function of µ partition the µ-e plane

into the five cases of possible motion. The Hill’s regions for cases 1 through 4 are shown

in Figure 2.4.2.

As described in the previous section, the PCR3BP admits five equilib-
rium point solutions, which are shown in Figure 2.5.1:

• three collinear equilibria on the x-axis, called L1, L2, L3; and

• two equilateral points called L4, L5.

These equilibria can be found as follows.

The Equilateral Points. First, we seek solutions that do not lie on the
line joining the primaries, i.e., y 6= 0. Using the distances r1, r2 as variables
and the relation

x2 + y2 = (1− µ)r2
1 + µr2

2 − µ(1− µ),

we see that Ū can be written as

−Ū(r1, r2) =
1

2
(1− µ)r2

1 +
1

2
µr2

2 +
1− µ
r1

+
µ

r2
.

Using the chain rule, it is straightforward to show that if y 6= 0, then
Ū(r1, r2) and Ū(x, y) have the same critical points.

Ūx = Ūr1
∂r1

∂x
+ Ūr2

∂r2

∂x
= Ūr1

x+ µ

r1
+ Ūr2

x− (1− µ)

r2
= 0

Ūy = Ūr1
∂r1

∂y
+ Ūr2

∂r2

∂y
= Ūr1

y

r1
+ Ūr2

y

r2
= 0
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Figure 2.5.1. Equilibrium points of the circular restricted three-body prob-

lem in the x-y plane of the frame rotating with the mean motion of the orbit of m1

and m2. A particle placed at rest at such a point will remain at rest for all time. The

points marked with an ‘x’ are linearly unstable. Those marked with a ‘+’ are unstable

for µ ≥ µ0 ' 0.038521 and spectrally stable otherwise (see Szebehely [1967] for details).

The points shown here are for µ = 0.3.

Solving the following systems

0 = −Ūr1 = µr2 −
µ

r2
2

,

0 = −Ūr2 = (1− µ)r1 −
(1− µ)

r2
2

,

we get the unique solution r1 = r2 = 1.
This solution lies at the vertex of an equilateral triangle whose base is the

line segment joing the two primaries. By convention, the one in the upper
half-plane is denoted L4, and the one in the lower half-plane is denoted
L5. These equilibria are 60◦ ahead of and behind m2 in its orbit about the
m1 −m2 center of mass, respectively.

The Collinear Points. Consider equilibria along the line of primaries
where y = 0. In this case the effective potential function has the form

Ū(x, 0) = −1

2
x2 − 1− µ

|x+ µ|
− µ

|x− 1 + µ|
.

It can be determined that Ū(x, 0) has precisely one critical point in each of
the following three intervals along the x-axis: (i) (−∞,−µ), (ii) (−µ, 1−µ)
and (iii) (1− µ,∞).
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This is because Ū(x, 0)→ −∞ as x→ ±∞, as x→ −µ, or as x→ 1−µ.
So Ū has at least one critical point on each of these three intervals. Also,

d2Ū

dx2
(x, 0) = −1− 1− µ

|x+ µ|3
− µ

|x− 1 + µ|3
,

is always negative, so Ū(x, 0) is concave in each of the intervals. Therefore,
Ū(x, 0) has precisely one critical point in each of these three intervals. A
sketch of the graph of Ū(x, 0) is given in Figure 2.5.2.
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Figure 2.5.2. The graph of Ū(x, 0) for µ = 0.1 is shown. The solid line is the

intersection of Ū(x, y) in Figure 2.4.1 with the plane defined by y = 0. At the x locations

of m1 and m2, the function plunges to −∞. The maxima of Ū(x, 0) correspond to the

unstable collinear equilibrium points L1, L2, and L3.

Locating the Collinear Equilibria. Computation of the x values of the
collinear points requires finding the maxima of the function Ū(x, 0), i.e., the
solutions of d

dx Ū(x, 0) = 0 which is a quintic equation after simplification.
The distance from Li, i = 1, 2 to the smaller primary is given by the unique
positive solution γi of the following equation:

γ5 ∓ (3− µ)γ4 + (3− 2µ)γ3 − µγ2 ± 2µγ − µ = 0 (2.5.2)

where the upper sign is for γ1 and the lower one for γ2 (see Szebehely
[1967]). A similar equation can be found for γ3, the distance between L3

to the larger primary.
Historically, a lot of effort has been spent finding the series expansion

for such solutions. Here, we will write down two of those, from Szebehely
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[1967], that are most useful for us:

γ1 = rh(1− 1

3
rh −

1

9
r2
h + . . .), (2.5.3)

γ2 = rh(1 +
1

3
rh −

1

9
r2
h + . . .), (2.5.4)

where rh = (µ3 )
1
3 , the Hill radius, is the radius of the Hill sphere in the

spatial problem. The Hill sphere is the ‘bubble’ in 3-D position space sur-
rounding m2 inside of which the gravitational field of m2 and m1 may have
a comparable effect on the particle’s motion.

Locating these points to a higher accuracy numerically is straightforward.
γi, i = 1, 2 can be solved by the Newton method, using rh or the above series
expansion as an initial solution for the quintic equation (2.5.2).

As an example calculation, consider the motion of a particle in the Sun-
Jupiter system (µ = 9.537 × 10−4 from Table 2.2.1). The Hill radius is
rh = 6.825×10−2, and γ1 = 6.666×10−2 to third-order in rh via Eq. (2.5.3).
Solving the quintic equation (2.5.2) numerically yields γ1 = 6.668× 10−2,
and thus the x position of L1 is xL1 = xm1 − γ1 = (1− µ)− γ1 = 0.9324.

A Note on Terminology. Throughout the literature covering the equi-
librium points in the PCR3BP, the points are given various names, such as
libration points, Lagrange points, and Lagrangian points. In this book, we
will restrict ourselves to the terms equilibrium or libration point.

2.6 Linearization near the Collinear
Equilibria

In this section, we begin the study of the behavior of particle trajectories
near the two libration points L1 and L2, which on either side of m2 along
the x-axis. As will become clear, we are particularly interested in particles
which have an energy just above that of the critical point L2, that is,
E > E2 in case 3.

As shown in Figure 2.4.2(c), the region of possible motion for case 3
contains a neck about each libration point. Thus, a particle starting in the
exterior realm may pass through the neck around L2 to the m2 realm, and
subsequently pass through the neck around L1 to the m1 realm, and so on.

The aim in the next few sections is to describe the geometry of trajecto-
ries in the neck regions. We begin by considering the equations of motion
linearized near the equilibrium point inside the neck region. By virtue of
Moser’s generalization of a theorem of Lyapunov all the qualitative results
of such a discussion carry over to the full nonlinear equations (see Moser
[1958]). See the Supplement below for more details on this theorem.
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In the following sections, we will use L to denote either L1 or L2. Fur-
thermore, for a fixed energy E, consider a neighborhood of L in the energy
surface, whose position space projections are the neck regions described
previously. We refer to this neighborhood as the equilibrium region and
denote it by R on the energy surface. Following our adopted convention,
R has the position space projection R.

Hamiltonian Approach. To find the linearized equations around the
collinear libration point L with coordinates (xe, ye, ẋe, ẏe) = (xe, 0, 0, 0),
we need the quadratic terms of the Hamiltonian H in equation (2.3.11)
as expanded about (xe, ye, pxe, pye) = (xe, 0, 0, xe). After making a coordi-
nate change with (xe, 0, 0, xe) as the origin, these quadratic terms form the
Hamiltonian function for the linearized equations, which we shall call Hl.

Hl =
1

2

[
(px + y)2 + (py − x)2 − ax2 + by2

]
, (2.6.1)

where a and b are defined by a = 2µ̄+ 1, and b = µ̄− 1 and where

µ̄ = µ|xe − 1 + µ|−3 + (1− µ)|xe + µ|−3. (2.6.2)

It can be shown that both a and b are positive constants.
A short computation gives the linearized equations in the Hamiltonian

form

ẋ =
∂Hl

∂px
= px + y,

ẏ =
∂Hl

∂py
= py − x,

ṗx = −∂Hl

∂x
= py − x+ ax,

ṗy = −∂Hl

∂y
= −px − y − by.

(2.6.3)

Lagrangian Approach. Using the inverse Legendre transformation: vx =
px + y, vy = py − x, where vx, vy correspond to velocity in the rotating co-
ordinate system, we obtain the linearized equations in the Lagrangian form

ẋ = vx,

ẏ = vy,

v̇x = 2vy + ax,

v̇y = −2vx − by,

(2.6.4)

which is the linearization of the equations (2.5.1) around the equilibrium
point (xe, 0, 0, 0).

The integral Hl of (2.6.1) now appears as

El =
1

2
(v2
x + v2

y − ax2 + by2), (2.6.5)
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which corresponds to the energy integral E of the restricted problem. Notice
that the zero-surface of the integral El corresponds to the energy surface
which passes through the libration point. We shall therefore study solutions
of equations (2.6.4) on the surface El = ε > 0 which corresponds to the
case where the Hill’s region contains a neck about the libration point.

Supplement: Moser’s Theorem and Local Integrals
near the Collinear Equilibrium Points

Suppose we have a time-independent, analytic Hamiltonian system of dif-
ferential equations with two degrees of freedom. Suppose these equations
have a non-degenerate equilibrium point with one pair of real and one pair
of imaginary eigenvalues, ±λ and ±iν. We can assume, without loss of gen-
erality, that the phase space coordinates (x1, x2, y1, y2) are chosen so that
the Hamiltonian function assumes the following form:

H(x, y) = λx1y1 + 1
2ν(x2

2 + y2
2) +O3(x, y),

where x = (x1, x2), y = (y1, y2) and the symbol On(·, ·) denotes terms of
order n or higher in the variables displayed.

In particular, the equilibrium point has coordinates x = y = 0 and the
differential equations are obtained from H as

ẋ1 = Hy1 = λx1 +O2(x, y),

ẏ1 = −Hx1 = −λy1 +O2(x, y),

ẋ2 = Hy2 = νy2 +O2(x, y),

ẏ2 = −Hy1 = νx2 +O2(x, y).

The linearized equations are similarly obtained from a Hamiltonian func-
tion which consists of the quadratic terms ofH or, equivalently, by dropping
the terms of order two or higher in the above equations. Solutions of these
linearized equations are conveniently written as

x1(t) = x0
1e
λt, y1(t) = y0

1e
−λt,

z(t) = x2(t) + iy2(t) = z0e−νt,

where the constants x0
1, y

0
1 and z0 = x0

2 + iy0
2 are the initial conditions.

These linearized equations admit integrals in addition to the Hamiltonian
function; namely, the functions x1y1 and |z|2 = x2

2 + y2
2 are both constant

along solutions. A special case of a theorem by Moser [1958] states that the
full non-linear equations admit “local” integrals analogous to these: thus
there are two power series in x and y beginning respectively with quadratic
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terms x1y1 and x2
2 + y2

2 which converge in some neighborhood of x = y = 0
and such that the corresponding functions are constants along pieces of
solutions lying in the domain of convergence.

A special case of Moser’s theorem is stated by Conley [1969] in a form
suited to the PCR3BP. In this statement ξ and η are real variables and ζ
is complex.

Theorem (Moser). Let x = y = 0 correspond to a critical point as
decribed above. Then there exists a (real) analytic, transformation

x1 = ξ +O2(ξ, η, ζ, ζ̄), y1 = η +O2(ξ, η, ζ, ζ̄),

z = x2 + iy2 = ζ +O2(ξ, η, ζ, ζ̄),

as well as power series α and β in the variables χ = ξη and |ζ|2 of the form

α = λ+O1(χ, |ζ|2),

β = −iν +O1(χ, |ζ|2),

such that solutions of the transformed equations are given by

ξ(t) = ξ0etα, η(t) = η0e−tα,

ζ(t) = ζ0etβ , ζ̄ = ζ̄0e−tβ ,

where ξ0, η0 and ζ0 are determined from the initial conditions and ζ̄ is
the complex conjugate of ζ. Furthermore, the coefficients of α and β are
real and complex, respectively, from which it follows that the functions
ξη = x1y1 + O3(x, y) and |ζ|2 = x2

2 + y2
2 + O3(x, y) are local integrals, as

are α and β.
Finally, the transformation of the Hamiltonian function has the form

K(ξ, η, ζ, ζ̄) = H(x, y) = λξη + 1
2 |ζ|

2 +O2(χ, |ζ|2),

and in particular depends only on the variables χ = ξη and |ζ|2.

2.7 Geometry of Solutions near the
Equilibria

Now we analyze the linearized equations (2.6.4). It is straightforward to
find that the eigenvalues of this linear system have the form ±λ and ±iν,
where λ and ν are positive constants. The corresponding eigenvectors are

u1 = (1,−σ, λ,−λσ),

u2 = (1, σ,−λ,−λσ),

w1 = (1,−iτ, iν, ντ),

w2 = (1, iτ,−iν, ντ),

where σ and τ are constants with σ > 0 and τ < 0.
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Eigenvalues. It can be shown that the characteristic polynomial for the
linearized equations (2.6.4) written in matrix form

ẋ
ẏ
v̇x
v̇y

 =


0 0 1 0
0 0 0 1
a 0 0 2
0 −b −2 0




x
y
vx
vy

 = A


x
y
vx
vy

 ,

is given by
p(β) = β4 + (2− µ̄)β2 + (1 + µ̄− 2µ̄2).

Let α = β2, then the roots of p(α) = 0 are as follows

α1 =
µ̄− 2 +

√
9µ̄2 − 8µ̄

2
, α2 =

µ̄− 2−
√

9µ̄2 − 8µ̄

2
.

Since the last term of p(α) = 0 is equal to −ab which is negative, this
quadratic equation must have one positive and one negative root. So, we
have α1 > 0 and α2 < 0. Therefore, the eigenvalues of the linearized
equations are of the form ±λ and ±iν, where λ =

√
α1 and ν =

√
−α2.

Eigenvectors. Let v = (k1, k2, k3, k4) be an eigenvector of the linearized
equations. If β is an eigenvalue, then Av = βv and we have the following
relations

k3 = βk1, ak1 + 2k4 = βk3,

k4 = βk2, −bk2 − 2k3 = βk4.

Notice that k1 6= 0, otherwise k2 = k3 = k4 = 0 and v = 0. Thus, k1 may
be taken to be 1 and the equations relating the components of v indicate
that v may have the form

v = (1, k2, β, βk2),

and that

a+ 2βk2 = β2,

−bk2 − 2β = β2k2.

First let β = λ and then β = −λ to obtain

u1 = (1, k2, λ, λk2),

u2 = (1, k′2,−λ,−λk′2),

where

a+ 2λk2 = λ2,

−bk2 − 2λ = λ2k2,

a− 2λk′2 = λ2,

−bk′2 + 2λ = λ2k′2.
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The first and the third equations show that k2 = −k′2, and, denoting k′2 =
σ, the second and fourth give

σ =
2λ

λ2 + b
> 0. (2.7.1)

Similarly, taking β = iν, then β = −iν, we obtain

w1 = (1,−iτ, iν, ντ),

w2 = (1, iτ,−iν, ντ),

where

τ = −
(
ν2 + a

2ν

)
< 0. (2.7.2)

Eigenvectors as Axes for New Coordinate System. To better un-
derstand the orbit structure on the phase space, we make a linear change of
coordinates with the eigenvectors, u1, u2, w1, w2, as the axes of the new sys-
tem. Using the corresponding new coordinates (ξ, η, ζ1, ζ2), the differential
equations assume the simple form

ξ̇ = λξ,

η̇ = −λη,
ζ̇1 = νζ2,

ζ̇2 = −νζ1,

(2.7.3)

and the energy function (2.6.5) becomes

El = λξη +
ν

2
(ζ2

1 + ζ2
2 ). (2.7.4)

Solutions of the equations (2.7.3) can be conveniently written as

ξ(t) = ξ0eλt,

η(t) = η0e−λt,

ζ(t) = ζ1(t) + iζ2(t) = ζ0e−iνt,

(2.7.5)

where the constants ξ0, η0 and ζ0 = ζ0
1 + iζ0

2 are the initial conditions.
These linearized equations admit integrals in addition to the energy func-
tion (2.7.4); namely, the functions ηξ and |ζ|2 = ζ2

1 + ζ2
2 are both constant

along solutions.

Phase Space of the Equilibrium Region. For positive ε and c, the
region R, which is determined by

El = ε, and |η − ξ| ≤ c, (2.7.6)
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which is homeomorphic to the product of a two-sphere and an interval;
namely, for each fixed value of η−ξ on the interval I = [−c, c], the equation
El = ε determines the two-sphere

λ

4
(η + ξ)2 +

ν

2
(ζ2

1 + ζ2
2 ) = ε+

λ

4
(η − ξ)2.

The bounding sphere of R for which η − ξ = −c will be called n1, and
that where η − ξ = c, n2 (see Figure 2.7.1). We shall call the set of points
on each bounding sphere where η + ξ = 0 the equator, and the sets where
η + ξ > 0 or η + ξ < 0 will be called the north and south hemispheres,
respectively.

Flow in the Equilibrium Region. To analyze the flow inR one simply
considers the projections on the η-ξ plane and ζ planes, respectively. In the
first case we see the standard picture of an unstable critical point, and in the
second, of a center. Figure 2.7.1 schematically illustrates the flow in the η-ξ
plane. The coordinate axes have been tilted by 45◦ in order to correspond
to the direction of the flow in later figures. In Figure 2.7.1(a), R itself
projects to a set bounded on two sides by the hyperbola ηξ = ε/λ, the
thick solid hyperbolic segments on the top and bottom, (corresponding to
|ζ|2 = 0, see (2.7.4)). R is bounded on two other sides by the line segments
η − ξ = ±c, the dotted vertical lines at left and right in Figure 2.7.1(a),
which correspond to the bounding spheres, n1 and n2, respectively.

Since ηξ is an integral of the equations in R, the projections of orbits in
the η-ξ plane move on the branches of the corresponding hyperbolas ηξ =
constant, except in the case ηξ = 0 (where η = 0 or ξ = 0). If ηξ > 0, the
branches connect the bounding line segments η − ξ = ±c and if ηξ < 0,
they have both end points on the same segment. A check of equation (2.7.5)
shows that the orbits move as indicated by the arrows in Figure 2.7.1(b).

To interpret Figure 2.7.1(b) as a flow in R, notice that each point in
the projection corresponds to a circle in R given by the “radius” variable
ρ = |ζ|2 = constant. Recall from (2.7.4) that |ζ|2 = 2

ν (ε− ληξ). Of course,
for points on the bounding hyperbolic segments (ηξ = ε/λ), the constant is
zero so that the circle collapses to a point. Thus, the segments of the lines
η − ξ = ±c in the η-ξ projection correspond to the two-spheres bounding
R. This is because each corresponds to a circle crossed with an interval
where the two end circles are pinched to a point.

We distinguish nine classes of orbits grouped into the following four
categories:

1. The point at the origin in Figure 2.7.1(b), ξ = η = 0, corresponds
to a periodic orbit in R, known as the Lyapunov orbit5 (in, e.g.,
Szebehely [1967]).

5Aleksandr Mikhailovich Lyapunov (1857–1918) was a Russian mathematician, me-

chanician and physicist who worked on differential equations, celestial mechanics, and
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(a) (b)

Figure 2.7.1. The projection onto the η-ξ plane of orbits near the equilibrium

point (note, axes tilted 45◦). (a) The equilibrium region, R, is bounded by the thick

hyperbolic segments at top and bottom and the dotted vertical segments at left and right.

At the origin is the periodic orbit in R. The thick lines with arrows pointing toward or

away from the origin are trajectories asympototically winding onto the periodic orbit.

See the text for further descriptions. (b) Four additional trajectories are shown. The

labeling Tij denotes the path of a particle which entered R through ni and exited

through nj . Two transit orbits, T12 and T21, and two non-transit orbits, T11 and T22,

are shown.

2. The four half-open segments on the axes, ηξ = 0 (or equivalently
|ζ|2 = ρ∗ where ρ∗ = 2ε/ν), correspond to four cylinders of orbits
asymptotic to this periodic solution either as time increases (ξ = 0) or
as time decreases (η = 0). These are called asymptotic orbits. The
are drawn as the thick lines with arrows pointing toward or away
from the origin in Figures 2.7.1(a) and (b).

3. The hyperbolic segments determined by ηξ = constant > 0 (or equiv-
alently |ζ|2 < ρ∗) correspond to two cylinders which cross R from one
bounding sphere to the other, meeting both in the same hemisphere;
the north one if they go from η − ξ = +c to η − ξ = −c, the south
one in the other case. Since these orbits transit from one region to
another, we call them transit orbits. The two trajectories labeled
T12 and T21 in Figure 2.7.1(b) are transit orbits.

4. Finally the hyperbolic segments determined by ηξ = constant <
0 (|ζ|2 > ρ∗) correspond to two cylinders of orbits in R each of

probability theory. His main preoccupations were the stability of equilibrium and the
motion of mechanical systems, the model theory for the stability of uniform turbulent

liquids, and the motion of particles under the influence of gravity.
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which runs from one hemisphere to the other hemisphere on the same
bounding sphere. Thus if ξ > 0, the sphere is n1 (η− ξ = −c) and or-
bits run from the south (η+ξ < 0) to the north (η+ξ > 0) hemisphere
while the converse holds if ξ < 0, where the sphere is n2. Since these
orbits return to the same region, we call them non-transit orbits.
See the two trajectories labeled T11 and T22 in Figure 2.7.1(b).

McGehee Representation of the Equilibrium Region. McGehee
[1969], building on the work of Conley [1968], proposed a representation
which makes it easier to visualize the region R. Recall that R is home-
omorphic to S2 × I. In McGehee [1969], it is represented by a spherical
annulus, as shown in Figure 2.7.2(b).

(a) (b)

Lyapunov
orbit, l

l

Figure 2.7.2. McGehee representation of the equilibrium region. (a) The cross

section of the flow in theR region of the energy surface. (b) The McGehee representation

of the flow in the region R. See the text for details.

Figure 2.7.2(a) is a cross section of R. Notice that this cross section
is qualitatively the same as the illustration in Figure 2.7.1(b). The full
picture (Figure 2.7.2(b)) is obtained by rotating this cross section about
the indicated axis ω. The following classifications of orbits correspond to
the previous four categories:

1. There is an unstable periodic orbit l, the Lyapunov orbit in the region
R.

2. Again let n1, n2 be the bounding spheres of regionR, and let n denote
either n1 or n2. We can divide n into two hemispheres: n+, where
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the flow enters R, and n−, where the flow leaves R. We let a+ and
a− (where |ζ|2 = ρ∗) be the intersections with n of the cylinders of
orbits asymptotic to the unstable periodic orbit l. As shown in Figure
2.7.2(b), a+ appears as a circle in n+, and a− appears as a circle in
n−.

3. If we let d+ be the spherical cap (where |ζ|2 < ρ∗) in n+ bounded
by a+, shown in Figure 2.7.2(b), then the transit orbits entering R
on d+ exit on d− of the other bounding sphere. Similarly, letting d−

(|ζ|2 < ρ∗) be the spherical cap in n− bounded by a−, the transit
orbits leaving on d− have come from d+ on the other bounding sphere.

4. Note that the intersection b of n+ and n− is a circle of tangency
points. Orbits tangent at this circle “bounce off,” i.e., do not enter R
locally. Moreover, if we let r+ be a spherical zone which is bounded by
a+ and b, then non-transit orbits entering R on r+ (where |ζ|2 > ρ∗)
exit on the same bounding sphere through r− (where |ζ|2 > ρ∗) which
is bounded by a− and b.

Invariant Manifold Tubes as Separatrices. The key observation
here is that the asymptotic orbits are pieces of the stable and unstable
cylindrical manifolds of the Lyapunov orbit and they separate two distinct
types of motion: transit orbits and non-transit orbits. The transit orbits,
passing from one realm to another, are those inside the cylindrical manifold,
or tube. The non-transit orbits, which bounce back to their realm of origin,
are those outside the tube. This observation will be important for the
numerical construction of interesting orbits in Chapters 4 and 5.

2.8 Flow Mappings in the Equilibrium
Region

We now observe that on the two bounding spheres, each of the hemispheres
n± is transverse to the flow. It follows that the flow in R defines four
mappings—two between pairs of spherical caps d± and two between pairs
of spherical zones r± (as in Llibre, Martinez, and Simó [1985]):

ψ1 : d+
1 → d−2 , ψ2 : d+

2 → d−1 , (2.8.1)

ψ3 : r+
1 → r−1 , ψ4 : r+

2 → r−2 . (2.8.2)

The four mappings are diffeomorphisms. Furthermore, all these mappings
preserve the radius variable ρ = |ζ|2 since this is an integral in R.

The Infinite Twisting of the Mappings. After computing from the
solution (2.7.5) that

d

dt
arg ζ = −ν, (2.8.3)
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we see that the change in the argument of ζ for each of these mappings ψi
is approximately proportional to the negative of the time required to go
from domain to range.

Also, this time approaches infinity as the flow approaches the circle a+

(|ζ|2 → ρ∗), since on the circle a+ (where |ζ|2 = ρ∗) the orbits are asymp-
totic to the unstable periodic solution l. The proof is quite straightfor-
ward. Take ψ2 as an exmaple. According to equations (2.7.5), we have
ξ(0) = ξ0, η(0) = η0 on d+

2 where η0 and ξ0 are both positive and

η0 − ξ0 = +c.

Similarly, if T is the time required to go from domain to range, then ξ(T ) =
ξ0eλT and η(T ) = η0e−λT on d−1 , where

η(T )− ξ(T ) = η0e−λT − ξ0eλT = −c.

Eliminating c from the two above equations and solving for T , we obtain

T =
1

λ
ln
η0

ξ0
.

Moreover, the energy integral (2.7.4) gives

ξ0η0 =
ε

λ
− ν

2λ
|ζ|2 =

ν

2λ

(
2ε

ν
− |ζ|2

)
=

ν

2λ
(ρ∗ − ρ).

Hence,

T =
1

λ

(
ln

2λ(η0)2

ν(ρ∗ − ρ)

)
=

1

λ

(
ln

2λ(η0)2

ν
− ln(ρ∗ − ρ)

)
where the last term determines the order of the required transit time.

These facts imply that arbitrary circles with radius variable ρ = |ζ|2 in
the domain of the mappings are rotated by an amount that decreases to
minus infinity as ρ → ρ∗. Hence, the behavior of the flow in R should be
obtained by adding some spiraling to the arrows given in Figure 2.7.2(a).

In Chapters 3 and 5, we will need a simple geometric consequence of the
above observation on spiraling stated in terms of “abutting arcs” in the
domain, or range of ψi. Namely, an arc lying in the closure of one of these
sets (d± and r±) is called an abutting arc if it is in the set itself except for
one end point in the circle a±. See Figure 2.8.1. For example, let γ1 be an
abutting arc in the domain d+

1 of ψ1 with one end point P1 in a+
1 . Let δ1 be

another abutting arc in the range d−2 of ψ1 such that one of its end point
Q1 is in a−2 . Then ψ1(γ1) is an arc spiraling towards a−2 and cutting δ1 an
infinite number of times in any neighborhood of the point of abutment Q1.

This follows directly from the infinite twisting of the mappings ψ1; namely,
the image of γ1 spirals infinitely many times around and down to a−2 in the
range.
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Figure 2.8.1. Spiraling of the images of arcs γi.

Similarly, let γi be an abutting arc in the domain of ψi with one end
point Pi in a+

2 , a
+
1 , a

+
2 for i = 2, 3, 4, respectively. Let δi be another abutting

arc in the range of ψi such that one of its end points Qi is in a−1 , a
−
1 , a

−
2

respectively. Then ψi(γi) is an arc spiraling towards a−1 , a
−
1 , a

−
2 , respectively

and cutting δi an infinite number of times in any neighborhood of the point
of abutment Qi.

2.9 Trajectories in the Neck Region

Having studied the orbit structure in the equilibrium region R and its
projection on the η-ξ plane, we now examine briefly the appearance of
orbits in position space, that is, in the x-y plane. In position space, R
appears as the neck region connecting two realms, so trajectories in R will
be projected to tarjectories in the neck region.

Recall from §2.6 that the ξ and η coordinate axes are the eigenvectors
u1 = (1,−σ, λ,−λσ) and u2 = (1, σ,−λ,−λσ), respectively. Their projec-
tion on the x-y plane, ū1 = (1,−σ) and ū2 = (1, σ), plays an important
role in the study of the appearance of orbits on the position space.

The image of a tilted projection of R on the x-y plane provides the
right mental picture. To build physical intuition regarding the flow in the
equilibrium region, it is important to study the projection of the different
classes of orbits on the x-y plane. Here, we summarize the main results of
Conley [1968].
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Recall from §2.6 that the eigenvalues of the linear system (2.6.4) are ±λ
and ±iν with corresponding eigenvectors u1, u2, w1, w2. Thus, the general
(real) solution has the form

z(t) = (x(t), y(t), ẋ(t), ẏ(t)) = α1e
λtu1+α2e

−λtu2+2Re(βeiνtw1), (2.9.1)

where α1, α2 are real and β = β1 + iβ2 is complex. Notice that (2.9.1),
while slightly more complicated, is essentially the same as (2.7.5).

Upon inspecting this general solution, we see that the solutions on the
energy surface fall into different classes depending upon the limiting be-
havior of x(t) (the x coordinate of z(t)) as t tends to plus or minus infinity.
Notice that

x(t) = α1e
λt + α2e

−λt + 2(β1cos νt− β2sin νt). (2.9.2)

Thus, if t→ +∞, then x(t) is dominated by its α1 term. Hence, x(t) tends
to minus infinity (staying on the left-hand side), is bounded (staying around
the equilibrium point), or tends to plus infinity (staying on the right-hand
side) according to α1 < 0, α1 = 0, α1 > 0. See Figure 2.9.1. The same
statement holds if t → −∞ and α2 replaces α1. Different combinations of
the signs of α1 and α2 will give us again the same nine classes of orbits
which can be grouped into the same four categories:

1. If α1 = α2 = 0, we obtain a periodic solution which is a Lyapunov
orbit. It has been proven in Conley [1968] that this periodic orbit,
shown in Figure 2.9.1, projects onto the x-y plane as an ellipse with
major axis of length 2|τ |

√
ε/κ in the direction of the y-axis, and

minor axis of length 2
√
ε/κ in the direction of the x-axis. The orien-

tation of the orbit is clockwise. Here κ (= −a+ bτ2 + ν2 + ν2τ2) is a
positive constant. Note that the size of the ellipse goes to zero with
ε.

2. Orbits with α1α2 = 0 are asymptotic orbits. They are asymptotic to
the periodic Lyapunov orbit. It has been proven in Conley [1968] that
the asymptotic orbits with α1 = 0 project into the strip S1 in the x-y
plane centering around ū2 and bounded by the lines

y = σx± 2
√
ε(σ2 + τ2)/κ. (2.9.3)

Similarly, asymptotic orbits with α2 = 0 project into the strip S2

centering around ū1 and bounded by the lines

y = −σx± 2
√
ε(σ2 + τ2)/κ. (2.9.4)

Notice that the width of the strips goes to zero with ε.

3. Orbits with α1α2 < 0 are transit orbits because they cross the equi-
librium region R from −∞ (the left-hand side) to +∞ (the right-hand
side) or vice versa.
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L

y

x

Figure 2.9.1. The flow in the equilibrium region R of position space. Shown

are the periodic orbit (ellipse); a typical asymptotic orbit winding onto the periodic

orbit; two transit orbits (dashed); and two non-transit orbits (dotted). See the text for

an explanation of the labeling.

4. Orbits with α1α2 > 0 are non-transit orbits.

To study the projection of these last two categories of orbits, Conley
[1968] proved a couple of propositions which allows one to determine at
each position (x, y) the “wedge” of velocities (if any) in which α1α2 < 0.
See the shaded wedges in Figure 2.9.1. Since a detailed study will draw us
too far afield, we simply state some of the main observations.

In Figure 2.9.1, S1 and S2 are the two strips mentioned above. Outside
of each strip Si, i = 1, 2, the sign of αi is independent of the direction
of the velocity. These signs can be determined in each of the components
of the equilibrium region R complementary to both strips. For example,
in the left-most central components, both α’s are negative, while in the
right-most central components both α’s are positive. Therefore, α1α2 > 0
in both components and only non-transit orbits project onto these two
components.

Inside the strips the situation is more complicated since in Si, i = 1, 2, the
signs of αi depends on the direction of the velocity. For simplicity we have
indicated this dependence only on the two vertical bounding line segments
in Figure 2.9.1. For example, consider the intersection of strip S1 with the
left-most vertical line. On the subsegment so obtained there is at each point
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a wedge of velocity in which α1 is positive. The sign of α2 is always negative
on this subsegment, so that orbits with velocity interior to the wedge are
transit orbits (α1α2 < 0). Of course, orbits with velocity on the boundary
of the wedge are asymptotic (α1α2 = 0), while orbits with velocity outside
of the wedge are non-transit. Here, only a transit and asymptotic orbit are
illustrated. The situation on the remaining three subsegments is similar.

The Flow in the Equilibrium Region. In summary, the phase space
in the equilibrium region can be partitioned into four categories of distinctly
different kinds of motion (see Figures 2.7.1, 2.7.2 and 2.9.1): the periodic
Lyapunov orbits, asymptotic orbits, transit orbits, and, finally, non-transit
orbits.



3
Heteroclinic Connection and Global
Orbit Structure

3.1 Introduction.

As mentioned in Chapter 2, near one of the equilibrium points L1 or L2,
there is a family of unstable periodic orbits. For energy values in case 3, the
energy surface contains exactly one of these periodic solutions near each
libration point. As dynamical systems theory suggests (see, for example,
Wiggins [2003]), to understand fully the global dynamics of the flow, one
should examine structures like homoclinic and heteroclinic orbits connect-
ing these L1 and L2 Lyapunov orbits to themselves.

In §2.7, the local orbit structure near the libration points was shown to
give (i) periodic orbits (the Lyapunov orbits), (ii) pieces of the stable and
unstable manifolds of these periodic orbits, (iii) transit and (iv) non-transit
orbits. In this chapter, we explore how these local structures are connected
globally. Our goal is to show how homoclinic orbits in the interior realm are
connected to the homoclinic orbits in the exterior realm by a heteroclinic
cycle in the Jupiter realm. We refer to the union of these three structures
as a chain. An example is given in Figure 3.1.1.

The story is completed later in the chapter when this dynamical chain
structure is used to show the existence of complex and interesting trajec-
tories, some of which have been observed in actual comet trajectories, as
discussed in Koon, Lo, Marsden, and Ross [2000].
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Figure 3.1.1. A homoclinic-heteroclinic chain corresponding to the Jupiter comet

Oterma. The p.o.’s about L1 and L2 are black. Their homoclinic orbits are labeled with

the mean motion resonances with which they are associated. The orbit homoclinic to

the L1 p.o. in the interior realm is labeled as the “3:2 resonance,” since the particle (or

comet) goes around the Sun 3 times while Jupiter goes around the sun 2 times as seen in

an inertial frame. The orbit homoclinic to the L2 p.o. in the exterior realm is similarly

labeled as the “3:2 resonance.” The pair of heteroclinic orbits connecting the L1 and

L2 p.o.’s is also shown. These four structures together form a chain. We say this chain

corresponds to the comet Oterma because this comet follows a trajectory close to this

chain, as will be elaborated upon in this chapter. Distances are given in Astronomical

Units (AU, about 150 million km).

Trajectories can be categorized by their itinerary with respect to the
three realms, as shown in Figure 3.1.2. In other words, an itinerary such
as (. . . , S; J,X, J, . . .) lists the future and past whereabouts of a spacecraft
or comet; currently in the J (or Jupiter) realm, it is heading to the X (or
exterior) realm and came from the S (or Sun) realm.

What we find is an invariant set of orbits, to each of which we can attach
an itinerary (e.g., (. . . , X; J, S, J, . . .) in the informal notation) describing
the future and past history of the orbit for all time. At the end of this
chapter, we prove that any permissible itinerary which can be written cor-
responds to an actual solution of the three-body problem.

Guided by ideas laid down in this chapter, we numerically construct some
interesting trajectories in Chapters 4 and 5.

A Note of Caution to the Reader. The mathematics in this chapter
can be challenging and is not necessary for the rest of the book. The reader
interested mostly in mission design can skip this chapter if desired without
breaking the flow of the book.

Organization of the Chapter. In more detail, this chapter discusses
the following topics. In §3.2, we discuss some of the results from Conley
[1968] and McGehee [1969], which prove the existence of homoclinic orbits
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S J
X

Figure 3.1.2. Trajectories can be categorized by their itinerary with respect to the

three realms. For example, for a comet in the Sun-Jupiter system, the three realms are

S, J , and X. We prove a theorem given at the end of the chapter which states that any

an permissible itinerary (e.g., (. . . , X; J, S, J, . . .) in the informal notation) corresponds

to a solution of the three-body problem. Guided by the proof, we also outline a procedure

for finding such trajectories, which will be useful in later chapters.

in both the interior and exterior realms. These are the orbits which are
both forward and backward asymptotic to an unstable Lyapunov orbit.
The heart of the proof is the construction of a function which counts the
number of times an orbit segment with endpoints near the Lyapunov orbit
winds around a solid torus.

We discuss in §3.3 the main results in Llibre, Martinez, and Simó [1985]
on the transversality of the invariant manifolds for the L1 Lyapunov orbit.
In dynamical systems theory, the property of being doubly asymptotic to
a periodic orbit is described (and more quantitatively handled) by saying
that the orbit is in both the stable and unstable manifold of the periodic
orbit, or that the homoclinic orbit is in the intersection of the stable and
unstable manifolds of the periodic orbit. One of the most important issues
which arises in this context is the transversality of the intersection. The
presence of transversality will allow us to draw many profound conclusions
about the orbit structure of the system under study.

Since neither Conley [1968] nor McGehee [1969] was able to settle this
issue, Llibre, Martinez, and Simó [1985] spent their major effort in proving
analytically that the intersection is indeed transversal under appropriate
conditions, at least in the interior realm. We summarize their results.
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The theorems given in §3.3 are cited only for guidance on how to con-
struct the transversal homoclinic orbits numerically. In §3.4 we compute
intersections of stable and unstable manifolds of L1 and L2 p.o.’s to numer-
ically demonstrate the existence of transversal homoclinic orbits in both
the interior and exterior realms.

In §3.5 we use similar computational methods to numerically demon-
strate the existence of transversal heteroclinic orbits in the Jupiter realm
which connect asymptotically the L1 and L2 Lyapunov orbits. A hetero-
clinic orbit, also known as a heteroclinic connection, is an orbit lying
in the intersection of the stable manifold of one periodic orbit and the un-
stable manifold of another periodic orbit. As discussed in Chapter 2, since
the PCR3BP is a Hamiltonian system with two degrees of freedom, its en-
ergy manifold is three-dimensional. From the work of Conley [1968], it was
known that both the stable and unstable manifolds of the p.o.’s around L1

and L2 are two-dimensional. Hence, a dimension count suggests, but does
not prove, the existence of such a heteroclinic connection. Careful numer-
ical investigations allow us to show this connection is indeed present, as
well as to isolate and study it.

It is worth noting that, inspired by these numerical demonstrations which
were first reported in Koon, Lo, Marsden, and Ross [2000], two teams of
authors have rigorously proven the existence of transversal homoclinic and
heteroclinic orbits (Wilczak and Zgliczyński [2003] and Kirchgraber and
Stoffer [2004]). These are “computer-assisted proofs” using interval analysis
methods, and they further verify the claims we make in this chapter.

In §3.6, we numerically demonstrate that, within an appropriate range of
energy values, there exist chains of two homoclinic orbits and a symmetric
heteroclinic cycle, as in Figure 3.1.1. The existence of these chains will be
used in §3.7 to construct a suitable Poincaré map which will allow us to
classify as well as organize distinctively different types of global motions of
the PCR3BP in terms of ultimate behavior with respect to the equilibrium
points.

In §3.8 and §3.9, we extend the symbolic dynamics results of Llibre,
Martinez, and Simó [1985] to our situation and construct a set of bi-infinite
sequences with two families of symbols.

In §3.10, we state the main theorem of this chapter and discuss its impli-
cations. The theorem gives the global orbit structure of the PCR3BP in a
neighborhood of a chain of homoclinic orbits and a symmetric heteroclinic
cycle.
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3.2 Existence of Orbits Homoclinic to the
Lyapunov Orbit

In order to facilitate explanation of concepts in this chapter, we urge the
reader to keep a concrete physical example in mind—the motion of a comet
in the gravity field of the Sun and Jupiter.

Energy Manifold and Hill’s Region. Recall from §2.4 that the motion
of a comet with energy e is restricted to a three-dimensional energy surface
M(µ, e). The projection of the energy surface onto position space, M(µ, e),
is the region of possible motion known as the Hill’s region. The first four
cases of possible motion, depending on energy, are given in Figure 2.4.2.
For case 3, the region of possible motion contains necks around both L1

and L2 and the comet can transit from the interior realm to the exterior
realm and vice versa. This is the case of most interest to us.

Orbit Segments Winding around a Solid Torus. From McGehee
[1969], we know that the energy surface is broken up further into regions
bounded by invariant tori. These invariant tori A1 and A2 project onto the
darkly shaded annuli A1 and A2, respectively, shown for case 3 in Figure
3.2.1(a).

(a) (b)

exterior
 region

Jupiter
 region

interior
 region

S S JJ

Figure 3.2.1. (a) The projection of invariant tori (darkly shaded) on position space

for case 3. (b) Homoclinic orbits in the interior and exterior realms.

These annuli separate the Hill’s region into sets corresponding to the
invariant sets in the energy surface. It is interesting to note that for all of the
cases, the singularities corresponding to the center of the Sun and Jupiter
are separated from each other by an invariant torus (although we show
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only case 3), thus making it impossible for the comet to pass from a region
arbitrarily close to the Sun to a region arbitrarily close to Jupiter. Similarly,
Jupiter is separated from infinity by an invariant torus. We consider the
regions of the energy surface projecting to the area between the two darkly
shaded annuli, A1 and A2, i.e., the region containing Jupiter. The theorems
of McGehee given below show that all orbits leaving the vicinity of one
of the unstable periodic orbits proceed around one of the annuli T1 or
T2, projections of solid tori T1 or T2, before returning to that vicinity.
The direction of motion is the same for all orbits, counterclockwise in the
interior realm and clockwise in the exterior realm.

In Chapter 2, we studied the regions near the unstable periodic orbits
to obtain a qualitative picture of the asymptotic orbits. Here we combine
this picture of asymptotic orbits with the fact that orbits in T1 or T2 wind
around in one direction to construct homoclinic orbits in both the interior
and exterior realms, shown schematically in Figure 3.2.1(b).

We note that the following theorems do not literally apply to the system
parameters (µ) and energies (e) of interest to us. But they are a useful
guide and numerical experiments reveal that the qualitative results they
suggest hold over a larger set of system parameters and energies than is
proven.

The Theorems of McGehee. To precisely state the theorems, we must
first divide up the Hill’s region and the energy surface. From §2.5, for small
µ the two equilibrium points occur at an approximate distance rh = (µ/3)

1
3

on either side of Jupiter. We isolate these points by drawing vertical lines
on each side of them, i.e., lines at (1 − µ ± c1rh, 0) and (1 − µ ± b1rh, 0),
where b1 < 1 < c1. This divides the Hill’s region into five sets as shown in
Figure 3.2.2.

S J

X

Figure 3.2.2. Division of Hill’s region into five sets.

Let S and J be the large sets, i.e., realms, that contain the Sun and
Jupiter, respectively; let region R1 and region R2 be those sets that contain
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the two equilibrium points L1 and L2, respectively; and let X be the realm
that lies exterior to the orbit of Jupiter. We also divide the energy surface
M into sets projecting onto the sets shown in Figure 3.2.2. We will adopt
the notation convention introduced in §2.4 where a set in the energy surface
will be denoted by a script letter and its position space projection denoted
by an italicized letter: e.g., regionR1 for the set in the energy surface whose
projection is the region R1 in the position space. Theorem 3.2.1 leads to
the assertion that one can choose the division described above so that we
simultaneously have sufficient control of the flow in both sets S and R1 to
construct a homoclinic orbit. Theorem 3.2.2 makes the same assertion for
sets X and R2.

Let R denote either R1 or R2. As R is a function not only of b1 and c1,
but also µ and e, we sometimes write it as R(µ, e).

The analysis of R(µ, e) is of a local nature. In fact, we limit ourselves
to those energy values e for which the linearized equations about the equi-
librium point give us the qualitative picture of the flow. The flow for the
linearized equations was already analyzed in some detail in Chapter 2.

We know that for b1 and c1 close to 1, i.e., for the region R close to
the periodic orbit (p.o.), the flow for R is that shown in Figure 2.9.1. But
we also know that we cannot make c1 arbitrarily large without disturbing
this qualitative picture. On the other hand, we would like to make c1 large
enough to obtain accurate estimates on the behavior of the flow in S and
X . The following theorems show that there exists a c1 which allows us to
balance these two factors. In the theorem, ni,j is the nj bounding sphere
in region Ri.

3.2.1 Theorem (McGehee). There exist constants b1 and c1 and an
open set O1 in the (µ, e)-plane (see Figure 3.2.3(a)) containing the graph
of e = E1(µ) for small µ > 0 such that, for (µ, e) ∈ O1:

1. The energy surfaceM(µ, e) contains an invariant torus A1 separating
the Sun from Jupiter.

2. For e > E1(µ), the flow in R1(µ, e) is qualitatively the same as the
flow for the linearized equations. (See Figure 2.9.1)

3. If we let T1 be that submanifold of M co-bounded by the invariant
torus A1 and the left bounding sphere n1,1 of the equilibrium region
R1 (see Figure 3.2.3(b)), then there exists a function

θ : T1 → R

such that

(a) θ is a meridional angular coordinate for T1;

(b) θ is strictly increasing along orbits.
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(a) (b)

C

Figure 3.2.3. (a) Open set O1 in (µ, e)-plane. (b) The region T1 with meridional

angular coordinate θ.

3.2.2 Theorem (McGehee). There exist constants b1 and c1 and an open
set O2 in the (µ, e)-plane containing the graph of e = E2(µ) for small µ > 0
such that, for (µ, e) ∈ O2:

1. The energy surfaceM(µ, e) contains an invariant torus A2 separating
the Sun and Jupiter from infinity.

2. For e > E2(µ), the flow in R2(µ, e) is qualitatively the same as the
flow for the linearized equations. (See Figure 2.9.1)

3. If we let T2 be that submanifold of M co-bounded by the invariant
torus A2 and the right bounding sphere n2,2 of the equilibrium region
R2, then there exists a function

θ : T2 → R

such that

(a) θ is a meridional angular coordinate for T2;

(b) θ is strictly increasing along orbits.

See McGehee [1969] for the proofs of these theorems.
Part 3 of the above theorems gives us the following properties for the

flow in T1 and T2. The increase in θ along an orbit segment in T1 (or T2)
with endpoints in the bounding sphere n1,1 (or n2,2, respectively) is close
to a non-zero integer multiple of 2π. The increase in θ along any other orbit
segment which can be deformed to the first, keeping both endpoints in the
bounding sphere n, is close to the same integer multiple of 2π. Furthermore,
the increase of θ along any orbit segment remaining for an arbitrarily long
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time in T1 or T2 is arbitrary large. As will be shown, these are precisely the
properties we need to carry out the proof of the existence of a homoclinic
orbit.

The Existence of Orbits Homoclinic to a Lyapunov Periodic Or-
bit. Recall from Chapter 2 that for an energy e > Ei, there is a p.o. around
Li, i = 1 or 2, with two-dimensional invariant unstable, Wu

Li,p.o.
and stable

W s
Li,p.o.

, manifolds, the asymptotic orbits which are locally diffeomorphic
to cylinders. We recall that a homoclinic orbit related to a periodic orbit
l is an orbit that tends to l as t→ ±∞. Therefore, it is on the stable and
unstable invariant manifolds of l. A homoclinic orbit is called a transver-
sal homoclinic orbit if at some point of the orbit the tangent spaces to
the stable and unstable manifolds at that point span the full tangent space
to M(µ, e) at the same point.

We assert that in our problem either a transversal homoclinic orbit exists,
or “total degeneracy” occurs. Total degeneracy is the case when every orbit
asymptotic to the unstable periodic orbit at one end is also asymptotic to
the same periodic orbit at the other end and hence is a homoclinic orbit.
In other words, the total degeneracy situation occurs when the stable and
unstable manifolds of the Lyapunov orbit coincide with each other. In either
event we conclude the existence of a homoclinic orbit. We shall sketch
the proof below for completeness. For more details, see Conley [1968] and
McGehee [1969].

Assume that total degeneracy does not occur. The first step of the proof
of the preceding assertion is to find an orbit segment in T1 connecting either
d−1 to a+

1 or a−1 to d+
1 as follows. Consider Figure 3.2.4, where we show an

example of the latter, and where n1 denotes n1,1. Since T1 is compact and
our flow, which is Hamiltonian, preserves a nondegenerate area element, we
can conclude that some orbit which leaves R1 (and crosses the bounding
sphere n1) and so enters T1 must also leave T1 and re-enter R1 (and recross
n1). Therefore, for some point p ∈ d−1 of n1, there is an orbit segment
connecting p to a point q ∈ d+

1 of n1. Recall from §2.7 and Figure 2.7.2
that in R1, the spherical caps d−1 and d+

1 are where the flow crosses n1.
Starting with this orbit segment connecting p to q, we can find an orbit

segment connecting either d−1 to a+
1 or a−1 to d+

1 as follows. Let γ be an arc
in d−1 linking p to a−1 (where γ∩a−1 is not on a homoclinic orbit). If all of γ
is carried by the flow to the spherical cap d+

1 , then we shall have an orbit
segment with one endpoint in a−1 and the other in d+

1 . Otherwise, starting
from p, there is some maximal initial half-open subarc γ′ of γ which is
carried by the flow to d+

1 . Let r be the first point of γ not in γ′, then the
orbit segment with one endpoint at r must become arbitrarily long. But the
only way this orbit segment can become arbitrarily long is to approach the
asymptotic set, since the number of times it can wind around T1 is finite
and therefore must contain an arbitrarily long subsegment in R1. Because
of our knowledge of the flow in R1, we know that long orbit segments in
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Figure 3.2.4. The existence of orbits homoclinic to the Lyapunov orbit. The trajectory

shown connects a−1 to d+1 .

R1 must lie close to the cylinders of asymptotic orbits and therefore r must
be carried to a+

1 . Hence, in either case we conclude that there is an orbit
segment connecting the set d±1 in one hemisphere to the set of asymptotic
orbits in the other.

Without loss of generality, we can suppose that we have found an orbit
segment with one endpoint, called α, in a−1 and the other in d+

1 . We now
choose for γ the whole set a−1 . Using arguments similar to the above, we
can conclude that either all of a−1 is carried by the flow inside d+

1 , or there
exists a point β ∈ a−1 such that the orbit segment with β as an endpoint
becomes asymptotic at the other end. If the first possibility holds, we would
have a map of d−1 to the interior of d+

1 , contradicting area preservation of
Hamiltonian flow. Thus we have proven that either transversal homoclinic
orbits exist or total degeneracy occurs for the interior realm. The same
proof also works for the exterior realm.

3.3 Existence of Transversal Homoclinic
Orbits in the Interior Realm

Conley [1968] and McGehee [1969] did not settle the issue of when one has
transversality of the homoclinic orbit families for the PCR3BP, since total
degeneracy was a possibility they could not rule out analytically. Subse-
quently, Llibre, Martinez, and Simó [1985] devoted their major effort to
show that under appropriate conditions, the invariant manifolds of the L1

Lyapunov orbits do meet transversely. In this section, we summarize their
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analytical results. Moreover, in §3.5 we explore numerically the existence
of transversal homoclinic orbits in both the interior and exterior realms.

To state the major analytical results of Llibre, Martinez, and Simó [1985],
we first need to set up some notation. As mentioned earlier, near L1 and for
energy values e where E1 < e < E2 (case 2) there is a family of unstable
Lyapunov orbits. When e approaches E1 from above, the periodic orbit
tends to L1. There are one-dimensional invariant stable, W s

L1
, and unstable,

Wu
L1

, manifolds associated to L1.
Notice that equations (2.5.1) have the following symmetry

s : (x, y, vx, vy, t)→ (x,−y,−vx, vy,−t). (3.3.1)

Therefore, if we know the unstable manifold of L1 of the Lyapunov orbit
(which is a symmetrical periodic orbit) the corresponding stable manifold
is obtained through the use of the stated symmetry. This observation will
be used in later sections to find the transversal homoclinic orbits.

Analytical Results for L1 Lyapunov Orbit in Interior Realm.
Using the basic framework developed in McGehee [1969], Llibre, Martinez,
and Simó [1985] were able to prove the following two theorems. Together
these two theorems imply that for sufficiently small µ and for an appropri-
ate range of ∆E = e−E1, the invariant manifolds W s,S

L1,p.o.
and Wu,S

L1,p.o.
in

the interior realm S intersect transversely.

3.3.1 Theorem (Llibre-Martinez-Simó). For µ sufficiently small, the

branch Wu,S
L1

of Wu
L1

in the interior realm S has a projection on position
space (see Figure 3.3.1(a)) given by

d = µ1/3

(
2

3
N − 31/6 +M cos t+ o(1)

)
,

α = −π + µ1/3(Nt+ 2M sin t+ o(1)),

where d is the distance to the zero velocity curve, α is the angular coordinate
and N and M are constants.

In particular, for a sequence of values of µ which have the following
asymptotic expression:

µk =
1

N3k3
(1 + o(1)), (3.3.2)

the first intersection of this projection with the x-axis is orthogonal to that
axis, giving a symmetric (1,1)-homoclinic orbit for L1. The prefix (1,1)
refers to the first intersection (with the Poincaré section defined by the
plane y = 0, x < 0) of both the stable and unstable manifolds of L1.

3.3.2 Theorem (Llibre-Martinez-Simó). For µ and ∆E = e − E1 suf-

ficiently small, the branch Wu,S
L1,p.o.

of Wu
L1,p.o.

contained initially in the
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Figure 3.3.1. (a) Projection of the interior branch of the manifold Wu
L1

on the position

space. (b) First intersection (Poincaré “cut”) Γu,S1 of the interior branch of Wu
L1,p.o.

with

the plane y = 0, x < 0.

interior realm S of the energy surface intersects the plane y = 0 for x < 0
in a curve diffeomorphic to a circle (see Figure 3.3.1(b)).

In particular, for points in the (µ, e) plane such that there is a µk of
Theorem 3.3.1 for which

∆E > Lµ
4/3
k (µ− µk)2 (3.3.3)

holds (where L is a constant), there exist symmetric transversal (1,1)-
homoclinic orbits.

For details of the proofs, see Llibre, Martinez, and Simó [1985]. We would
like to make a few comments about these results which are pertinent to
the main thrust of this chapter.

1. The main objective of both theorems (3.3.1 and 3.3.2) is to study the
transversality of the invariant manifolds for the L1 Lyapunov orbit on the
energy surface whose energy e is slightly greater than E1(µ) as one varies
µ and e. The main step is to obtain an expression for the first intersection
of the unstable manifold Wu,S

L1,p.o.
with the plane y = 0 in the region x < 0,

which we label Γu,S1 . While formulas were provided in Llibre, Martinez, and
Simó [1985] for this closed curve as a function of µ and ∆E in the variables
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x, ẋ, they are quite complicated and difficult to interpret and hence are not
included here. But the key point is the following. According to Theorem
3.3.1, the set of values of µ for which we have a symmetric (1,1)-homoclinic
orbit associated to L1 is discrete and is given by equation (3.3.2). Then for

any other value of µ the unstable manifold Wu,S
L1

of L1 reaches the (x, ẋ)-

plane in a point (x1, ẋ1) outside ẋ = 0. Therefore, if ∆E is too small, Γu,S1

does not cut the x-axis and hence (by symmetry), the intersection Γs,S1 of

the stable manifold W s,S
L1,p.o.

with the plane y = 0, x < 0 does not cut the
x-axis either. Therefore the first intersections of the invariant manifolds do
not meet and there is no symmetric (1,1)-homoclinic orbit.

However, for a fixed value of µ, if we increase ∆E, we hope that Γu,S1 of
the unstable manifold will become large. Therefore we can look for some
value of ∆E such that Γu,S1 becomes tangent to the x-axis or even intersects
it at more than one point. Then, due to the symmetry of the PCR3BP
(3.3.1), Γs,S1 of the stable manifold also intersects the x-axis at the same

points. Points P on the x-axis where Γu,S1 and Γs,S1 intersect correspond to
(symmetric) orbits homoclinic to the Lyapunov orbit (see Figure 3.3.1(b)).

If Γu,S1 is transversal to Γs,S1 at P then the homoclinic orbit is transversal.
The results of Theorem 3.3.2 say that the above phenomenon occurs if

∆E > Lµ
4/3
k (µ− µk)2 holds.

2. Using the results of Theorem 3.3.2, Llibre, Martinez, and Simó [1985]
were able to draw the mesh of homoclinic tangencies for the (µ,∆E)-
plane. The numbers in Figure 3.3.2 show the number of symmetric (1,1)-

homoclinic points found in the first intersection of Wu,S
L1,p.o.

with the plane

0 2
4

6

8

10

12

14

Figure 3.3.2. Partition of the (µ,∆E)-plane according to the number of symmet-

ric (1,1)-homoclinic points found in the first intersection of Wu,S
L1,p.o.

with the plane

y = 0, x < 0.
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y = 0, x < 0 when one varies µ and ∆E. For us, the key point of the
theorems is that for the wide range of µ which exist in the solar system,
the invariant manifolds of the L1 Lyapunov orbit intersect transversely for
sufficiently large ∆E.

3. The heart of the proofs of these two theorems is to obtain expressions
for Wu,S

L1
as a function of µ and for Wu,S

L1,p.o.
as a function of µ and ∆E.

By using the basic framework of McGehee [1969], Llibre, Martinez, and
Simó [1985] divided the annulus T1 in the interior realm S into two sets:
a small neighborhood H near R1 and the rest of the realm outside this
small neighborhood. In the neighborhood H, the PCR3BP can be consid-
ered as a perturbation of the Hill’s problem. In celestial mechanics, it is
well known that Hill’s problem studies the behavior near the small mass
of the PCR3BP in the limit when µ approaches zero. In the rest of the
realm away from the small mass, the PCR3BP can be approximated by
the two-body problem in a rotating frame. Through a number of careful
estimations, Llibre, Martinez, and Simó [1985] were able to obtain these
analytical results.

Summary. Conley [1968] and McGehee [1969] proved the existence of
homoclinic orbits for both the interior and exterior realm, and Llibre,
Martinez, and Simó [1985] showed analytically the existence of transversal
symmetric (1,1)-homoclinic orbits in the interior realm under appropriate
conditions. For our problem, we need to find transversal homoclinic orbits
in both interior and exterior realms as well as transversal heteroclinic cycles
for the L1 and L2 Lyapunov orbits. In the following sections, we perform
some numerical explorations using the methods described in Chapter 4. For
more details on finding invariant manifolds numerically, see Gómez, Jorba,
Masdemont, and Simó [1991a] and references therein.

3.4 Existence of Transversal Homoclinic
Orbits in the Exterior Realm

We turn our attention now to numerical explorations of the problem, and
in particular, to the existence of transversal homoclinic orbits for the L2

Lyapunov orbit in the exterior realm. Though there are no analytical results
proving the existence of transversal homoclinic orbits in the X realm, we
can construct them numerically by finding an intersection of the manifolds
W s
L2,p.o.

and Wu
L2,p.o.

on an appropriately chosen Poincaré section.
Numerical experiments guided by geometrical insight suggest that we

cut the flow by the plane y = 0, the line passing through the two masses
in the rotating frame. The branch of the manifold Wu

L2,p.o.
which enters

the X realm flows clockwise in the position space, as shown in See Figure
3.4.1(a). We refer to this exterior branch of the manifold as Wu,X

L2,p.o.
. Out-

side of a neighborhood of n2 in the X realm, this two-dimensional manifold
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tube Wu,X
L2,p.o.

first intersects the plane y = 0 on the part of T2 which is op-
posite to L2 with respect to the Sun (i.e., x < 0). The intersection shown
in Figure 3.4.1(b) is a curve diffeomorphic to a circle, as one would expect

geometrically. We call this intersection the first cut of the tube Wu,X
L2,p.o.

with y = 0. Some arcs of this curve produce successive intersections with-
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Figure 3.4.1. (a) The position space projection of the unstable manifold “tube”

Wu,X
L2,p.o.

until the first intersection with the Poincaré section at y = 0, x < 0. (b)

The first Poincaré cut Γu,X1 of the manifold Wu,X
L2,p.o.

on the plane y = 0, x < 0.

out leaving the X realm. The q-th of these intersections of Wu,X
L2,p.o.

with

y = 0 will be referred to as Γu,Xq . In a similar manner we call Γs,Xp the

corresponding p-th intersection with y = 0 of W s,X
L2,p.o.

.

A point in y = 0 belonging to Γu,Xq ∩ Γs,Xp (if not empty) will be called
a (q, p)-homoclinic point. The existence of (q, p)-homoclinic points for
certain q and p is shown in McGehee [1969].

Our goal is to obtain the first such transversal intersection of Γu,Xq
with Γs,Xp and so obtain a transversal (q, p)-homoclinic point. The (q, p)-

homoclinic point P is transversal if Γu,Xq and Γs,Xp , which necessarily in-
tersect at P , do so transversely: that is, their tangent spaces span the
(x, ẋ)-plane at P . Other intersections (for larger q and p) may exist, but
we will restrict ourselves for now to the first. Suppose that the unstable
manifold intersection Γu,Xq is a closed curve γ in the variables x, ẋ. Let sx
be the symmetry with respect to the x-axis on this plane. Then due to the
symmetry of the PCR3BP (3.3.1), the q-th intersection Γs,Xq of the stable

manifold W s,X
L2,p.o.

with y = 0 is sxγ. For some minimum q, the closed curve
γ intersects the ẋ = 0 line of the (x, ẋ)-plane. Points P along the curve γ
which intersect the ẋ = 0 line are (q, q)-homoclinic points, corresponding
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to (symmetric) orbits homoclinic to the Lyapunov orbit. If the curve γ is
transversal to the curve sxγ at the point P then the homoclinic orbit cor-
responding to P is transversal. If intersections between the curves γ and
sxγ exist off the line ẋ = 0 (i.e., if the set (γ ∩ sxγ)\{ẋ = 0} is nonempty),
then nonsymmetric homoclinic orbits exist.

Consider Figure 3.4.1(b), where we use the values µ = 9.537× 10−4 and

∆E = e−E2 = 0.005 to compute the unstable Poincaré cut Γu,X1 . If we also

plot the stable cut Γs,X1 , which is the mirror image of unstable cut Γu,X1

(i.e., sxΓs,X1 ), we find several points of intersection. In Figure 3.4.2(a),
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Figure 3.4.2. (a) A group of four transverse (1, 1)-homoclinic points. (b) The symmet-

ric (1, 1)-homoclinic orbit corresponding to the left ẋ = 0 (1, 1)-homoclinic point (the

large black dot in (a)).

we focus on the left-most group of points, centered at about x = −2.07.
We find two ẋ = 0 intersections which are transversal homoclinic points
in the X realm. The transversal symmetric (1, 1)-homoclinic orbit corre-
sponding to the left ẋ = 0 intersection is shown in Figure 3.4.2(b).

We also notice two off-axis intersections in Figure 3.4.2(a), completing
the local transversal intersection of two closed loops in the (x, ẋ)-plane. As
these two intersections occur near the line ẋ = 0, the appearance of the
corresponding homoclinic orbits in position space will be nearly symmetric.
A more pronounced case of nonsymmetry occurs for the other group of
intersection points centered near x = −1.15 on the right side of Figure
3.4.1(b), for which we have the nonsymmetric (1, 1)-homoclinic orbit given
in Figure 3.4.3.

Homoclinic Orbits in the Exterior and Jupiter Realms. A similar
procedure can numerically produce homoclinic orbits in the interior realm
as well as in the Jupiter realm. We can even look at cuts beyond the first and
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Figure 3.4.3. A nonsymmetric (1, 1)-homoclinic orbit.

large values of µ and ∆E, such as shown in Figure 3.4.4(a). For example,
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Figure 3.4.4. (a) The first three Poincaré cuts of the unstable (Wu,S
L1,p.o.

) and stable

(W s,S
L1,p.o.

) manifolds with the plane y = 0. (b) A nonsymmetric (1, 3)-homoclinic orbit

in the interior realm (corresponding to the three large dots in (a)).

in Figure 3.4.4(b) we show an interior realm (1, 3)-homoclinic orbit (note,
also (2, 2) and (3, 1), using q̄ + p̄ = q + p) associated to an L1 Lyapunov
orbit for µ = 0.1,∆E = e− E1 = 0.03715.
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3.5 Existence of Heteroclinic Connections
between Lyapunov Orbits

We construct a heteroclinic connection between Lyapunov orbits of L1

and L2 by finding an intersection of their respective invariant manifolds in
the J realm. To do so, we seek points of intersection on a suitably chosen
Poincaré section. For instance, to generate a heteroclinic orbit which goes
from an L1 Lyapunov orbit (as t → −∞) to an L2 Lyapunov orbit (as
t→ +∞), we proceed as follows.

We restrict ourselves for now to case 3 (e ∈ (E2, E3); see Figure 2.4.2),
for which the Hill’s region opens enough to permit Lyapunov orbits about
both L1 and L2 to exist. Let the branch of the unstable manifold of the
L1 Lyapunov orbit which enters the J realm be denoted Wu,J

L1,p.o.
. On the

same energy surface there is an L2 Lyapunov orbit, whose stable manifold
in the J realm we similarly denote W s,J

L2,p.o.
. The projection of the two-

dimensional manifold tubes onto the position space is shown in Figure
3.5.1(a).
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Figure 3.5.1. (a) The projection of invariant manifolds Wu,J
L1,p.o.

and W s,J
L2,p.o.

in the

realm J of the position space. (b) The first two Poincaré cuts of the invariant manifolds

with the plane x = 1− µ.

To find intersections between these two tubes, we cut the flow by the
plane x = 1 − µ, denoted by the thick black line in Figure 3.5.1(a). The
cuts on this plane are shown in Figure 3.5.1(b).

This convenient plane maximizes the number of intersections for values
of µ, e which produce manifolds making a limited number of revolutions
around Jupiter before escaping from the J realm. The q-th intersection of
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Wu,J
L1,p.o.

with the plane x = 1 − µ will be labeled Γu,JL1,q
. Similarly, we will

call Γs,JL2,p
the p-th intersection of W s,J

L2,p.o.
with x = 1− µ.

Numerical experiments show that the L1 Lyapunov orbit unstable mani-
fold Wu,J

L1,p.o.
does not coincide with the L2 Lyapunov orbit stable manifold

W s,J
L2,p.o.

. Moreover, for a wide range of µ and e values (where e ∈ (E2, E3)),
numerical explorations demonstrate that they do intersect transversely.
While we recognize that for certain values of µ and e, there are tangen-
cies between the stable and unstable manifold, we will not deal with this
interesting case in this book. Hence, from now on, we will concentrate our
numerical explorations only on the cases where the stable and unstable
manifold intersect transversely.

Now, suppose that Γu,JL1,q
and Γs,JL2,p

are each closed curves in the variables
y, ẏ. A point in the plane x = 1−µ belonging to the intersection of the two
closed curves (i.e., Γu,JL1,q

∩Γs,JL2,p
) will be called a (q, p)-heteroclinic point

because such a point corresponds to a heteroclinic orbit going from the
L1 Lyapunov orbit to the L2 Lyapunov orbit. Moreover, since we restrict
ourselves to the case where Wu,J

L1,p.o.
and W s,J

L2,p.o.
intersect transversely,

the (q, p)-heteroclinic point will be a transversal heteroclinic point. Our
objective is to obtain the first intersection point (or group of points) of

the curve Γu,JL1,q
with the curve Γs,JL2,p

and so obtain the minimum values
of q and p such that we have a transversal (q, p)-heteroclinic point. Other
intersections may exist, but we will restrict ourselves for now to the first.
For some minimum q and p, we have an intersection of the curves, and
some number of (q, p)-heteroclinic points, depending on the geometry of
the intersection. Note that the sum q+ p must be an even positive integer.

As we are interested in heteroclinic points for the Sun-Jupiter system
(µ = 9.537 × 10−4), we take e = −1.5185 and numerically obtain the

intersections of the invariant manifolds Wu,J
L1,p.o.

and W s,J
L2,p.o.

with the plane

x = 1−µ. In Figure 3.5.1(b) we show the curves Γu,JL1,q
for q = 1, 2 and Γs,JL2,p

for p = 1, 2. Notice that Γu,JL1,2
and Γs,JL2,2

intersect in two points (the black
dots in Figure 3.5.1(b) near y = 0.042). Thus, the minimum q and p for
a heteroclinic point to appear for these particular values of µ, e are q = 2
and p = 2. The (2, 2)-heteroclinic points can each be forward and backward
integrated to produce heteroclinic orbits going from the L1 Lyapunov orbit
to the L2 Lyapunov orbit, otherwise known as a heteroclinic connection. We
show one of the heteroclinic orbits in Figure 3.5.2. Notice that the number
of revolutions around Jupiter is given by (q + p− 1)/2. The reverse orbit,
going from the L2 Lyapunov orbit to the L1 Lyapunov orbit, is easily given
by the symmetry s (3.3.1). It is the mirror image (about the x-axis) of the
trajectory in Figure 3.5.2, with the direction arrows reversed. These two
heteroclinic connections together form a symmetric heteroclinic cycle.
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Figure 3.5.2. The existence of a transversal (2, 2)-heteroclinic orbit in the J realm.

3.6 Existence of Chains of Homoclinic
Orbits and Heteroclinic Cycles

We have numerically demonstrated the existence of homoclinic and het-
eroclinic orbits associated to the L1 and L2 Lyapunov orbits for case 3. We
now take the final step, combining homoclinic and heteroclinic orbits of the
same energy value to generate what is called a homoclinic-heteroclinic
chain of orbits, which connect asymptotically the L1 and L2 Lyapunov
orbits to each other. As will be seen, these chains imply a complicated
dynamics connecting the interior, exterior, and Jupiter realms.

As an example, we again choose the Sun-Jupiter system (µ = 9.537 ×
10−4), but now an energy value similar to that of comet Oterma during
its Jupiter encounters (e = −1.515). Using the described methodologies,
we obtain an interior realm orbit homoclinic to the L1 Lyapunov orbit,
an exterior realm orbit homoclinic to the L2 Lyapunov orbit, and a het-
eroclinic cycle connecting the L1 and L2 Lyapunov orbits in the Jupiter
realm. The union of these orbits is the homoclinic-heteroclinic chain shown
in Figure 3.1.1. The existence of homoclinic-heteroclinic chains has impor-
tant consequences, which will be expanded upon further in the following
sections.
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3.7 Construction of a Suitable Poincaré
Map

The idea of reducing the study of the global orbit structure of a system
of differential equations to the study of an associated discrete map is due to
Poincaré [1890], who first utilized the method in his studies of the restricted
three-body problem. In this section we use the chain of two homoclinic or-
bits and one symmetric heteroclinic cycle (such as the one shown in Figure
3.1.1) to construct a suitable Poincaré map. Our choice of Poincaré map
will allow us to study the complex global orbit structure near the chain.
We find an invariant set for this map near some transversal homoclinic and
heteroclinic points along the chain where “Smale horseshoe”-like dynamics
exist. We then use symbolic dynamics to characterize the chaotic motion
of a comet in a neighborhood of the chain as it transitions intermittently
through the interior, Jupiter and exterior realms. Not only do we prove
the existence of the invariant set, but we also numerically approximate
it in Chapter 4, gaining further insight into the complex global dynamics
associated with the chains.

Here is additional detail about how we proceed: In this section, we con-
struct a Poincaré map P transversal to the flow around a chain whose
domain U consists of four different squares Ui, i = 1, 2, 3, 4, located in dif-
ferent parts of phase space in the neighborhood of the chain, as shown
schematically in Figure 3.7.1.

Jupiter
region

exterior
region

interior
region

Figure 3.7.1. The construction of a suitable Poincaré map. The labeling D1, etc., is

described in the text.

Squares U1 and U4 are contained in the surface y = 0 and each centers
around a transversal homoclinic point in the interior and the exterior realm,
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respectively. Squares U2 and U3 are contained in the surface x = 1 − µ
(y < 0 and y > 0, respectively) and center around transversal heteroclinic
points in the Jupiter realm which are symmetric with respect to each other.
Clearly, for any orbit which passes through a point q in one of the squares
and whose images and pre-images (Pn(q), n = 0,±1,±2, . . .) all remain in
the domain U , the whereabouts of Pn(q) (as n increases or decreases) can
provide some of the essential information about the history of the particular
orbit. We record this history with a bi-infinite sequence. This well-known
technique of studying only the set of points that forever remain in the
domain U (the invariant set) provides us with all the periodic solutions
as well as the recurrent solutions in the neighborhood of the chain.

The technique of characterizing the orbit structure of a dynamical sys-
tem via a set of bi-infinite sequences of “symbols” is known as symbolic
dynamics.

In §3.8 and §3.9, we extend the symbolic dynamics results of Llibre, Mar-
tinez, and Simó [1985] to our situation and construct a set of bi-infinite
sequences with two families of symbols. The first family is a subshift of
finite type with four symbols {u1, u2, u3, u4}. It is used to keep track of
the whereabouts of an orbit with respect to the four squares U1, U2, U3, U4.
The symbol ui is recorded every time the Ui square is pierced by the orbit.
Subshift here means that among the set of all bi-infinite sequences of four
symbols, (i.e., (. . . , ui−1

;ui0 , ui1 , ui2 , . . .) where ij ranges from 1 to 4), cer-
tain sequences where the adjacent entries in the sequence violate certain
relations are not allowed. For example, from U1, the (forward) flow cannot
get to U4 without passing through other squares. Hence, in the bi-infinite
sequence, the symbol u1 cannot be followed by u4. The relations can be
defined by a matrix A called the transition matrix. In our case,

A =


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 .

It is constructed by the following rule: (A)kl = 1 if the ordered pair of
symbols uk, ul may appear as adjacent entries in the symbolic sequence,
and (A)kl = 0 if the ordered pair of symbols uk, ul may not appear as
adjacent entries. For example, since u1 cannot be followed by u4, we have
(A)14 = 0.

The second family is a full shift of infinite type with symbols of positive
integers greater than a fixed integer m. This set of bi-infinite sequences of
positive integers is used to keep track of the number of integer revolutions
that the projection of an orbit winds around either L1 or L2 when the orbit
enters the equilibrium regions R1 or R2, respectively.

In §3.10, we state the main theorem of this chaoter and discuss its impli-
cations. The theorem gives the global orbit structure of the PCR3BP in a
neighborhood of a chain of homoclinic orbits and a symmetric heteroclinic
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cycle. It says essentially that given any bi-infinite sequence

α = (u, r) = (. . . , (ui−1
, r−1); (ui0 , r0), (ui1 , r1), (ui2 , r2) . . .),

there exist initial conditions near the transversal homoclinic and hetero-
clinic points (the intersection of the chain with U) such that an orbit corre-
sponding to such initial conditions starts at Ui0 and goes to Ui1 (provided
(A)i0i1 = 1). This orbit passes through either the equilibrium region R1

or R2 depending on whether the initial index (i0 in the current case) is
1, 3 or 2, 4 (see Figure 3.7.1 for reference). For example if i0 = 1, then the
projection of the orbit winds around L1 for r0 revolutions inside the region
R1 before leaving for Ui1 . After that, the same process begins with (ui1 , r1)
in place of (ui0 , r0) and (ui2 , r2) in place of (ui1 , r1), etc. For negative time,
a similar behavior is described for (ui−1 , r−1), (ui0 , r0), etc. While the for-
malism involved in the proof is fairly standard, there are a few new features
which may be worth pointing out. While most of these comments will be
made earlier, we provide a sketch of the proof in §3.10 both for complete-
ness and for the convenience of the reader. For more details, one can consult
Koon, Lo, Marsden, and Ross [2000], Moser [1973], Llibre, Martinez, and
Simó [1985], Wiggins [2003], and Wiggins [1993].

In Chapter 4 we numerically construct sets of orbits with prescribed
itineraries. By successive application of the Poincaré map P to a transversal
plane in a (rather large) neighborhood of a chain, we can theoretically
generate regions of orbits with itineraries of any size.

Construction of a Suitable Poincaré Map. In §3.6, we showed that
with an appropriate energy value, there exists a chain of two homoclinic
orbits and one symmetric heteroclinic cycle. For simplicity of exposition,
let us suppose that the chain C consists of (1, 1)-transversal homoclinic
orbits in the interior and exterior realms and a symmetric (1, 1)-transversal
heteroclinic cycle in the Jupiter realm. A similar study can be done for other
cases.

Now we are ready to construct a Poincaré map. The first step is to
construct the transversal maps on the bounding spheres of the equilib-
rium regions R1 and R2. Let ε1 and ε2 be small positive quantities. For
the bounding spheres n1,1 and n1,2 of the equilibrium region R1, we define
{A1, B1, C1, D1}, {E1, F1, G1, H1} as the set of points of {d−1,1, r

−
1,1, r

+
1,1, d

+
1,1},

{d+
1,2, r

+
1,2, r

−
1,2, d

−
1,2}, respectively, such that ||ζ|2−ρ∗| < ε1. These sets cor-

respond to thin strips on the bounding sphere centered on the asymptotic
sets {a−1,1, a

+
1,1}, {a

+
1,2, a

−
1,2}, respectively, as shown in Figure 3.7.2. Simi-

larly, given ε2 small, we can define corresponding strips for the bounding
spheres n2,1 and n2,2 of the equilibrium region R2.

If ε1 and ε2 are small enough, the flow is transversal to the surfaces just
defined. Recall from §2.8 that orbits entering R1 through C1, D1, E1, F1

leave it through B1, H1, A1, G1, respectively, because |ζ|2 is a first inte-
gral in R1. Therefore the diffeomorphisms ψ1,i send D1, E1, C1, F1 into
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Figure 3.7.2. The strips near the asymptotic sets on the spheres n1,1, n1,2, n2,1, n2,2.

H1, A1, B1, G1 respectively, for i = 1, 2, 3, 4, where the ψ1,i are the map-
pings given in (2.8.1) and (2.8.2). Similar results hold for orbits entering
R2 and the corresponding diffeomorphisms ψ2,i send D2, E2, C2, F2 into
H2, A2, B2, G2 respectively, for i = 1, 2, 3, 4.

The second step is to construct transversal maps outside of the equilib-
rium regions. Let p1,1 ∈ a+

1,1 (resp. p2,2 ∈ a+
2,2) be a point of the transversal

homoclinic orbit of C in the interior (resp. exterior) realm. Let A′1 and B′1
(resp. G′2 and H ′2) be the first images of A1 and B1 (resp. G2 and H2) in
n1,1 (resp. n2,2) sent by the forward flow outside R1 (resp. R2). The maps
sending A1, B1, G2, H2 onto A′1, B

′
1, G

′
2, H

′
2 are diffeomorphisms. In a neigh-

borhood of p1,1 (resp. p2,2) the qualitative picture of A′1 and B′1 (resp. G′2
and H ′2) is shown in Figure 3.7.2 provided ε1 and ε2 are sufficiently small.

Similarly, let p1,2 ∈ a+
1,2 and p2,1 ∈ a+

2,1 be points of the transversal
heteroclinic cycle of C in the Jupiter realm. Let A′2 and B′2 (resp. G′1 and
H ′1) be the first images of A2 and B2 (resp. G1 and H1) in n1,2 (resp. n2,1)
sent by the flow outside R1 and R2. The maps sending A2, B2, G1, H1 onto
A′2, B

′
2, G

′
1, H

′
1 are diffeomorphisms. In a neighborhood of p1,2 (resp. p2,1)

the qualitative picture of A′2 and B′2 (resp. G′1 and H ′1) is also shown in
Figure 3.7.2.

Now let U1 (resp. U4) be the sets diffeomorphic to (C1 ∪D1)∩ (A′1 ∪B′1)
(resp. (E2∪F2)∩ (G′2∪H ′2)) defined by following the flow backwards up to
the first crossing with the surface y = 0. Similarly, let U2 (resp. U3) be the
sets diffeomorphic to (C2 ∪D2) ∩ (G′1 ∪H ′1) (resp. (E1 ∪ F1) ∩ (A′2 ∪B′2))
defined by following the flow backwards up to the first crossing with the
surface x = 1−µ. See Figures 3.7.1 and 3.7.2. Since each of the sets Ui are
topologically a square, we shall refer to them loosely as squares in the rest
of this section.

Let U = U1 ∪ U2 ∪ U3 ∪ U4. We define the Poincaré map

P : U → U (3.7.1)

in the following way: To each point q ∈ U we assign the corresponding
first intersection point with U of the orbit passing through q, if such an
intersection exists. For simplicity of notation, we loosely refer to U1 as
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(C1 ∪ D1) ∩ (A′1 ∪ B′1) even though U1 actually lies in the surface y = 0.
Similar convention will be used for the other Ui’s.

Now we consider the invariant set of points, Λ, which remain in U under
all forward and backward iterations by P . Thus Λ is defined as

Λ = ∩∞n=−∞P
n(U). (3.7.2)

This invariant set contains all the periodic solutions as well as the recurrent
solutions near the chain and provides insight into the global dynamics in a
neighborhood of the chain.

Horseshoe-type Map and Conley-Moser Conditions. We review a
standard textbook example to introduce the next section. For a horseshoe-
type map h : Q → Q of a square Q into itself, which satisfies the Conley-
Moser conditions, the invariant set of all iterations

Λh = ∩∞n=−∞h
n(Q), (3.7.3)

can be constructed and visualized in a standard way. The Conley-Moser
conditions are the following.

• Strip condition: h maps “horizontal strips” H0, H1 to “vertical
strips” V0, V1, (with horizontal boundaries to horizontal boundaries
and vertical boundaries to vertical boundaries).

• Hyperbolicity condition: h has uniform contraction in horizontal
direction and expansion in vertical direction.

The invariant set of first iterations

Λ1
h = h−1(Q) ∩Q ∩ h1(Q), (3.7.4)

has 4 squares, with addresses (0; 0), (1; 0), (1; 1), (0; 1). Invariant set of sec-
ond iterations has 16 squares contained in 4 squares of first stage. This
process can be repeated ad infinitum due to the Conley-Moser conditions.
What remains is invariant set of points Λh which are in 1-to-1 correspon-
dence with set of bi-infinite sequences of 2 symbols (. . . , 0; 1, . . .).

3.8 Horseshoe-like Dynamics

Compared with the standard textbook example above which studies the
chaotic dynamics in a neighborhood of a transversal homoclinic point of a
two-dimensional map f̄ , the Poincaré map P constructed in this chapter
has a number of special properties.
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Domain of the Poincaré Map P . Instead of studying the first return
map f̄ (induced by the flow f) on a (small) topological square Q, the
domain U of the Poincaré map P consists of four squares Ui, i = 1, 2, 3, 4
which center around p1,1, p2,1, p1,2, p2,2, respectively, as shown in Figures
3.8.1 and 3.8.2.

Figure 3.8.1. The families of horizontal strips and their images under P .

Moreover, the map P is not defined on points in U belonging to the
invariant manifolds of the L1 and L2 Lyapunov orbits. Take U1 as an
example. On the curves Γu,SL1,1

and Γs,SL1,1
which are the first intersections of

the unstable and stable invariant manifolds of the L1 Lyapunov orbit with
the surface y = 0 in the interior (Sun) realm, the Poincaré map is singular
because any point on those curves will be carried by the flow asymptotically
backward or forward towards the L1 Lyapunov orbit. Hence, we have a kind
of singular Poincaré map as it has been considered by Devaney [1981]. We
return to this point at the end of §3.9.

Therefore, we must consider in fact four small (open) squares in U1,
namely:

(C1 ∩A′1), (C1 ∩B′1), (D1 ∩A′1) and (D1 ∩B′1).

Similar consideration is also needed for the other Ui’s which add up to
sixteen small squares in total, as shown in Figure 3.8.2.

Horizontal and Vertical Strips. For the standard textbook example,
the first return map f̄ (induced by the flow f) on the square Q qualitatively
looks like a Smale horseshoe map. Conley and Moser found conditions for
the map f̄ to satisfy in order for it to have an invariant subset Λf̄ of Q
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Figure 3.8.2. The domain U = U1 ∪ U2 ∪ U3 ∪ U4 of the Poincaré map P .

on which it has chaotic dynamics. These conditions are a combination of
geometrical and analytical conditions.

1. The geometrical part consists of generalizing the notion of horizon-
tal and vertical rectangles to horizontal and vertical strips in Q by
allowing the boundaries to be Lipschitz curves, as shown in Figure
3.8.3, rather than straight lines. With this generalization in hand
one then requires “horizontal” strips to map to “vertical” strips with
horizontal boundaries mapping to horizontal boundaries and vertical
boundaries mapping to vertical boundaries.

2. The analytical part comes from requiring uniform contraction in the
horizontal directions and expansion in the vertical direction.

Q

Figure 3.8.3. Generalization of the notion of horizontal and vertical rectangles for the

Conley-Moser conditions.

For the Poincaré map P constructed in this chapter, the situation be-
comes more complicated in two ways. First, the number of strips in each
family generated after one iteration is not two or even finite, but is instead
infinite. Second, we need to use subshift to keep track of the image of each
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family of strips. Here, we discuss first the issue of each family having an
infinite number of strips.

First Iteration: 8 Families of Vertical Strips V jin . Let us consider
U ∩P (U). For simplicity of exposition, take U1 as an example and consider
the small squares (D1∩A′1) and (D1∩B′1), shown on the left side of Figure
3.8.4.

 

P

Figure 3.8.4. The topological squares and the images of some rectangles. We show

schematically only two strips although there are an infinite number, getting increasingly

slender as they approach the invariant manifold (Γu,JL1,1
on U2 and Γs,JL1,1

on U3).

Recall the observation in §2.8 on the spiraling of an abutting arc with
an endpoint in the asymptotic set of a bounding sphere. The image of the
squares (D1 ∩ A′1) and (D1 ∩ B′1) under P is a strip contained in H ′1 of
arbitrarily long length, cutting U2 an infinite number of times and spiraling
towards Γu,JL1,1

, becoming skinnier when approaching the limit. The inter-
section of this strip with U (in fact only with U2) forms an infinite number
of components. All but perhaps one of the components are limited by the
sides e6 and e8, shown in Figure 3.8.4. We call each of the components of

P ((D1 ∩A′1) ∪ (D1 ∩B′1)) ∩ U ⊂ H ′1

a vertical strip of H ′1 (in U2).
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Now consider all the vertical strips inH ′1 and denote these by VH ′1,0,VH ′1,1, . . .,
beginning with the strips nearest to e5. We have on H ′1 a family of vertical
strips {VH ′1,n} bounded by the sides e6 and e8 (in U2) and with the width
of VH ′1,n tending to zero as n tends to infinity. We define

VH ′1,∞ = lim
n→∞

VH ′1,n.

Clearly, VH ′1,∞ is simply the vertical curve Γu,JL1,1
which is on the Jupiter

realm branch of the unstable invariant manifold of the L1 Lyapunov orbit.
Similar constructions can be carried out for the other small squares (C1 ∩
A′1) and (C1 ∩ B′1) of U1 which yield a family of vertical strips in B′1.
In order to keep track of these families of vertical strips more effectively,
we shall rename {VB′1,n} and {VH ′1,n} as {V 11

n } and {V 21
n }, respectively.

Notice that for V jin , the index ji indicates that the family is in the square
Uj and it came from the square Ui. For simplicity of illustration, we have
used rectangles to represent strips in Figure 3.8.4. Similar representations
will be used throughout the rest of this section.

Similarly, we can look at the first iterate by P of the other Ui’s and
obtain families of vertical strips in

B′2({V 32
n }), H ′2({V 42

n }), A′1({V 13
n }), G′1({V 23

n }), A′2({V 34
n }), G′2({V 44

n }).

Therefore, U∩P (U) is the disjoint union of eight families of pairwise disjoint
vertical strips.

First Iteration: 8 Families of Horizontal Strips Hij
m. An analogous

study can be done for U∩P−1(U). Consider the small squares (D1∩A′1) and
(C1∩A′1) of U1 in Figure 3.8.4. Then P−1((D1∩A′1)∪ (C1∩A′1)) is a strip
contained in E1 of arbitrarily long length, cutting U3 an infinite number
of times and spiraling towards Γs,JL1,1

, becoming thinner while approaching
the limit. The intersection of this strip with U (in fact only with U3) forms
an infinite number of components. All but perhaps one of the components
are limited by the sides e9 and e11. We call each of the components of

P−1((D1 ∩A′1) ∪ (C1 ∩A′1)) ∩ U ⊂ E1

a horizontal strip of E1 (in U3).
Now consider all the horizontal strips in E1 and denote these by HE1,0,

HE1,1, . . ., beginning with the strip nearest to e10. We have on E1 a family
of horizontal strips {HE1,n} bounded by the sides e9 and e11 (in U3) and
with the width of HE1,n tending to zero as n tends to infinity. We define

HE1,∞ = lim
n→∞

HE1,n.

Clearly, HE1,∞ is simply the horizontal curve Γs,JL1,1
which is on the stable

invariant manifolds of the L1 Lyapunov orbit.
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Similar constructions can be carried out for the other small squares
(C1 ∩ B′1) and (D1 ∩ B′1) of U1 which yield a family of horizontal strips
in C1. We shall again rename {HC1,n} and {HE1,n} as {H11

n } and {H31
n },

respectively. Notice that for Hij
n , the index ij indicates that the family is

in the square Ui and it will go to the square Uj .
Similarly, we can look at the first iterate by P−1 of the other Ui’s and

obtain families of horizontal strips in

D1({H12
n }), F1({H32

n }), C2({H23
n }), E2({H43

n }), D2({H24
n }), F2({H44

n }).

Therefore, U ∩ P−1(U) is the disjoint union of eight families of pairwise
disjoint horizontal strips.

Meaning of the Label V jin . We discuss briefly the meaning of the sub-
script n in the vertical strip V jin . It can be used to keep track of the number
of revolutions the projection of the associated orbits wind around L1 or L2.
For example, the orbit which pierces the vertical strip V 21

k+1 has wound one
more time around L1 than the orbit which pierces the vertical strip V 21

k .
Moreover, given any ε1 for the width of the strips D1 and H ′1, there is a
minimum number of integer revolutions rmin around L1 an orbit will make
in going from D1 (in U1) to H ′1 (in U2). With this specific ε1, the orbit
which pierces V 21

n has wound around L1 for (n + rmin) times. In the rest
of this chapter, we assume that we have adjusted the widths (the εj ’s) of
all the other corresponding pairs of strips so that the minimum number of
revolutions around L1 or L2 is the same for all the Ui’s. With this adjust-
ment, any orbit which pierces V jin is now in Uj . It came from Ui and has
wound around L1 (if ui = 1, 3) or L2 (if ui = 2, 4) for (n+ rmin) times.

The Generalized Conley-Moser Conditions. For the standard text-
book example introduced earlier about the dynamics near a transversal
homoclinic point, it is well known that if the first return map f̄ (induced
by f) on the square Q satisfies the following Conley-Moser conditions, then
there exists an invariant set Λf̄ of Q on which f̄ has chaotic dynamics.

Condition 1: There exist a finite (or possibly infinite) number of horizon-
tal and vertical strips Hi and Vi with i in an index set. The mapping
f̄ takes Hi homeomorphically onto Vi, with horizontal boundaries
mapped to horizontal boundaries and vertical boundaries mapped to
vertical boundaries.

Condition 2: Suppose V is a vertical strip contained in
⋃
i Vi. Then

f̄(V) ∩ Vi = V̄i is a vertical strip for every i. Moreover, w(V̄i) ≤
νvw(V) for some 0 < νv < 1 where w(V) is the width of strip V.
Similarly, suppose H is a horizontal strip contained in

⋃
iHi. Then

f̄−1(H)∩Hi = H̄i is a horizontal strip for every i. Moreover, w(H̄i) ≤
νhw(H) for some 0 < νh < 1.
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In analogy with the conditions mentioned at the end of §3.7 for the horse-
shoe map, we call Condition 1 the strip condition. Similarly, since Condi-
tion 2 requires a uniform contraction in the horizontal direction and expan-
sion in the vertical direction, it can be called the hyperbolicity condition.

For the Poincaré map P constructed in §3.7, the situation is more com-
plex. Now we have four squares U1 through U4 together with eight families
of pairwise disjoint horizontal strips and eight families of pairwise disjoint
vertical strips. We state below the theorem that the Poincaré map P of the
PCR3BP satisfies the generalized Conley-Moser conditions.

3.8.1 Theorem. The Poincaré map P satisfies the following generalized
Conley-Moser conditions:

Generalized Condition 1: P maps horizontal strips to vertical strips,
i.e.,

P (H11
n ) = V 11

n P (H12
n ) = V 21

n P (H23
n ) = V 32

n P (H24
n ) = V 42

n

P (H31
n ) = V 13

n P (H32
n ) = V 23

n P (H43
n ) = V 34

n P (H44
n ) = V 44

n

for all positive integers n, with horizontal boundaries mapping to hor-
izontal boundaries and vertical boundaries mapping to vertical bound-
aries.

Generalized Condition 2: Let V be a vertical strip contained in
⋃
i V

13
i .

Then
V ′n = P (V ) ∩ V 11

n and V ′′n = P (V ) ∩ V 21
n

are two vertical strips for every n. Moreover,

w(V ′n) ≤ νvw(V ) and w(V ′′n ) ≤ νvw(V )

for some 0 < νv < 1, where w(V ) is the width of V . Similarly, let H
be a horizontal strip contained in

⋃
iH

11
i . Then

H ′n = P−1(H) ∩H31
n and H ′′n = P−1(H) ∩H11

n

are two horizontal strips for every n. Moreover,

w(H ′n) ≤ νhw(H) and w(H ′′n) ≤ νhw(H)

for some 0 < νh < 1. Similar assertions are true for the other families
of vertical and horizontal strips.

The proof is in Koon, Lo, Marsden, and Ross [2000].
Recall that

HC1,n = H11
n HD1,n = H12

n HE1,n = H31
n HF1,n = H32

n

HC2,n = H23
n HD2,n = H24

n HE2,n = H43
n HF2,n = H44

n

VA′1,n = V 13
n VB′1,n = V 11

n VG′1,n = V 23
n VH ′1,n = V 21

n

VA′2,n = V 34
n VB′2,n = V 32

n VG′2,n = V 44
n VH ′2,n = V 42

n ,
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where HC1,n is the n-th horizontal strip of the horizontal rectangle C1 and
VA′1,n is the n-th vertical strip of the vertical rectangle A′1, etc. Moreover,

the index ij of {Hij
n } indicates that the family is in the square Ui and it

will go to the square Uj and the index ji of {V jin } indicates that the family
is in the square Uj and it came from the square Ui, as illustrated in Figure
3.8.4.

We use this result to sketch the proof of the main theorem on the global
orbit structure of the PCR3BP given in §3.9 and §3.10.

3.9 Symbolic Dynamics

In §3.7 and §3.8, we have constructed a Poincaré map P on U whose
domain consists of four topological squares Ui, i = 1, 2, 3, 4, each of which
is further subdivided into four smaller squares by two curves that lie on
the invariant manifolds of the Lyapunov orbits. Moreover, P satisfies the
generalized Conley-Moser conditions.

While we need to take stock of certain new features, the basic formalism
developed by Smale, Conley and Moser still holds with a few modifications.

For the horseshoe map h which bends a square Q into a horseshoe and
intersects it with the square, one has an infinite Cantor set of trapped
points in the invariant set Λh, given earlier in (3.7.4),

Λh = ∩∞n=−∞h
n(Q),

which is the set of points in the square Q that remain in the square under
all forward and backward iterations by h.

We can define an element of the invariant set by

p = {q ∈ Q | hi(q) ∈ Hsi , i = 0,±1,±2, . . .},

where si denotes one of the elements in Σ2 = {0, 1} and H0, H1 are the
two original horizontal rectangles in D. Moreover, an address which is a
bi-infinite sequence of two symbols {0, 1} (in Σ2) can be attached to every
point p in the invariant set Λh, which will not only describe its location,
but also tell its whole history and future under iteration of the map. By
this we mean that there is a map φ : Λh → Σ2 defined by

φ(p) = (. . . , s−n, . . . , s−1; s0, s1, . . . , sn, . . .),

where si = 0 if hi(p) ∈ H0 and si = 1 if hi(p) ∈ H1.
One easy way to imagine the invariant set Λh is to draw the regions

that remain trapped for one forward and one backward iteration in the
square Q. This is the intersection of the thickest vertical and horizontal
strips, so it is four squares lying in the corners of the original square. The
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set trapped for two iterations forwards and two backwards is obtained
by intersecting the thinner strips of these figures, yielding sixteen smaller
squares contained in the four squares of the first stage, as shown in Figure
3.9.1. Notice the addresses that have been assigned to those squares. This
process can be repeated ad infinitum. After infinitely many steps, what
remains is a Cantor set of points which are in one-to-one correspondence
with the set of bi-infinite sequences of two symbols {0, 1}.

...0,0;

D

...1,0; ...1,1; ...0,1;

;1,0...

;1,1...

;0,1...

;0,0...

...1,0;1,1...

Figure 3.9.1. The invariant set Λh of the horseshoe map h.

For the Poincaré map P , we can use a similar technique to visualize the
invariant set Λ and its associated set of bi-infinite sequences. Instead of one
square Q, we have four squares Ui, 1 = 1, 2, 3, 4. After one forward and one
backward iteration, instead of the intersections of two vertical rectangles
and two horizontal rectangles, we have the intersections of eight families of
vertical strips {V jin } and eight families of horizontal strips {Hij

n }, with the
indices ij corresponding to the nonzero entries of the transition matrix A.
Using Figure 3.9.2 as a guide, recall from §3.7 that for {V jin }, the index ji
indicates that the family is in the square Uj and it came from the square
Ui; for {Hij

n }, the index ij indicates that the family is in the square Ui and
it will go to the square Uj .

For simplicity of illustration, we draw Figure 3.9.2 schematically. Taking
the family {H12

n } as an example, we draw two horizontal rectangles to
represent the first and the n-th horizontal strips. This horizontal family is
in the square U1 and it will go to the square U2. Similarly, for {V 13

m }, only
the first and the m-th vertical rectangles are shown. This vertical family
is in the square U1 and it came from the square U3. The same method
has been used to illustrate all the other families of horizontal and vertical
strips.
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H2'

H2'

H2'

Figure 3.9.2. The invariant set Λ of the Poincaré map P .

As for assigning the addresses for points remaining in U , take the “square”
S3;12
m;n as an example. Since S3;12

m;n is the intersection of the horizontal strip
H12
n and the vertical strip V 13

m , we can use (. . . , u3,m;u1, n, u2, . . .) to rep-
resent its location. As usual, the central block of this sequence also tells
the history of the points in this “square” (S3;12

m;n):

1. they are currently in U1 and will go to U2 and on their way their
projection will wind around L1 for (n+ rmin) revolutions where rmin

is the minimum number of revolutions discussed earlier in §3.7;

2. they came from U3 and their position space projection has wound
around L1 for (m+ rmin) revolutions.

Similar sequences can be assigned to the other “squares” which are the
intersections of all the other horizontal and vertical strips.

Moreover, since the Poincaré map P satisfies the generalized Conley-
Moser conditions, this process can be repeated ad infinitum as in the case
of the horseshoe map. After an infinite number of steps, what remains in
U is a Cantor set of points which are in one-to-one correspondence with
the set of bi-infinite sequences

(. . . , (ui−1 , n−1); (ui0 , n0), (ui1 , n1), (ui2 , n2), . . .).

Hence, we have shown that the invariant set Λ for the Poincaré map P
corresponds to a set of bi-infinite sequences with two families of symbols.
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The first family is a subshift of finite type with four symbols {u1, u2, u3, u4}
(with a transition matrix A defined in §3.7). It is used to keep track of the
history of the map P with respect to the four squares U1, U2, U3, U4.

The second family is a full shift of infinite type with symbols of non-
negative integers. This set of integers is used to keep track of individual
members of each vertical or horizontal family ({V jin } or {Hij

n }). As men-
tioned at the end of §3.7, this set of integers also corresponds to the number
of revolutions that the position space projection of an orbit winds around
either L1 and L2.

Singular Poincaré Map. We discuss briefly the issue of the singular
Poincaré map and how it relates to certain modifications of the space of
symbol sequences Σ. Let Σ = {((uij , nj))} be the set of bi-infinite se-
quences of elements of S×N with a transition matrix A defined on S. Here,
S = {u1, u2, u3, u4} and N is the set of non-negative integers. As usual, a
compactification Σ̄ of Σ is obtained with the inclusion of sequences of the
following types:

β = (. . . ; (ui0 , n0), . . . , (uik ,∞))

γ = (∞, (ui−l
, n−l), . . . ; (ui0 , n0), . . .)

δ = (∞, (ui−l
, n−l), . . . ; (ui0 , n0), . . . , (uik ,∞)).

The elements of Σ ⊂ Σ̄ will be called type α from now on. Moreover, the
shift map σ on Σ defined by σ((uij , nj)) = (uij+1

, nj+1) can be extended
to a shift map σ̄ in a natural way. The domain of σ̄ is

D(σ̄) = {(u, n) ∈ Σ̄ | n0 6=∞}

and the range of σ̄ is

R(σ̄) = {(u, n) ∈ Σ̄ | n1 6=∞}.

By studying Figure 3.9.2, it should be clear that H12
∞ (or H11

∞ ) is simply

the horizontal curve Γs,SL1,1
which is on the interior (Sun) realm branch of

the stable invariant manifold of the L1 Lyapunov orbit and any point on
this curve will be carried forward asymptotically towards the L1 Lyapunov
orbit. Hence, any element of type β corresponds to an orbit which tends
to either the L1 or L2 Lyapunov orbit asymptotically after k iterations.
Similarly, any element of type γ corresponds to an orbit which is carried
by the flow asymptotically backward towards one of the Lyapunov orbits
after l backward iterations. As for an element of type δ, we have either a
homoclinic or a heteroclinic orbit.

3.10 Global Orbit Structure
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Now we are ready to put together all the results in §3.8 and §3.9 and
to state the main theorem of this chapter which provides a symbolic dy-
namics description of the global orbit structure of the PCR3BP near a
chain of homoclinic orbits and a symmetric heteroclinic cycle. For simplic-
ity of exposition, we have assumed in the past that the chain consists of
(1, 1)-homoclinic orbits in the interior and exterior realms and a symmetric
(1, 1)-heteroclinic cycle in the Jupiter realm. Now we consider the general
situation. Let us suppose from now on that the chain C is made up of a
symmetric (q2, p2)-heteroclinic cycle in the Jupiter realm together with two
homoclinic orbits, one of which is a (q1, p1) orbit in the interior realm and
the other is a (q3, p3) orbit in the exterior realm.

3.10.1 Theorem (Global Orbit Structure). Consider an element (u, r) ∈
Σ̄ with rj ≥ rmin for all j. Then there are initial conditions, unique in a
neighborhood of the given chain of two homoclinic orbits and one symmet-
ric heteroclinic cycle (associated with p1,1, p2,2, p1,2, p2,1, respectively), such
that the following statements are true.

1. For an element of type

α = (. . . , (ui−1 , r−1); (ui0 , r0), (ui1 , r1), (ui2 , r2), . . .),

the orbit corresponding to such conditions starts at Ui0 and goes to
Ui1 if (A)i0i1 = 1. This orbit passes through either the equilibrium
region R1 or R2 depending on whether the initial index i0 is 1, 3 or
2, 4. If i0 = 1, 3, the projection of the orbit winds around L1 for r0

revolutions inside the region R1 before leaving for Ui1 . Otherwise,
it winds around L2 for r0 revolutions before leaving for Ui1 . After
that, the same process begins with (ui1 , r1) in place of (ui0 , r0) and
(ui2 , r2) in place of (ui1 , r1), etc. For negative time a similar behavior
is described for (ui−1 , r−1), (ui0 , r0), etc.

For this orbit, the number of revolutions that the comet winds around
Jupiter or the Sun (in the interior or exterior realm) is a constant
which depends on the realm and the given chain of homoclinic orbits
and heteroclinic cycle. For the Jupiter realm, the number is (q2 +p2−
1)/2. For the interior and exterior realms, the number is q1 + p1 − 1
and q3 +p3−1, respectively. Note that qi and pi are positive integers.

2. For an element of type

β = (. . . ; (ui0 , r0), . . . , (uik ,∞)),

the orbit tends asymptotically towards one of the Lyapunov orbits
after k iterations. If uik = 1, 3, the orbit tends towards the L1 orbit
and stays in region R1. If uik = 2, 4, it tends towards the L2 orbit
and stays in region R2.
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3. For an element of type

γ = (∞, (ui−l
, r−l), . . . ; (ui0 , r0), . . .),

the orbit tends asymptotically backward towards one of the Lyapunov
orbits after l backward iterations. If ui−l

= 1, 2, the orbit tends to-
wards the L1 orbit and stays in region R1. If ui−l

= 3, 4, it tends
towards the L2 orbit and stays in region R2.

4. For an element of type

δ = (∞, (ui−l
, r−l), . . . ; (ui0 , r0), . . . , (uik ,∞)),

the orbit tends asymptotically towards the L1 or L2 Lyapunov orbit
after k iteration, depending on whether uik = 1, 3 or 2, 4. It also tends
asymptotically backward towards the L1 or L2 orbit after l iterations
backwards, depending on whether uil = 1, 2 or 3, 4.

We provide a sketch of the proof here, which makes use of the major
results in §3.8 and §3.9. The proof itself is in Koon, Lo, Marsden, and Ross
[2000]. While we still need to fully establish the fact that the Poincaré map
P does satisfy the generalized Conley-Moser conditions as mentioned at
the end of §3.8, we refer the reader to the proof in Koon, Lo, Marsden, and
Ross [2000] so that we can discuss the implications of this theorem.

Sketch of Proof. First construct a Poincaré map P whose domain U
consists of four different squares Ui, i = 1, 2, 3, 4. Squares U1 and U4 are
contained in the surface y = 0 and they center around (q1, p1) and (q3, p3)-
transversal homoclinic points in the interior and the exterior realms, re-
spectively. Squares U2 and U3 are contained in the surface x = 1 − µ and
center around (q2, p2)-transversal heteroclinic points in the Jupiter realm
which are symmetric with respect to each other.

Adjust the widths of all the corresponding pairs of the thin strips on the
bounding spheres so that the minimum number of revolutions rmin around
L1 or L2 is the same for all the Ui’s. With this adjustment, any orbit which
pierces V jim is now in Uj . It came from Ui and has wound around L1 (if
ui = 1, 3) or L2 (if ui = 2, 4) for (m+ rmin) times. A similar analysis holds
for Hji

n .
Assume that we have shown that the Poincaré map P satisfies the gen-

eralized Conley-Moser conditions. Then our discussion in §3.9 on symbolic
dynamics shows that for any bi-infinite sequence of type α, α = (u, r), we
can find initial conditions (u, n) in U such that the orbit with this initial
condition has exactly the history of (u, r). Here, rj = nj + rmin. Similar
arguments also hold for bi-infinite sequences of other types.

Some Comments on the Implications of the Theorem. Type α
orbits include “oscillating,” “capture” and “non-transit” orbits. Oscillating
orbits are orbits which cross from one realm to the other infinitely many
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times, capture orbits are orbits which cross sometime but eventually stay
in one realm, and non-transit orbits always stay in the same realm. Type β
and type γ orbits are asymptotic orbits which wind to one of the Lyapunov
orbits. Type δ orbits are homoclinic and heteroclinic orbits.

Similar to the standard textbook example, it is easy to verify that both
the shift map σ̄ and the Poincaré map P have the following properties:

1. a countable infinity of periodic orbits of all periods,

2. an uncountable infinity of nonperiodic orbits, and

3. a “dense orbit.”

Moreover, both σ̄ and P model the phenomenon that is called determin-
istic chaos in dynamical systems theory. Most notably, they exhibit the
phenomenon of sensitive dependence on initial conditions, i.e., the distance
between nearby initial conditions grows under some fixed number of iter-
ates. This phenomenon corresponds to the “random” jumping of the comets
between the interior, the Jupiter and the exterior realms.



4
Construction of Trajectories with
Prescribed Itineraries

4.1 Introduction

Let us summarize the major results of the book to this point. We have
been developing a framework for understanding the motion of a particle in
the gravity field of two massive bodies, m1 and m2. In particular, we have
considered the planar circular restricted three-body model. In this model,
there is a constant of the motion, the energy, which divides the phase space
of the particles motion into five cases (see Figure 2.4.3).

In the first four cases, depicted in Figure 2.4.2, the energy surface is
naturally divided into three large realms of motion:

1. the m1 realm, surrounding m1;

2. the m2 realm, surrounding m2;

3. the exterior realm, which includes neither m1 nor m2, and is exterior
to them both.

The energy cases are defined according to which realms of motion are con-
nected. The connections appear as necks surrounding the location of libra-
tion points. The necks increase their width with increasing energy, corre-
sponding to “easier” transport between realms with increasing energy. For
example, in case 3, the particle has enough energy to move between all



96 4. Construction of Trajectories with Prescribed Itineraries

three realms: the m1, m2, and exterior realms. The particle moves between
realms via necks surrounding L1 (connecting the m1 and m2 realms) and
L2 (connecting the m2 and exterior realms). According to the terminology
developed in Chapters 2 and 3, the neck regions surrounding L1 and L2

are denoted R1 and R2, respectively, as in Figure 4.1.1.

Forbidden
  Realm

X Realm

J Realm

S Realm

Figure 4.1.1. A schematic of the rotating frame for a particle in the gravitational

field of the sun and Jupiter. Here, m1 = S and m2 = J . Thus, the realm around the sun

is the S realm, the realm around Jupiter is the J realm, and the realm not containing S

or J is the X realm. One can construct orbits which connect the three realms using the

stable and unstable manifold tubes associated to libration orbits in the necks around L1

and L2, the equilibrium regions R1 and R2, respectively (discussed in Chapters 2 and

3).

Tube Dynamics. Emanating from the periodic orbits in these necks are
the stable and unstable manifolds with a S1 × R1 (cylindrical) geometry.
The cylinders, or tubes, have the physical property that all motion through
the bottleneck in which the periodic orbit resides must occur through the
interior of these surfaces. The tubes thus mediate the global transport of
particles between large zones of the energy surface which are separated by
the bottlenecks, i.e., the realms.

Since the tubes are global objects, we can, in theory, compute them
out to arbitrarily long times and distances from the neck. Particles with
initial conditions interior to a stable (respectively, unstable) manifold tube
are guaranteed to move from one realm to another when evolved forward
(resp., backward) in time. When one finds intersections between the regions
interior to stable and unstable manifolds, one can pick any initial condition
in the intersection region and integrate it both forward and backward. The
resulting solution in the phase space corresponds to a desired particle path,
i.e., a desired itinerary for the particle.

Outline of the Chapter. To find trajectories with prescribed itineraries,
numerical methods are needed, namely for generating periodic orbits and
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their invariant manifolds. §4.2 and §4.3 are devoted to laying the theoreti-
cal foundation for these purposes. §4.4 will outline an algorithm for using
these methods to generate a trajectory with a prescribed itinerary in the
planar CR3BP. An example computation is given in §4.5.

4.2 Differential Correction

In order to generate the invariant stable or unstable manifold of a pe-
riodic orbit, one first needs to compute the periodic orbit as accurately
as possible. To do this, one can use method of differential correction,
which incorporates analytical approximations as the first guess in an iter-
ative process aimed at producing initial conditions belonging to a periodic
orbit.

Overview of Differential Correction. The idea of differential correc-
tion, or shooting (multiple or otherwise), is best described as a process
of targeting. Suppose we want to find a periodic orbit. Given a reference
trajectory x̄(t) going from x̄0 to x̄1 under the natural dynamics

ẋ = f(x), x ∈ Rn (4.2.1)

e.g., the Hamiltonian equations of motion, we want to make slight adjust-
ments, δx̄0, of the initial state x̄0 so that an adjusted trajectory will end up
at a desired final state xd, near x̄1. In order to find the correct adjustment,
we need to know the sensitivity of changes in the final state δx̄1 to small
changes in the initial state δx̄0. The linear approximation to this sensitivity
is discussed below.

The Flow Map, State Transition Matrix, and Variational Equa-
tions. Let trajectories of the system (4.2.1) with x(t0) = x0 be denoted
by φ(t, t0). In other words, φ(t, t0) : x(t0) 7→ x(t) denotes the flow map of
the dynamical system (4.2.1), mapping particles from their initial location
at time t0 to their location at time t. For our purposes, we will denote the
flow map as φ(t, t0;x0) or simply φ(t;x0) so the dependence on the initial
condition x(t0) = x0 is made clear. One can easily verify that the flow map
satisfies the equations of motion (4.2.1),

dφ(t;x0)

dt
= f(φ(t;x0)), with φ(t0;x0) = x0.

A trajectory that starts slightly away from a reference trajectory x̄(t),
i.e., starts from the perturbed initial vector x̄0 + δx̄0 at time t0, will evolve
with the displacement

δx̄(t) = φ(t; x̄0 + δx̄0)− φ(t; x̄0) (4.2.2)



98 4. Construction of Trajectories with Prescribed Itineraries

with respect to the reference orbit x̄(t) = φ(t; x̄0) as illustrated in Figure
4.2.1.

t

Figure 4.2.1. A trajectory φ(t; x̄0) and a neighboring trajectory, φ(t; x̄0 + δx̄0).

Measuring the displacement at time t1 gives,

δx̄(t1) = φ(t1; x̄0 + δx̄0)− φ(t1; x̄0).

Expanding in a Taylor series yields

δx̄(t1) =
∂φ(t1; x̄0)

∂x0
δx̄0 + higher order terms.

The matrix ∂φ(t1;x̄0)
∂x0

which satisfies the above relation to first-order is called
the state transition matrix. Usually abbreviated as Φ(t1, t0), this matrix
gives the linear relationship between small initial and final displacements,

δx̄(t1) = Φ(t1, t0)δx̄0. (4.2.3)

and plays an important role in differential correction. Equation (4.2.3) is
also the solution to the variational equations of (4.2.1),

δ ˙̄x(t) = Df(x̄(t))δx̄, (4.2.4)

which are the linearized equations for the evolution of variations δx̄. Here,
Df(x̄(t)) is the Jacobian matrix of the flow field f evaluated along the
reference trajectory.

Differential Correction. Suppose we want to adjust an initial condition
x̄0 in order to reach a desired target point xd at time t1. Without any
adjustment,

x̄(t1) = φ(t1, t0; x̄0) = x̄1 = xd − δx̄1,
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is slightly away from the desired point xd (i.e., |x̄1| > 0 is small) and we
want to correct it. Since,

φ(t1, t0; x̄0 + δx̄0) = φ(t1, t0; x̄0) +
∂φ(t1, t0; x̄0)

∂x0
δx̄0 +O(|δx̄0|2)

= φ(t1, t0; x̄0) + Φ(t1, t0)δx̄0 +O(|δx̄0|2)

= x̄1 + δx̄1 +O(|δx̄0|2)

= xd +O(|δx̄0|2),

we see that changing x̄0 by δx̄0 seems to make the correction to first-order.
This is the basic idea behind differential correction: making a small change
at one end to target to a desired point at the other end. By iteration, the
process eventually produces convergence:

φ(t1, t0; x̄0 + ∆x̄0) = xd + ε

where ∆x̄0 is the accumulation of corrections δx̄0 which yields xd within a
desired tolerance |ε| � 1.

It is easy to see that a simple differential correction, or simple shooting,
is just Newton’s method of finding a root for the flow map. If we define:

F (x0) = φ(t1, t0;x0)− xd,

then targeting the desired final state is the same as finding the root of F .
Newton’s method calculates the root of F by iterating from an initial guess
x̄0 using the iterative relation,

δx̄0 = −DF−1(x̄0)F (x̄0),

which gives,
δx̄0 = Φ(t1, t0)−1δx̄1.

This is, of course, just equation (4.2.3).

Computation of the State Transition Matrix. To apply differen-
tial correction, one needs to compute the state transition matrix along a
reference trajectory. Since φ(t; x̄0) satisfies the n-dimensional dynamical
equations (4.2.1),

dφ(t; x̄0)

dt
= f(φ(t; x̄0)),

with φ(t0; x̄0) = x̄0, differentiating this identity with respect to x0 yields,

d

dt

∂φ(t; x̄0)

∂x0
= Df(φ)

∂φ(t; x̄0)

∂x0
,

and ∂φ(t0;x̄0)
∂x0

= In, where In is the n× n identity matrix. Hence, the state
transition matrix solves the following initial value problem,

Φ̇(t, t0) = Df(x̄(t))Φ(t, t0), with Φ(t0, t0) = In. (4.2.5)
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However, since Df(x̄(t)) is time dependent, equations (4.2.5) cannot be
solved analytically without an analytical solution for the reference tra-
jectory. Since such a solution for the reference trajectory generally does
not exist, equation (4.2.5) must be numerically integrated. This results in
n2 first-order scalar differential equations representing the elements of Φ.
When combined with the n first-order scalar equations of motion (4.2.1),
the result is a set of n2 + n differential equations requiring simultaneous
numerical integration in order to compute the state transition matrix nu-
merically.

4.3 Basic Theory on Invariant Manifolds of
a Periodic Orbit

To study and compute the invariant manifolds of a periodic orbit, one
needs two basic tools: the monodromy matrix and the Poincaré map. Below,
we will use them to prove a number of important results that are related to
the stability analysis of a periodic orbit. These results will provide the theo-
retical underpinning for the numerical computation of invariant manifolds.
For more details, see Meyer and Hall [1992].

Monodromy Matrix. In what follows, we investigate the stability of
one particular periodic solution x̄(t) with period T of the autonomous
system (4.2.1) with x̄(0) = x̄0.

Stability of x̄ manifests itself in the way neighboring trajectories behave
(refer to Figure 4.2.1). Referring to (4.2.2), a trajectory that starts from
the perturbed initial vector x̄0 + δx̄0 will after one period T be displaced
by

δx̄(T ) = φ(T ; x̄0 + δx̄0)− φ(T ; x̄0).

To first order, this displacement is given by

δx̄(T ) = Φ(T )δx̄0,

where Φ(T ) = Φ(T ; 0) is the state transition matrix after one period. This
matrix, called the monodromy matrix M of the periodic orbit,

M ≡ Φ(T ) =
∂φ(T ; x̄0)

∂x0
(4.3.1)

determines whether initial perturbations δx̄0 from the periodic orbit decay
or grow.

Basic Results on the Monodromy Matrix. Before studying the local
stability of x̄(t), we will first state a few basic results (see, for example,
Hartman [1964]) relating to the monodromy matrix:
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• Floquet theorem: Φ(t) = P (t)eRt where P (t) is T -periodic and R
is a constant matrix.

• Φ(kT ) = Mk.

• M has +1 as an eigenvalue with eigenvector f(x̄0) which is tangent
to the periodic orbit at x̄0.

The Floquet theorem can be proved as follows: Since the Jacobian Df(x̄)
is periodic, it can be easily checked that for any matrix Φ(t) that solves

Φ̇ = Df(x̄)Φ,

Φ(t + T ) is also a solution. Hence, there is a constant nonsingular matrix
C such that

Φ(t+ T ) = Φ(t)C.

By using a logarithmic operator, C can be expressed in exponential form
as

C = eRT (4.3.2)

where R is a constant matrix. Now let P (t) = Φ(t)e−Rt, and one can show
that P (t) is periodic:

P (t+ T ) = Φ(t+ T )e−R(t+T ) = Φ(t)Ce−RT e−Rt = Φ(t)e−Rt = P (t).

Thus, the Floquet theorem is proved.
Notice that for the special Φ of equation (4.2.5), we have

Φ(0 + T ) = Φ(0)eRT = eRT ,

which shows M = eRT . Clearly,

Φ(kT ) = eRkT = (eRT )k = Mk,

which proves the second result. Notice that this implies

δx̄(kT ) = Mkδx̄0 + higher order terms.

The eigenvalues λ of the monodromy matrix are called the Floquet or char-
acteristic multipliers. Each number σ defined by λ = eσT is called the
Floquet or characteristic exponent. Both will be used in studying the local
stability of the periodic solution.

As for the third result, it is obvious that if x̄(t) is a period T solution
of equations (4.2.1), then the period T function ˙̄x(t) solves its variational
equations, which we can write as

ẏ = Df(x̄)y,
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for small displacements y away from the reference periodic solution x̄. Since
every solution of this linearized problem satisfies

y(t) = Φ(t)y(0),

the relation
y(0) = y(T ) = Φ(T )y(0) = My(0)

shows that M has 1 as an eigenvalue. The eigenvector is

y(0) = ˙̄x(0) = f(x̄0).

Poincaré Map and Stability Analysis of Periodic Orbits . Poincaré
maps are useful for studying swirling flows, such as the flow near a periodic
orbit. Let Σ be a co-dimension 1 surface of section. This hypersurface must
be chosen such that all trajectories that cross Σ in a neighborhood of q ∈ Σ
meet two requirements: the trajectories intersect Σ transversely, and they
cross Σ in the same direction.

For example, in the Sun-Jupiter-third body system, we might choose a
section in the exterior realm as shown in Figure 4.3.1.

 

       Forbidden Region
(at a particular energy level)

Exterior Realm

Jupiter Realm

Spacecraft

Poincare Section
Interior (Sun)
    Realm

Figure 4.3.1. A Poincaré surface of section in the exterior realm of the

Sun-Jupiter-third body system.

Such a procedure then produces a standard Poincaré map picture, as
shown in Figure 4.3.2.

Let TΣ(q), with q ∈ Σ, be the time taken for a trajectory φ(t; q) to first
return to Σ. The Poincaré map is defined by

P (q) ≡ φ(TΣ(q); q). (4.3.3)
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q

Figure 4.3.2. A Poincaré map produced by intersecting trajectories with a Poincaré

section.

The periodic orbit is the specific trajectory that intersects Σ at q̄ with
q̄ = φ(T ; q̄), i.e., q̄ is a fixed point of P , P (q̄) = q̄.

Suppose we focus on the periodic orbit x̄(t), and in particular its stability.
Its stability can be reduced to the behavior of the Poincaré map near
its fixed point q̄, as shown in Figure 4.3.3. Hence, the desired stability
information of the periodic orbit is obtained by checking whether this fixed

point q̄ is repelling or attracting in the Poincaré map. Let ∂P (q̄)
∂q be the

linearization of the discrete map P around the fixed point q̄, given by

∂P (q̄)

∂q
=
∂φ(T ; q̄)

∂q
, (4.3.4)

and let λ1, . . . , λn−1 be the eigenvalues of this linearized map. If the moduli
of all eigenvalues are smaller than 1, then q̄ is stable; if the modulus of at
least one eigenvalue is larger than 1, then q̄ is unstable.

q

Figure 4.3.3. Poincaré map near a fixed point q̄ which is of saddle or hyperbolic type,

i.e., nearby point evolve along hyperbolic curves.

We now apply the stability result for a fixed-point to the periodic solution
of equations (4.2.1). Recall that the monodromy matrix

M =
∂φ(T ; x̄0)

∂x0

has 1 as an eigenvalue with eigenvector ˙̄x0 tangent to the transversal curve
x̄(t). Since this eigenvector is not in Σ, one can choose an appropriate basis
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such that the remaining (n− 1) eigenvalues of M are those of ∂P (q̄)
∂q . These

eigenvalues are independent of the choice of Σ. As a result of this inde-
pendence, the periodic orbit is stable if the remaining (n − 1) eigenvalues
of M are smaller than 1 in modulus (the eigenvalues can be complex in
general). The orbit x̄ is unstable if M has an eigenvalue λ with |λ| > 1.
The eigenvalue 1 corresponds to a perturbation along x̄(t) leading out of
Σ; the other (n − 1) eigenvalues of M determine what happens to small
perturbations around q̄ within Σ.

Stability Result for Autonomous Hamiltonian Systems. For an
autonomous Hamiltonian system, such as the CR3BP, which admits an
energy integral E, we claim that the multiplier +1 has algebraic multiplicity

at least 2. Moreover, the row vector ∂E(x̄0)
∂x0

is a left eigenvector of the
monodromy matrix corresponding to the eigenvalue +1.

These results can be proven as follows: differentiating E(φ(t, x0)) =
E(x0) with respect to x0 and setting x0 = x̄0 and t = T yields

∂E(x̄0)

∂x0

∂φ(T, x̄0)

∂x0
=
∂E(x̄0)

∂x0

which implies the second part of the result.
Choose coordinates such that f(x̄0) is the column vector (1, 0, . . . , 0)T

and ∂E(x̄0)
∂x0

is the row vector (0, 1, 0, . . . , 0). Since f(x̄0) is a right eigen-

vector and ∂E(x̄0)
∂x0

is a left eigenvector, the monodromy matrix M has the
following form

M =



1 ∗ ∗ ∗ . . . ∗
0 1 0 0 . . . 0
0 ∗ ∗ ∗ . . . ∗
0 ∗ ∗ ∗ . . . ∗
...

...
0 ∗ ∗ ∗ . . . ∗


.

Expand by minors p(λ) = det(M−λI). First expand along the first column
to get p(λ) = (1 − λ)det(M ′ − λI), where M ′ is the (n − 1) × (n − 1)
matrix obtained from M by deleting the first row and column. Expand
det(M ′ − λI) along the first row to get p(λ) = (1 − λ)2det(M ′′ − λI) =
(1 − λ)2q(λ), where M ′′ is the (n − 2) × (n − 2) matrix obtained from M
by deleting the first two rows and columns. This computation proves the
first part of the result.

Again there is a good geometric reason for the degeneracy implied by
this result. The periodic solution lies in an (n − 1)-dimensional level set
of the integral, and typically in nearby level sets of the integral, there is a
periodic orbit. So, periodic orbits are not isolated, as illustrated in Figure
4.3.4.

Consider the Poincaré map P : N → Σ where N is a neighborhood of x̄0

in Σ. Let u be the flow box coordinates so that x̄0 corresponds to u = 0;
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Figure 4.3.4. A family of periodic orbits on nearby integral surfaces.

equations (4.2.1) are

u̇1 = 1, u̇2 = 0, . . . , u̇n = 0,

and E(u) = u2. In these coordinates, we may take Σ to be u1 = 0. Since u2

is the integral in these coordinates, P maps the level set u2 = constant into
itself; so we can ignore the u2 component of P . Let e = u2; let Σe be the
intersection of Σ and the level set E = e; and let y1 = u3, . . . , y(n−2) = un
be coordinates in Σe (see Figure 4.3.5). Here, e is considered as a parameter

Figure 4.3.5. Poincaré map in an integral surface.

(the value of the integral). In these coordinates, the Poincaré map P is a
function of y and the parameter e. So P (e, y) = (e,Q(e, y)), where for fixed
e, Q(e, ·) is a mapping of a neighborhood Ne of the origin in Σe into Σe. Q is
called the Poincaré map in an integral surface. The eigenvalues of ∂Q

∂y (e, 0)
are called the multipliers of the fixed point in the integral surface or the
nontrivial multipliers. If the multipliers of the periodic solution of a system
with nondegenerate integral are 1, 1, λ3, . . . , λn, then the multipliers of the
fixed point in the integral surface are λ3, . . . , λn.

Eigenvalues of the Monodromy Matrix for Hamiltonian Systems.
Before actual calculation of invariant manifolds of a periodic orbit in the
CR3BP, some important characteristics of the eigenvalues of the mon-
odromy matrix of the CR3BP should be noted. From the discussion above,
the monodromy matrix of a periodic orbit in the CR3BP must have at least
two eigenvalues equal to one. Moreover, it can also be shown that
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• The monodromy matrix M of an autonomous Hamiltonian system is
symplectic.

• Hence, if λ is an eigenvalue of M , then λ−1, λ̄, λ̄−1 are also eigenvalues
of M , with the same multiplicity

For an autonomous n degree of freedom Hamiltonian system with a
Hamiltonian H, its Hamilton’s equations can be written in a compact form
as follows:

ż = J∇H(z), z = (q, p). (4.3.5)

Here, J is a 2n× 2n matrix defined by

J =

(
0 In
−In 0

)
where In denotes the n× n identity matrix.

Similar computation as in equations (4.2.4-4.2.5) show that the varia-
tional equation of (4.3.5) has the following form:

Φ̇ = JS(z̄)Φ, S(z̄) =
∂2H

∂z2
(z̄) with Φ(0) = I2n.

where Φ(t) is its fundamental matrix solution (the state transition matrix).
Now let U(t) = Φ(t)TJΦ(t). Since Φ(0) = I2n, it follows that U(0) = J .

Moreover,

U̇(t) = Φ̇TJΦ + ΦTJΦ̇

= ΦTSTJTJΦ + ΦTJJSΦ = ΦT (ST − S)Φ = 0

since S is symmetric. So, U(t) ≡ J . Therefore, ΦTJΦ = J and Φ(t) is
symplectic. Since the monodromy matrix M is equal to Φ(T ), we have the
first proposition.

As for the second proposition, we begin with the following algebraic
manipulations of the characteristic polynomial of a symplectic matrix A
using simple properties of determinants.

p(λ) = det(A− λI2n) = det(J(A− λI2n)J−1)

= det((A−1)T − λI2n) = det(A−1 − λI2n)

= det(A−1(I2n − λA)) = det(A−1)det(I2n − λA)

= det(I2n − λA) = det

(
−λ(A− 1

λ
I2n)

)
= λ2ndet

(
A− 1

λ
I2n

)
= λ2np

(
1

λ

)
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Since det A = 1, it follows that 0 is not an eigenvalue of A. Therefore, it
follows from our computation that if λ is an eigenvalue so is λ−1. Moreover,
since the coefficients of the characteristic polynomial are real (A is real),
then if λ is an eigenvalue so is its complex conjugate λ̄. For the issue of
multiplicity, see Wiggins [2003].

4.4 Trajectories with Prescribed Itineraries

In this section, we go step by step through the construction of orbits with
prescribed itineraries in the PCR3BP. We combine the geometric insight of
the previous chapters with the methods and theory described in §4.2 and
§4.3

For simplicity of exposition in the discussion which follows, consider the
planar motion of a particle in the gravitational field of the sun and Jupiter
(µ = 9.537 × 10−4). We label the realm around the sun with an S, the
realm around Jupiter with a J , and the exterior realm with an X, as in
Figure 4.1.1. We will use the set of symbols {S, J,X} to denote the loca-
tion of the trajectory to construct finite itineraries of length k of the form
(A1, A2, . . . , Ak), where Ai ∈ {S, J,X}, i = 1, . . . , k . Using a conceptu-
ally simple procedure, trajectories with arbitrarily large itineraries can be
constructed numerically.

A Trajectory with Itinerary (X, J, S). Suppose we want to find an
initial condition corresponding to a particle which begins in the exterior
realm and passes through the Jupiter realm to the sun realm. We tran-
scribe this goal into a search for an initial condition with the itinerary
(X, J, S). In principle, we could start with a large number of initial points
in the four-dimensional phase space and save only those whose orbits cor-
respond with this itinerary. But we can simplify the search tremendously
by considering tube dynamics on an energy surface. Then our search be-
comes one of searching for an area on a two-dimensional Poincaré section
for which all the points in that area correspond to an initial condition with
this itinerary. We will use the following step by step procedure to find the
itinerary region which corresponds to an orbit with itinerary (X, J, S). The
itinerary region is a parcel, or lobe, on the Poincaré section

Algorithm for Finding an Itinerary Region. The reader may wish
to reproduce the steps of this section in order to gain familiarity with the
method.

Step 1. Select an Appropriate Energy. One first needs to set the
energy to a value such that the itinerary one seeks exists. In our example,
we want the particle to go between all three realms, X, J , and S, so we need
to be in energy case 3 as described in §2.4. For the given µ, we compute
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the case 3 energy interval,

(E2, E3) ≈ (−1.519,−1.501).

For illustrative purposes, we will take a value e ∈ (E2, E3) near the lower
end of the interval. This corresponds to necks around L1 and L2 which are
slightly open. The value we will use for the construction is e = −1.515.
A schematic of the realms of possible motion for this energy is shown in
Figure 4.4.1(a), and notice the labeling of the X, J , and S realms.

 

Forbidden
  Realm

Sun

  Initial
Condition

X Realm

S Realm

Jupiter

J Realm

Unstable
Manifold
of

  Stable
Manifold
of

 Poincare
Section

x

y

(a) (b)

Figure 4.4.1. (a) A schematic of the realms of possible motion for a case 3 energy.

The X, J , and S realms are labeled. The trajectory shown as a heavy black line is a

trajectory with an itinerary (X, J, S). (b) A close-up around the J-realm. The position

space projection of the stable and unstable manifold tubes of the Li, i = 1, 2 periodic

orbits (p.o.) are shown. The J-branch of the L1 stable (resp., L2 unstable) tubes are

labeled. We seek the intersection of the interior of these two tubes on the Poincaré

section U3. Taking an initial condition from this intersection and numerically integrating

it forward and backward in time produces the trajectory with itinerary (X, J, S).

Step 2. Computing the Location of the Equilibrium Points. Con-
sider the libration point Li, standing for either L1 or L2. Compute the loca-
tion of Li, (xe, 0, 0, 0), using the procedure in §2.5. Consider the linearized
equations of motion in a coordinate system centered on Li, Eq. (2.6.4). The
eigenvalues and eigenvectors for the linearized system are given by explicit
formulas in §2.7. One can then compute, using the general solution (2.9.1)
to (2.6.4), the initial conditions for a p.o. of x amplitude Ax > 0. In (2.9.1),
let t = α1 = α2 = 0 and β = −Ax/2. When transformed back to the origi-
nal coordinates, this yields an initial condition

x̄0 = (xe, 0, 0, 0) + 2Re(βw1),

= (xe −Ax, 0, 0, vy0), (4.4.1)
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where vy0 = −Axντ > 0, ν =
√
− 1

2 (µ̄− 2−
√

9µ̄2 − 8µ̄) > 0, and τ =

−(ν2 + 2µ̄+ 1)/2ν, using relations from §2.7, where µ̄ is given in (2.6.2).

Step 3. Compute the L1 and L2 Periodic Orbits Using Differen-
tial Correction and Numerical Continuation. We consider one pro-
cedure which computes periodic orbits around Li in a relatively straight-
forward fashion. This procedure begins with small “seed” periodic orbits
obtained from the linearized equations of motion near Li, and uses differen-
tial correction and numerical continuation to generate the desired periodic
orbit (p.o.) corresponding to the chosen energy e.

The initial condition given in (4.4.1) will only yield a good approximation
to a p.o. in the nonlinear equations (2.5.1) in the case of Ax � 1. But we
want a p.o. of energy e, which may correspond to a large amplitude. We
thus proceed as follows. Let Ax1 < Ax2 � 1 be two small amplitudes with

corresponding initial conditions x̄
(1)
0,g and x̄

(2)
0,g, respectively, where g denotes

that this is an initial guess to a true periodic solution of (2.5.1).
We will use differential correction, described in §4.2, to produce initial

conditions that lead to p.o.’s in the nonlinear equations which are accurate
to some specified tolerance d. In other words, if x̄po(0) ≡ x̄0 is an initial
condition on a p.o., xpo(t), of period T , we want

|x̄po(T )− x̄po(0)| < d,

for a specified d << 1.
Differential correction uses an analytical approximation as the first guess

in an iterative process which updates the initial conditions while keeping
some values constant. In our case, we want to keep the x value constant
and update the y velocity. The differential correction procedure is slightly
modified here compared to §4.2 in order to incorporate sensitivity with
respect to the final time.

Let trajectories of the differential equations ẋ = f(x), e.g., (2.5.1), with
x(t0) = x0 be denoted by the flow map φ(t, t0;x0), or φ(t;x0) where the t0
is understood. With x̄0 a first guess to an initial condition along a periodic
orbit, a trajectory that starts from the perturbed initial vector x̄0 + δx̄0

evolves until t+ δt with the displacement

δx̄(t+ δt) = φ(t+ δt, t0; x̄0 + δx̄0)− φ(t, t0; x̄0)

with respect to the first guess reference solution x̄(t).
Measuring the displacement at time t1 + δt1 gives

δx̄(t1 + δt1) = φ(t1 + δt1; t0; x̄0 + δx̄0)− φ(t1, t0; x̄0).
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Expanding into Taylor series yields

δx̄(t1 + δt1) =
∂φ(t1, t0; x̄0)

∂x0
δx̄0 +

∂φ(t1, t0; x̄0)

∂t1
δt1

+higher order terms,

=
∂φ(t1, t0; x̄0)

∂x0
δx̄0 + ˙̄x1δt1 + h.o.t.,

where the first part of the second term comes from ∂φ(t1,t0;x̄0)
∂t1

= dφ(t,t0;x̄0)
dt =

f(φ(t, t0; x̄0)), evaluated at t = t1. The matrix ∂φ(t1,t0;x̄0)
∂x0

which satisfies
the above relation to first order (when δt1 = 0) is the state transition matrix
Φ(t1, t0). The equation δx̄(t1) = Φ(t1, t0)δx̄0 can be obtained numerically
as the solution to the variational equations of the PCR3BP (2.5.1),

δ ˙̄x(t) = Df(x̄(t))δx̄,

where the Jacobian matrix evaluated at x̄(t) is

Df(x̄(t)) =


0 0 1 0
0 0 0 1
−Ūxx −Ūxy 0 2
−Ūyx −Ūyy −2 0


x̄(t)

,

and Ūab are the second partial derivatives of the effective potential (2.3.9).
Suppose we want to reach a desired endpoint, xd, but

x̄(t1) = φ(t1, t0; x̄0) = x̄1 = xd − δx̄1,

is slightly off (|δx̄1| > d) and we need to correct it. Since

φ(t1, t0; x̄0 + δx̄0) = φ(t1, t0; x̄0) +
∂φ(t1, t0; x̄0)

∂x0
δx̄0 + h.o.t.,

= φ(t1, t0; x̄0) + Φ(t1, t0)δx̄0 + h.o.t.,

= x̄1 + δx̄1 + h.o.t.,

= xd + h.o.t.,

this implies that changing x̄0 by δx̄0 = Φ(t1, t0)−1δx̄1 will perform the
correction to first order. By iteration, the process produces convergence:

|φ(t1, t0; x̄0 + ∆x̄0)− xd| < d,

where ∆x̄0 is the accumulation of corrections δx̄0 which yields xd within
the desired tolerance d.

We seek periodic orbits which are symmetric w.r.t. the x-axis, noting
that the symmetry

y 7→ −y, t 7→ −t
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leaves the equations of motion (2.5.1) unchanged. The symmetry gives
mirror image solutions x̄(−t) for each solution x̄(t), completing the other
half of the periodic orbit.

From the earlier step, we choose an approximate initial condition (at
t0 = 0) which intersects the x-axis perpendicularly,

x̄(0) = (x0, 0, 0, vy0)T .

Using a standard Runga-Kutta 7(8) integration package with an appro-
priate tolerance (say, 10−14), we integrate this initial condition until the
next x-axis crossing using the following procedure: (1) integrate until y(t)
changes sign; (2) then change the time step until, e.g., |y(t)| < 10−11 which
we refer to as the “crossing”; (3) at the crossing, t1 ≡ t, y1 ≡ y(t1).

This gives us x̄(t1), so we can also compute Φ(t1, 0). For a p.o., the
desired final state has the form

x̄(t1) = (x1, 0, 0, vy1)T ,

where t1 = T/2, a half-period of the p.o. The actual value for vx1 as a
result from numerical integration may not be 0. For our purposes, we want
|vx1| < d, where, e.g., d = 10−8. The state transition matrix after one
half-cycle, Φ(t1, 0), can be used to adjust the initial values to obtain a
p.o. as

δx̄1 ≈ Φ(t1, 0)δx̄0 + ˙̄x1δt1.

Suppose |vx1| > d and we hold x0 fixed. The correction to vy0 can be
calculated from

δvx1 = Φ34δvy0 + v̇x1δt1 + h.o.t.,

0 = δy1 = Φ24δvy0 + vy1δt1 + h.o.t.,

where Φij is an element of the matrix Φ(t1, 0) and v̇x1 comes from the
equations of motion (2.5.1) evaluated at the crossing. Here, δvx1 = vx1

since we want vx1 = 0. Hence the y-velocity should be adjusted by

δvy0 ≈
(

Φ34 −
vx1

vy1
Φ24

)−1

vx1,

to cancel out vx1 if we let

vy0 7→ vy0 − δvy0.

This process converges to |vx1| < d within a few iterations typically.
The above procedure yields an accurate initial condition for a p.o. from a

single initial guess. If our initial guess came from the linear approximation
near the equilibrium point (from §2.9), it has been observed numerically
that we can only use this procedure for small amplitude p.o.’s around
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Li, e.g., amplitudes of order 10−4 for µ = 9.537 × 10−4 (the Sun-Jupiter
system). But if we want an orbit of arbitrarily large amplitude (which is in
one-to-one correspondence with the energy e), we need to use numerical
continuation to generate a family of orbits which reaches the appropriate
energy e.

We proceed as follows. Suppose we find two small nearby p.o. initial

conditions, x̄
(1)
0 , x̄

(2)
0 , correct to within the tolerance d, using the differential

correction procedure described above. We can generate a family of p.o.’s
with increasing amplitude around Li in the following way. Let

∆ = x̄
(2)
0 − x̄

(1)
0 ,

= (∆x0, 0, 0,∆vy0)T .

Extrapolate to an initial guess for x̄
(3)
0 via

x̄
(3)
0,g = x̄

(2)
0 + ∆,

=
(

(x
(2)
0 + ∆x0), 0, 0, (v

(2)
y0 + ∆vy0)

)T
=
(
x

(3)
0 , 0, 0, v

(3)
y0

)T
.

Keeping x
(3)
0 fixed, we can use differential correction to compute an accu-

rate solution x̄
(3)
0 from the initial guess x̄

(3)
0,g and repeat the process until

we have a family of solutions. We can keep track of the energy of each

p.o. and when we have two solutions, x̄
(k)
0 , x̄

(k+1)
0 , whose energies bracket

the desired energy e, we can refine our continuation until we find a p.o. of
energy e to within a desired amount. Let X0 denote the initial condition
on the desired p.o.

Step 4. Computation of Invariant Manifolds. First we find the local
approximations to the unstable and stable manifolds of the p.o. from the
eigenvectors of the monodromy matrix. Next, the local, linear approxima-
tion of, for example, the unstable manifold, in the form of a state vector,
is integrated in the nonlinear equations of motion (2.5.1) to produce the
approximation of the stable and unstable manifolds, a procedure known as
globalization of the manifolds, which we outline below.

The state transition matrix Φ(t) along the p.o. can be obtained numeri-
cally by integrating the variational equations from time 0 to T (see §4.2).
Once the monodromy matrix M = Φ(T ) is obtained, its eigenvalues can
be computed numerically. For planar Lyapunov orbits in the PCR3BP, the
discussion of §4.3 tells us that the four eigenvalues of M include one real
pair and one pair equal to unity,

λ1 > 1, λ2 =
1

λ1
, λ3 = λ4 = 1.
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The eigenvector associated with eigenvalue λ1 is in the unstable direction;
the eigenvector associated with eigenvalue λ2 is in the stable direction.
Let Y s(X0) denote the normalized (to 1) stable eigenvector, and Y u(X0)
denote the normalized unstable eigenvector. We now use these to compute
the approximate manifolds as follows: Let

Xs(X0) = X0 + εY s(X0) (4.4.2)

be the initial guess for the stable manifold at X0 along the p.o., as illus-
trated in Figure 4.4.2, and let

Xu(X0) = X0 + εY u(X0)

be the initial guess for the unstable manifold at X0. Here ε is a small

Figure 4.4.2. A simple way to compute an approximation of the two branches of

the unstable (Wu±) or stable (W s±) manifolds of a periodic orbit, which appear as

manifolds to a fixed point in a Poincaré map P .

displacement from X0. The magnitude of ε should be small enough to be
within the validity of the linear estimate, yet not so small that the time
of flight becomes too large due to the asymptotic nature of the stable and
unstable manifolds. Gómez, Jorba, Masdemont, and Simó [1991a] suggest
values of ε > 0 corresponding to nondimensional position displacements
of magnitude around 10−6. By numerically integrating the unstable vector
forwards in time, using both ε and −ε, we generate trajectories shadowing
the two branches, Wu+ and Wu−, of the unstable manifold of the periodic
orbit. Similarly, by integrating the stable vector backwards, we generate a
trajectory shadowing the stable manifold, W s±. For the manifold at X(t),
one can simply use the state transition matrix to transport the eigenvectors
from X0 to X(t):

Y s(X(t)) = Φ(t, 0)Y s(X0). (4.4.3)

Since the state transition matrix does not preserve the norm, the resulting
vector must be renormalized.
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Step 5. Take a Poincaré Surface of Section of the Globalized
Stable and Unstable Manifolds. In Chapter 3, we defined the four
Poincaré surfaces of section, Ui, i = 1, . . . , 4, which were locally defined
around heteroclinic points, with a map P linking them.

In order to link the present numerical construction with the earlier the-
oretical framework and terminology, we adopt the following convention.
The U1 and U4 (Poincaré) sections will be defined by the following two-
dimensional surfaces:

U1 = {(x, ẋ) | y = 0, x < 0, ẏ(x, ẋ; e) < 0}, in the S realm;

U4 = {(x, ẋ) | y = 0, x < −1, ẏ(x, ẋ; e) > 0}, in the X realm,

where ẏ(x, ẋ; e) denotes that ẏ is obtained from the energy equation (2.3.13).
The U2 and U3 sections will be defined by the following:

U2 = {(y, ẏ) | x = 1− µ, y < 0, ẋ(y, ẏ; e) > 0}, in the lower half J realm;

U3 = {(y, ẏ) | x = 1−µ, y > 0, ẋ(y, ẏ; e) < 0}, in the upper half J realm.

Figure 4.4.3 depicts the locations of the Poincaré sections in the rotating
frame.

Forbidden
  Realm

X Realm

J Realm

S Realm

Figure 4.4.3. The location of the four Poincaré sections U1, U2, U3, and U4, with

respect to the S, J , and X realms and the neck regions, R1 and R2, connecting them.

The Ui are at strategically placed locations, allowing us to get cross
sections of the flow within the three-dimensional energy surface M(µ, e).
To pick the appropriate Ui on which to find an (X, J, S) lobe, we reason
as follows. From our discussions regarding the L1 and L2 p.o. stable and
unstable manifold tubes in Chapters 2 and 3, we know that, in a frame
parallel to the rotating frame but centered on the point Li, the two unsta-
ble manifold tube branches are locally heading in the second and fourth
quadrants. Similarly, the stable manifold tube branches are locally coming
from the first and third quadrants. (The reader may wish to review Figure
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2.9.1 and §2.9.) Thus, the location of, for example, U3, is chosen to intersect
both the stable manifold of the L1 p.o. and unstable manifold of the L2

p.o., as shown in Figure 4.4.1.

Aside: Why Does this Method Work?

Recall from Chapters 2 and 3 the McGehee representation of the equi-
librium region R, which is in between two realms, e.g., the S and J realms.
Emanating from the unstable p.o. are four cylinders of asymptotic orbits
which form pieces of the stable and unstable manifold tubes of the p.o. They
intersect the bounding spheres at asymptotic circles, separating spherical
caps, which contain transit orbits, from spherical zones, which contain non-
transit orbits. In order for an initial condition s0 ∈ R to transit from one
realm to another, it must be inside the tubes.

 

    Pre-Image of
Spherical Cap

J realm

0.6

0.4

0

0.2

-0.4

-0.2

0.040.020

-0.6

0.06 0.08
y

J

      Image of
Spherical Cap

Bounding sphereBounding sphere

Poincare Section

Figure 4.4.4. We seek transit orbits from the exterior to interior realm by looking at

the intersections of images and pre-images of the “caps of transit orbits,” introduced for

the equilibrium regions in Chapters 2 and 3. See the text for an explanation.

For a fixed energy in case 3, consider the spherical caps of transit orbits.
These are building blocks from which we construct orbits of prescribed
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itineraries. Consider their images and pre-images on a suitable Poincaré
section, e.g., the Poincaré section U3 between L1 and L2. Spherical caps
have the geometry of a disk, so we expect the images and pre-images will
also appear as disk, or distorted disks. In Figure 4.4.4, the image of the
cap on the left bounding sphere of the L2 equilibrium region R2 is shown,
containing trajectories leaving R2. On this same figure, we show the pre-
image of the cap on the right bounding sphere of R1 containing orbits
entering R1.

The intersection of the unstable manifold tube of the L2 p.o. with U3

forms the boundary of the image of the cap containing transit orbits leaving
R2. All of these orbits came from the X realm and are now in the J realm,
so we label this region (X, [J ]).

Similarly, the intersection of the stable manifold tube of the L1 p.o. with
U3 forms the boundary of the pre-image of the cap of transit orbits entering
R1. All of these orbits are now in the J realm and are headed for the S
realm, so we label this region ([J ], S).

Note that the regions (X, [J ]) and ([J ], S) intersect.

Step 6. Consider Tube Dynamics to Compute the Desired Itinerary
Region. From our discussion in Chapter 3, we know that the stable and
unstable manifold tubes of the L1 and L2 p.o.’s bound regions in the energy
surface exactly corresponding to motion between realms.

Key to our construction is the connectivity of the stable and unsta-
ble manifolds of the L1 and L2 p.o.’s. Consider Figure 4.4.5, where we
show their projection onto position space which appear as strips of vari-
able width. We show the tube projections up to their first intersection with
the Ui.

For convenience in the discussion which follows, we introduce a new
labeling convention. The set T[A],B is the solid tube of trajectories which are
currently in the A realm and heading toward the B realm. The boundary
of T[A],B is the stable manifold of the p.o. lying in the neck between the
A and B realms. Similarly, the set TA,[B] is the solid tube of trajectories
which came from the A realm and are currently in the B realm and its
boundary is the unstable manifold of the p.o. lying in the neck between the
A and B realms.

Consider the J realm. Suppose the initial condition for the trajectory
we want to construct with itinerary (X, J, S) is in this realm. Then the
itinerary region is (X, [J ], S). All particles with initial conditions in this
piece of the Poincaré section are such that when numerically integrated
backward in time they transit to the X realm, and when integrated forward
in time they transit to the S realm, like the trajectory shown in Figure
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Figure 4.4.5. Position space projection of the L1 and L2 periodic orbit stable and

unstable manifold tubes (schematic). The tubes are labeled according to the behavior

of trajectories inside the boundaries defined by the stable and unstable manifolds. For

example, T[X],J contains trajectories which are currently in the X realm and heading

toward the J realm. Note the symmetry about the sun-Jupiter line. The location of the

Poincaré surfaces of sections Ui are also shown. Magnification of the J realm is shown

at right.

4.4.1. During the backward integration segment, the trajectory was within
the J-branch of the L2 p.o. unstable tube, labeled TX,[J] in Figure 4.4.5.
Similarly, during the forward integration segment, the trajectory will be
within the J-branch of the L1 p.o. stable tube, labeled T[J],S in Figure
4.4.5. These two tubes are known from numerical experiments to intersect
on the U3 Poincaré section.
TX,[J] may contain pieces which wind around Jupiter several times.

Therefore, TX,[J] will intersect U3 several times. We denote the nth in-

tersection of TX,[J] with U3 by
(
TX,[J]

⋂
U3

)
(n). For the present, we will

restrict ourselves to n = 1.
The set

(
TX,[J]

⋂
U3

)
(1) is a lobe of particles which came from the X

realm and are now in J realm. Let us denote it by IX,[J], or simply (X, [J ]),

as in Figure 4.4.6. In Figure 4.4.6, we also plot ([J ], S) =
(
T[J],S

⋂
U3

)
(1).

We denote the intersection (X, [J ])
⋂

([J ], S) by (X, [J ], S). This region
contains initial conditions for orbits with itinerary (X, J, S), like the one
shown in Figure 4.4.1.

Step 7. Numerically Integrate an Initial Condition in the Appro-
priate Itinerary Region. Once we have isolated the desired itinerary
region, the last step is forward and backward numerical integration of any
initial condition within this region. Continuing the example, suppose we
have obtained the set (X, [J ], S), a subset of the y-ẏ plane in U3. We desire
an initial condition s0 = (x0 y0 ẋ0 ẏ0)T .
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Figure 4.4.6. An itinerary region with label (X,[J],S). The regions (X, [J ]) and

([J ], S) on U3 are shown to intersect in the left panel. The right panel shows a close-up

of the intersection region, (X, [J ], S), which contains initial conditons for orbits with

itinerary (X, J, S). See the text for details.

1. First, we know from our choice of Poincaré section (U3) that x0 =
1− µ.

2. We then pick values (y0, ẏ0) ∈ (X, [J ], S) ⊂ U3

3. Finally, ẋ0 comes from the energy equation (2.3.13).

ẋ0 = −
√
−ẏ2

0 − 2Ū(x0, y0) + 2E (4.4.4)

where the effective potential is given in Eq. (2.3.9). We take the
negative sign of the square root by the definition of the U3 Poincaré
section.

We want the solution s(t) which passes through s0 at time t = 0, i.e.,
s(0) = s0. Evolving our initial point s0 forward and backward under
the equations of motion (2.5.1) within some time interval [−τ, τ ] for
τ > 0 yields the desired solution. We are guided in our choice of τ
by the integration times of the trajectories along the tube boundary,
which yields an initial guess for τ . Through simple trial and error
starting from a reasonable guess, we find the τ which produces the
appropriate trajectory, whose projection onto position space looks
like that shown in Figure 4.4.1.

4.5 Example Itinerary: (X, J, S, J,X)

In what follows, we apply the numerical construction techniques discussed
above to an example with a longer itinerary (k = 5). As our example, we
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construct a trajectory with itinerary (X, J, S, J,X). This example is chosen
because it roughly corresponds to the behavior of comet P/Oterma with
respect to the sun-Jupiter system during the years 1910 to 1980 (see Koon,
Lo, Marsden, and Ross [2001a]).

We seek itinerary regions with label (X, J, S, J,X) on one of the Poincaré
sections {Ui}. We use the energy, e = −1.519, which is in the range [E2, E3]
for the sun-Jupiter system (µ = 9.537× 10−4).

In Figure 4.5.1, we show the first few intersections of the L1 and L2

p.o. tubes with U3. We need to introduce a change in notation. What
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Figure 4.5.1. The first intersection of T[J],S and the first three intersections of TX,[J]
with U3 are shown. We use the notation (X, [J ])(n) = (TX,[J]

⋂
U3)(n) for the nth

intersection of TX,[J] with U3. The intersection (X, [J ], S) = (X, [J ])(3)
⋂

([J ], S)(1)

contains all solutions s(t) which come from the X realm, perform two full revolutions

around Jupiter in the J realm, and then exit to the S realm.

we called (X, [J ]) in the previous section is now simply the first intersec-
tion of the tube, TX,[J], with the Poincaré section U3, denoted (X, [J ])(1).
Similarly, we use the notation (X, [J ])(n) = (TX,[J]

⋂
U3)(n) for the nth

intersection of TX,[J] with U3.
Let

f33 : U3→ U3,

(y, ẏ) 7→ (y′, ẏ′),

denote the Poincaré map from U3 to U3 (or at least defined on an appro-
priate restriction of U3). The map f33 is area preserving owing to the
Hamiltonian nature of the flow and the choice of Poincaré section. In
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particular, we have (X, [J ])(n) = f33((X, [J ])(1)) and m ((X, [J ])(n)) =
m ((X, [J ])(n− 1)) where m (A) ≥ 0 denotes the usual two-dimensional
area of a set A ⊂ R2.

There is an intersection, (X, [J ], S) = (X, [J ])(3)
⋂

([J ], S)(1). All initial
conditions s0 ∈ (X, [J ], S) correspond to solutions s(t) which come from
the X realm, perform two full revolutions around Jupiter in the J realm,
and then exit to the S realm.

To find itinerary regions with the additional symbols, we take the (X, [J ], S)
region and evolve it forward under the equations of motion (2.5.1) until it
intersects the U1 section in the S realm, shown in Figure 4.5.2. Following
our notation, this set is labeled (X, J, [S]). Notice that it lies entirely within

0.2
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Figure 4.5.2. (a) The U1 Poincaré section in the S realm is shown. (X, J, [S]) is

obtained by evolving the (X, [J ], S) ⊂ U3 region forward until it intersects U1. (b) A

close-up of the intersection of (X, J, [S]) with ([S], J), i.e., the (X, J, [S], J) region, which

consists of two disconnected large pieces. For this construction, we follow the evolution

of the larger piece.

the (J, [S]) region, as we would expect. Furthermore, as seen in Figure 4.5.1,
part of the boundary of (X, [J ], S) is on the boundary of ([J ], S)(1), i.e.,
the boundary of the tubes connecting the J and S realms. Due to the in-
finite winding near the boundary of the tubes upon their approach to the
L1 p.o., this portion of the (X, J, [S]) set spirals around the boundary of
(J, [S]) in U1, as is suggested in Figure 4.5.2.

The intersection (X, J, [S])
⋂

([S], J) consists of a pair of large strips (and
infinitely many smaller ones, due to the infinite winding described in Chap-
ter 2), reminiscent of the strips around heteroclinic and homoclinic points
which we encountered in Chapter 3. The pair of strips, shown close-up
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in Figure 4.5.2(b), carry the label (X, J.[S], J) and bring us one symbol
closer to our desired itinerary region. Taking the larger of the two strips,
we evolve it forward in time until it re-enters the J realm and intersects
U2, shown in Figure 4.5.3. Notice the symmetry between Figure 4.5.3 and
Figure 4.5.1, i.e., y 7→ −y, t 7→ −t, the symmetry (3.3.1) of the PCR3BP
equations of motion.

The (X,J, S, [J ]) and (S, [J ]) regions intersect in a thin strip, the de-
sired (X, J, S, [J ], X) region. Any trajectory passing through this strip will
escape from the J to the X realm in forward time, and will perform a
S → J → X journey in backward time.

Taking any initial condition in this strip and numerically integrating it
forward and backward in time yields a trajectory with the desired itinerary.
We give a numerical example in Figure 4.5.4. Orbits in the itinerary re-
gion are considered robust because nearby orbits have the same itinerary.
Regions corresponding to other allowable itineraries of any length can the-
oretically be generated with this same systematic procedure. Not only do
we know such orbits exist from Theorem 3.10.1, but we have a relatively
simple method for producing them.
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Figure 4.5.3. (a) We evolve the larger of the (X, J, [S], J) pieces on U1 until it intersects

U2. (b) A close-up of the intersection of the (X, J, S, [J ]) and ([J ], X) itinerary regions

is shown, yielding the desired (X, J, S, [J ], X) region.
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Figure 4.5.4. (a) A trajectory with the itinerary (X, J, S, J,X) computed using

an initial condition inside the (X, J, S, [J ], X) region of the U2 Poincaré section, shown
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condition is labeled. The backward (respectively, forward) integrated portion of the
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5
Trajectories in the Four-Body Problem

5.1 Introduction

In this chapter, we describe a procedure to construct trajectories for a
spacecraft in the four-body problem using solutions from the three-body
problem covered in Chapter 4. We illustrate the procedure in the construc-
tion of an important example mission: a low-energy transfer to the Earth’s
Moon which uses ballistic capture. We will also mention another, closely
related example mission concept: transfer between libration point orbits in
the Earth-Moon and Sun-Earth systems.

The Patched-Conic Approximation. For many years, trajectory de-
signers for spacecraft on interplanetary missions have obtained good initial
trajectory solutions in the N -body problem by dividing the spacecraft’s
motion into pieces in which the influence of only one body at a time is
considered. This patched two-body, or patched conic, approximation (see
Bate, Mueller, and White [1971]) has worked well for missions such as the
Voyager probes which have high relative velocity encounters with the bod-
ies they visit. The criterion for switching from the influence of one body to
another involves a dividing surface in the configuration space known as the
sphere of influence, taken to be the (nearly) spherical surface about the
smaller primary where the acceleration due to both primaries are equal.
In nondimensional units, its radius is given approximately (see, e.g., Roy



124 5. Trajectories in the Four-Body Problem

[1988]) by

rsi = µ
2
5 . (5.1.1)

Note that for nearly all µ values of interest in the solar system, this is
smaller than the Hill radius encountered in Chapter 2.

The patched conic approximation breaks down when we consider low rel-
ative velocity encounters, which are critical for low energy trajectories. In
this regime, two bodies (e.g., the Earth and Moon) both influence the mo-
tion of the spacecraft with the same order of magnitude, and the restricted
three-body problem must be used to model the motion of the spacecraft.
Furthermore, the criterion for switching between the influence of one pair
of bodies to another pair involves a dividing surface in the full phase space.

Spacecraft Trajectory Design Using the Patched Three-Body Ap-
proximation. In this chapter, we describe how to construct trajectories
in the four-body problem using invariant manifold tubes from multiple
three-body systems using the patched three-body approximation. This
is important for taking full advantage of an N -body gravitational field to
reduce fuel consumption, and is especially useful in the design of interplan-
etary trajectories which visit multiple bodies. These may include mission
trajectories such as a low energy mission to orbit multiple moons of Jupiter
or a low energy transfer from the Earth to the Moon. For instance, using
the phase space tubes in each three-body system, we are able to construct
a transfer trajectory from the Earth which executes an unpropelled (i.e.,
ballistic) capture at the Moon. An Earth-to-Moon trajectory of this type,
which utilizes the perturbation by the Sun, requires less fuel than the usual
Hohmann transfer, such as those used by the Apollo missions of the 1960s.

To design, for instance, a spacecraft trajectory from the Earth to the
moon which also takes advantage of the sun’s gravity, we would want to
model the trajectory as two pieces: the first piece being a solution of the
sun-Earth-spacecraft system (where the moon’s gravitational influence is
unimportant) and the second piece being a solution of the Earth-moon-
spacecraft system (where the sun’s influence is important). The two pieces
are connected by two initial conditions, s−pp and s+

pp, which together form
the patch point between two three-body solution arcs. Both s−pp and s+

pp

are at the same location in position space, but we permit them to have
differing velocities. The velocity discontinuity, of norm ∆V , corresponds
to the impulsive rocket maneuver which will be necessary to effect the
transition between the two three-body solutions. Evolving s−pp backward in
time gives the first piece; a solution in one three-body system, e.g., sun-
Earth-spacecraft. Evolving s+

pp forward in time gives the second piece; a
solution in the other three-body system, e.g., Earth-moon-spacecraft. We
will discuss how to find appropriate patch points pairs, s±pp.
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5.2 Modeling the Four-Body Problem

Consider a particle P in field of three massive bodies, M0, M1, and
M2. We suppose that the massive bodies are in one of the two prescribed
motions about one another:

1. Concentric Circular Model (CCM). M0 is a central body about
which M1 and M2 move in circular orbits of radii d1 and d2, respec-
tively, where d2 > d1. In general, we suppose M1,M2 �M0. This is
a model of, e.g., the Jupiter-Ganymede-Callisto system (as M0, M1,
and M2, respectively).

2. Bicircular Model (BCM).M1 andM2 are in circular motion about
their barycenter, with mutual separation d1. Considering all the mass
in the M1-M2 system to be concentrated at its barycenter, we suppose
M0 and the M1-M2 barycenter are in a circular orbit of radius d2 > d1

about their common center of mass. In general, we suppose M2 �
M1 � M0. This is a model of, e.g., the sun-Earth-Moon system (as
M0, M1, and M2, respectively).

(a) (b)

Figure 5.2.1. Models of motion for the four-body problem. (a) Concentric

Circular Model. M0 is a central body about which M1 and M2 move in circular orbits

of radii d1 and d2, respectively, where d2 > d1. (b) Bicircular Model. M1 and M2 are in

circular motion about their barycenter, with mutual separation d1. Considering all the

mass in the M1-M2 system to be concentrated at its barycenter, we suppose M0 and the

M1-M2 barycenter are in a circular orbit of radius d2 > d1 about their common center

of mass.

5.3 Bicircular Model
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In this chapter, we will only consider the BCM, which can be used to
compute a low-energy Earth-to-Moon trajectory or Earth to lunar libration
point trajectory. The CCM has been used to produce a “Petit Grand Tour”
of two of Jupiter’s moons, as reported in Koon, Lo, Marsden, and Ross
[1999] and Gómez, Koon, Lo, Marsden, Masdemont, and Ross [2001]. More
recently, an extension of the CCM has been used to design a “Multi-Moon
Orbiter” of three of Jupiter’s moons (see Ross, Koon, Lo, and Marsden
[2003, 2004]), whose discussion we defer to Chapter 10.

Equations of Motion in Earth-Moon Rotating Frame As men-
tioned earlier, we use the equations of motion derived under the BCM
assumptions as the underlying dynamical model. The bicircular problem is
a simplified version of the restricted four-body problem. The objective is
to describe the motion of a spacecraft of negligible mass under the gravi-
tational attraction of the Earth, Moon, and Sun. “Negligible mass” means
that the spacecraft does not influence the motion of the Earth, Moon, and
Sun. This description follows that of Simó, Gómez, Jorba, and Masdemont
[1995].

In this model we suppose that the Earth and Moon are revolving in
circular orbits around their center of mass (barycenter) and the Earth-
Moon barycenter is moving in a circular orbit around the center of mass
of the Sun-Earth-Moon system. The orbits of all four bodies are in the
same plane. We remark that, with these assumptions, the motion of these
three bodies is not coherent. That is, the assumed motions do not satisfy
Newton’s equations. However, numerical simulation shows that, in some
regions of phase space, this model gives the same qualitative behavior as
the real system. Thus, the model is extremely useful for the study of some
kinds of orbits, in particular the Hiten trajectory of Belbruno and Miller
[1993] and more recently the “Shoot the Moon” trajectory of Koon, Lo,
Marsden, and Ross [2001b].

To simplify the equations, the units of length, time, and mass are chosen
such that the angular velocity of rotation of the Earth and Moon (around
their barycenter), the sum of the masses of the Earth and Moon, and the
gravitational constant are all equal to one. With these normalized units,
the Earth-Moon distance is also one. Let µ be the mass of the Moon in
these units. Then 1−µ the mass of the Earth. Let mS the mass of the Sun.
Let the semimajor axis of the Sun be aS .

We use a synodic (rotating) coordinates with respect to the Earth-Moon
system. The origin is taken at the center of mass of the Earth-Moon system.
The x-axis is given by the line that goes from the Earth to the Moon, and
the y-axis is taken such that the system is orthogonal and positive oriented.
Note that, in this synodic (non-inertial) frame, the Earth and Moon have
fixed positions and the Sun is rotating clockwise around the barycenter of
the Earth-Moon system. The positions of the Earth and Moon are fixed
at (−µ, 0) and (1 − µ, 0), respectively. The angular velocity of the Sun in
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these synodic coordinates is denoted by ωS and the phase of the Sun at
t = 0 is θS0. See Figure 5.3.1.

 
x

ySun

Earth Moon

spacecraft

Figure 5.3.1. Rotating coordinate frame in the BCM approximation with Earth and

Moon fixed on the x-axis. As seen in this frame, the Sun rotates clockwise around the

Earth-Moon barycenter (the origin) with angular frequency ωS .

Using nondimensional units, the equations of motion in the BCM are

ẋ = u,

ẏ = v,

u̇ = x+ 2v − cE(x+ µM )− cM (x− µE)− cS(x− xS)− αSxS ,
v̇ = y − 2u− cEy − cMy − cS(y − yS)− αSyS , (5.3.1)

where

ci =
µi
r3
i

, for i = E,M,S, (5.3.2)

αS =
mS

a3
S

, (5.3.3)

and

rE =
√

(x+ µM )2 + y2,

rM =
√

(x− µE)2 + y2,

rS =
√

(x− xS)2 + (y − yS)2,
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with

µE = 1− µ,
µM = µ,

xS = aS cos(θS),

yS = aS sin(θS),

θS = −ωSt+ θS0.

The values of the parameters are as follows:

µ =
mM

mM +mE
= 0.01215, (5.3.4)

from Table 2.2.1 in Chapter 2 where mM and mE denote the mass of the
Moon and Earth, respectively. The Sun’s mass (1 unit = Earth + Moon
mass) is

mS = 328900.54, (5.3.5)

the Sun’s distance (1 unit = Earth-Moon distance) is

aS = 388.81114, (5.3.6)

and the Sun’s angular velocity in synodic coordinates is

ωS = 0.925195985520347. (5.3.7)

In the above equations, time is scaled by the period of the Earth and
Moon around their center of mass (T/2π, where T = 2.361× 106 s), posi-
tions are scaled by the average Earth-Moon distance (L = 3.850×105 km),
and velocities are scaled by the Moon’s average orbital speed around the
Earth (2πL/T = 1.025 km/s). One can find these values in Table 2.2.1.

Equations of Motion in Sun-Earth Rotating Frame. In this model
we suppose that the Sun and Earth are revolving in circular orbits around
their barycenter and the Moon is moving in a circular orbit around the
center of the Earth. The orbits of all four bodies are in the same plane. We
remark that, with these assumptions, the motion of these three bodies is not
coherent. That is, the assumed motions do not satisfy Newton’s equations.
But as this model is extremely useful for the study of some kinds of orbits,
we will use it.

Let µ be the mass of the Earth, 1 − µ the mass of the Sun and mM

the mass of the Moon. Let the distance between the Sun and the Earth be
taken as unity. Let the orbit of the Sun and Earth around the Sun-Earth
barycenter also be taken as unity. The distance from the Earth to the
Moon is aM . We use rotating coordinates with respect to the Sun-Earth
system, so that the positions of the Sun and Earth are fixed at (−µ, 0) and
(1− µ, 0), respectively. The angular velocity of the Moon in these synodic
coordinates is denoted by ωM and the phase of the Moon at t = 0 is θM0.
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In the rotating frame just defined and using nondimensional units, the
equations of motion in the Sun-Earth rotating frame are

ẋ = u,

ẏ = v,

u̇ = x+ 2v − cS(x+ µE)− cE(x− µS)− cM (x− xM ),

v̇ = y − 2u− cSy − cEy − cM (y − yM ), (5.3.8)

where

ci =
µi
r3
i

, for i = S,E,M (5.3.9)

αS =
mS

a3
S

, (5.3.10)

and

rS =
√

(x+ µE)2 + y2,

rE =
√

(x− µS)2 + y2,

rM =
√

(x− xM )2 + (y − yM )2,

with

µS = 1− µ,
µE = µ,

xM = aM cos(θM ),

yM = aM sin(θM ),

θM = ωM t+ θM0.

The values of the parameters are as follows:

µ =
mE

mE +mS
= 3.036× 10−6, (5.3.11)

where mE and mS denote the mass of the Earth and Sun, respectively. The
Moon’s mass (1 unit = Sun + Earth mass) is

mM = 3.733998734625702× 10−8. (5.3.12)

the Earth-Moon distance (1 unit = Sun-Earth) is

aM = 2.573565073532068× 10−3, (5.3.13)

and the Moon’s angular velocity in synodic coordinates is

ωM = 12.36886949284508. (5.3.14)

In the above equations, time is scaled by the period of the Sun and Earth
around their center of mass (T/2π, where T = 3.156 × 107 s), positions
are scaled by the average Sun-Earth distance (L = 1.496 × 108 km), and
velocities are scaled by the Earth’s average orbital speed around the Sun
(2πL/T = 29.7840 km/s), according to Table 2.2.1.
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Transforming Coordinates between Rotating Frames. A neces-
sary algorithm is the transformation between the two rotating coordinate
frames: the Earth-Moon rotating frame and the Sun-Earth rotating frame.

Let the phase space trajectory in rotating coordinate system A be de-
noted by xro

A (tA) where xro
A = [x, y, u, v]T is in the nondimensional position

and velocity units associated with system A and tA is in the corresponding
time units of system A.

We first transform to inertial coordinates centered on the primary mi,
i = 1 or 2, via

xin
A = R(xro

A − dA), (5.3.15)

where

R =

(
R11 0
R21 R22

)
, (5.3.16)

R11 = R22 =

(
c −s
s c

)
, R21 =

(
−s −c
c −s

)
, (5.3.17)

c = cos(θ(tA)), s = sin(θ(tA)),

θ(tA) = tA + θA0,

and dA = [x0
A, 0, 0, 0]T and x0

A is −µA or 1−µA depending on whether the
A system inertial frame is m1- or m2-centered, respectively.

We then change from the units of system A to the units of another
system, B. Let LAB = LA

LB
be the ratio of the length scales and TAB = TA

TB

be the ratio of the time scales. The inertial frame position, velocity, and
time coordinates in the B system are then given by the re-scaling,

xin,pos
B = LABx

in,pos
A , (5.3.18)

xin,vel
B =

LAB
TAB

xin,vel
A , (5.3.19)

tB = TABtA, (5.3.20)

respectively.
The primary mi of system A is the primary mj of system B. Thus,

the trajectory xin
B(tB) is in mj-centered inertial coordinates in the units of

system B. To transform back to rotating coordinates, we use

xro
B = R−1xin

B + dB , (5.3.21)

where dB = [x0
B , 0, 0, 0]T and x0

B is −µB or 1− µB depending on whether
the B system inertial frame is m1- or m2-centered, respectively.

5.4 Example 1: Low-Energy Transfer to the
Moon
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Hiten Mission. The traditional approach to construct a spacecraft trans-
fer trajectory to the moon from the Earth is by Hohmann transfer. This
type of transfer uses only two-body dynamics. It is constructed by deter-
mining a two-body Keplerian ellipse from an Earth parking orbit to the
orbit of the moon, illustrated schematically in Figure 5.4.1(a). The two
bodies involved are the Earth and a spacecraft. Such a transfer requires a
large ∆V for the spacecraft to get captured by the moon.

In 1991, the failed Japanese mission, Muses-A, whose propellant bud-
get did not permit it to transfer to the moon via the usual method was
given a new life with an innovative trajectory design, based on the work of
Belbruno and Miller [1993]. Its re-incarnation, renamed Hiten, used a low-
energy transfer with a ballistic capture at the moon. An Earth-to-Moon
trajectory of this type, shown in Figures 5.4.1(b) and (c), which utilizes
the perturbation by the Sun, requires less fuel than the usual Hohmann
transfer.

Using the Patched Three-Body Approximation to Systematically
Design Earth-to-Moon Trajectories with Ballistic Capture. In
this section, we present an approach to the problem of the orbital dynamics
of this interesting trajectory by implementing the view that the Sun-Earth-
Moon-spacecraft four-body system can be approximated as two three-body
systems (a view also taken by Belbruno [1994]). Figure 5.4.2(a) shows a
schematic of this trajectory in the Sun-Earth rotating frame, showing the
two legs of the trajectory: (1) the Sun-Earth libration point portion and
(2) the lunar capture portion.

Within each three-body system, using our understanding of the invari-
ant manifold structures associated with the libration points L1 and L2, we
transfer from a 200 km altitude Earth orbit into the region where the in-
variant manifold structure of the Sun-Earth libration points interact with
the invariant manifold structure of the Earth-Moon libration points. See
Figure 5.4.2(b). We utilize the sensitivity of the “twisting” of trajectories
near the invariant manifold tubes in the libration point region to find a
fuel efficient transfer from the Sun-Earth system to the Earth-Moon sys-
tem. The invariant manifold tubes of the Earth-Moon system provide the
dynamical channels in phase space that enable ballistic captures of the
spacecraft by the Moon.

The final Earth-to-Moon trajectory is integrated in the bicircular four-
body model described in §5.3, where both the Moon and the Earth are
assumed to move in circular orbits about the Earth and the Sun, respec-
tively, in the ecliptic, and the spacecraft is an infinitesimal mass point.

The success of this approach depends greatly on the configuration of
the specific four bodies of interest. In order for low-energy transfers to take
place, the invariant manifold structures of the two three-body systems must
intersect within a reasonable time. Otherwise, the transfer may require an
impractically long time of flight. For the Sun-Earth-Moon-spacecraft case,
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Figure 5.4.1. (a) Hohmann transfer. (b) Low-energy transfer trajectory in the geocen-

tric inertial frame. (c) Same trajectory in the Sun-Earth rotating frame.

this is not a problem. The overlap of these invariant manifold structures
provide the low-energy transfers between the Earth and the Moon.

Construction of Earth-to-Moon Transfer. The construction is done
mainly in the Sun-Earth rotating frame using the Poincaré section Γ (along
a line of constant x-position passing through the Earth). This Poincaré
section helps to glue the Sun-Earth libration point portion of the trajectory
with the lunar ballistic capture portion.

The basic strategy is to find an initial condition (position and velocity)
for a spacecraft on the Poincaré section such that when integrating for-
ward, the spacecraft will be guided by the L2 Earth-Moon manifold and
get ballistically captured by the Moon; when integrating backward, the
spacecraft will hug the Sun-Earth manifolds and return to Earth.



5.4 Example 1: Low-Energy Transfer to the Moon 133
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Figure 5.4.2. (a) Two legs of a Hiten-like trajectory in the Sun-Earth rotating frame.

(b) The interaction of invariant manifold tubes of the Sun-Earth and the Earth-Moon

systems permits a fuel efficient Earth-to-Moon transfer with the perturbation of the

Sun.

We utilize two important properties of the libration point dynamics of
the three-body problem. The stable manifold tube is key in targeting a
capture orbit for the Earth-Moon portion of the design. The twisting of
orbits in the equilibrium region is key in finding a fuel efficient transfer for
the Sun-Earth libration point portion of the trajectory.

Lunar Ballistic Capture Portion. Recall that by targeting the region
enclosed by the stable manifold tube of the L2 Lyapunov orbit in the Earth-
Moon system, we can construct an orbit which will get ballistically captured
by the Moon. When we transform this Poincaré cut of the stable manifold
of an Earth-Moon L2 Lyapunov orbit into the Poincaré section of the Sun-
Earth system, we obtain a closed curve. A point interior to this curve will
approach the Moon when integrated forward. See Figure 5.4.3. Assuming
the Sun is a negligible perturbation to the Earth-Moon-spacecraft three-
body dynamics during this leg of the trajectory, any spacecraft with initial
conditions within this closed curve will be ballistically captured by the
Moon. “Ballistic capture by the Moon” means an orbit which under natural
dynamics gets within the Hill radius of the Moon (approx. 60,000 km) and
performs at least one revolution around the Moon. In such a state, a slight
∆V will result in a stable capture (closing off the necks at L1 and L2).

Twisting of Orbits and Sun-Earth libration Point Portion. Since
the twisting of orbits in the equilibrium region is key in finding the Sun-
Earth libration point portion of the design, we would like to review this
property briefly. From Chapter 2, we learn that orbits twist in the equilib-
rium region following roughly the Lyapunov orbit. The amount of twist of
an orbit depends sensitively on its distance from the manifold tube. The
closer to the manifold tube an orbit begins on its approach to the equi-
librium region, the more it will be twisted when it exits the equilibrium
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Figure 5.4.3. (a) The stable manifold cut of an Earth-Moon L2 orbit in the Poincaré

section of the Sun-Earth system. (b) A point interior to this cut, with the correct phasing

of the Moon, will reach the Moon’s ballistic capture region when integrated forward.

region. Hence, with small change in the initial condition (such as a small
change in velocity at a fixed point), we can change the destination of an or-
bit dramatically. In fact, we can use this sensitivity to target the spacecraft
back to a 200 km Earth parking orbit.

Look at the Poincaré section Γ in Figure 5.4.4(a). Notice that a strip
q2q1 of orbits just outside of the unstable manifold cut, when integrated
backward, gets stretched into a long strip P−1(q2)P−1(q1) of orbits that
wraps around the whole stable manifold cut. Points on q2q1 represent orbits
which have the same position but slightly different velocity. But their pre-
image P−1(q2)P−1(q1) can reach any position on the lower line of Figure
5.4.4(b) where the stable manifold tube intersects.

Pick an energy in the temporary capture range of the Sun-Earth system
which has L2 orbit manifolds that come near a 200 km altitude Earth
parking orbit. Compute the Poincaré section Γ (see Figure 5.4.4(a)). The
curve on the right is the Poincaré cut of the unstable manifold of the
Lyapunov orbit around the Sun-Earth L2. Picking an appropriate initial
condition just outside this curve, we can backward integrate to produce a
trajectory coming back to the Earth parking orbit.

Connecting the Two Portions. We can vary the phase of the Moon
until the Earth-Moon L2 manifold cut intersects the Sun-Earth L2 manifold
cut, as illustrated in Figures 5.4.5(a) and (b). In the region which is in the
interior of the Earth-Moon L2 manifold curve but in the exterior of the
Sun-Earth L2 manifold curve, an orbit will get ballistically captured by
the Moon when integrated forward; when integrated backward, the orbit
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Figure 5.4.4. (a) Line strip q2q1 outside of unstable manifold cut gets stretched into a

long strip P−1(q2)P−1(q1) that wraps around stable manifold cut. (b) With infinitesimal

changes in velocity, any point near lower tube cross section can be targeted (integrating

backward).

will hug the unstable manifold back to the Sun-Earth L2 equilibrium region
with a twist, and then hug the stable manifold back towards the position
of the Earth parking orbit. See Figures 5.4.5(c) and (d).

With only a slight modification (a small mid-course ∆V of 34 m/s at
the patch point), this procedure produces a genuine solution integrated in
the bicircular four-body problem. Since the capture at the Moon is natural
(zero ∆V ), the amount of on-board fuel necessary is lowered by about 20%
compared to a traditional Hohmann transfer (the Hohmann transfer value
is taken from Belbruno and Miller [1993]).

Aside: Why Does It Work?

What follows are a couple of heuristic arguments for using the patched
three-body approximation. When outside the Moon’s small Hill sphere
(60,000 km), which is most of the pre-capture flight, we can consider the
Moon’s perturbation on the Sun-Earth-spacecraft three-body system to be
negligible. Thus, we can utilize Sun-Earth libration point invariant man-
ifold structures. The mid-course ∆V is performed at a point where the
spacecraft is re-entering the Earth’s sphere of influence (925,000 km), where
we can consider the Sun’s gravitational perturbation on the Earth-Moon-
spacecraft three-body system to be negligible. Thus, Earth-Moon libration
point structures can be utilized for the lunar portion of the trajectory.
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Figure 5.4.5. (a) and (b) Vary the phase of the Moon until Earth-Moon L2 manifold

cut intersects Sun-Earth L2 manifold cut. (c) Pick a point in the interior of the Earth-

-Moon L2 manifold curve but in the exterior of the Sun-Earth L2 manifold curve. (d)

An orbit will get ballistically captured by the Moon when integrated foreward; when

integrated backward, orbit will hug the invariant manifolds back to the Earth.

Moreover, the fact that the patch point ∆V is so small and may even
be eliminated can be understood by considering the following. From a 200
km circular orbit around the Earth, it requires approximately 3150 m/s
(provided by the launch vehicle) to reach the Earth-Moon L1 and L2. For
another 50 m/s, one can reach the Sun-Earth L1 and L2. In other words,
a spacecraft needs roughly the same amount of energy to reach the Sun-
Earth and the Earth-Moon L1 and L2. This fortuitous coincidence is what
enables these low energy lunar transfer and capture orbits.
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5.5 Example 2: The Lunar L1 Gateway
Station

Introduction. NASA desires to develop a robust and flexible capability
to visit several potential destinations. Therefore, a Lunar Gateway Station
at the lunar L1 has been proposed as a transportation hub to get humanity
beyond low-Earth orbit (see Lo and Ross [2001] and Condon and Pearson
[2001]). The fortuitous arrangement of the stable and unstable manifold
tubes in near-Earth space implies that lunar L1 and L2 periodic orbits
are connected to periodic orbits around Earth’s L1 and L2 via low energy
pathways. Many of NASA’s future space telescopes located around the
Earth’s L1 or L2 may be built in a lunar L1 orbit and conveyed to the final
destination with minimal fuel requirements. As this methodology works in
both the planar and spatial restricted four-body problems (see Chapters
6 and 9), the periodic orbits could be either planar Lyapunov orbits or
three-dimensional halo orbits.

Considering the example from the previous section of an Earth to Moon
trajectory, suppose that instead of traveling from Earth to the realm around
the Moon by entering the interior of the Moon’s L2 stable tube, a spacecraft
got on the Moon’s L2 stable tube. The spacecraft would tend asymptoti-
cally to a periodic orbit about the Moon’s L2. We can further suppose that
a piece of the Moon’s L1 stable tube, at the same energy, which escapes
away from the Moon (in backward time) through the interior of the Moon’s
L2 stable tube may intersect the region around Earth’s L2 unstable tube
shown in Figure 5.4.5(c). This would be a free transfer from the Earth to
a periodic orbit around the Moon’s L1. If the arrow of time were reversed,
then the stable and unstable tubes would interchange and one would have
a transfer from a periodic orbit about the Moon’s L1 to the Earth. By
choosing nearby initial conditions on the Moon’s L1 unstable tube which
intersect the Earth’s L2 stable tube, we would have a free transfer from an
orbit about the Moon’s L1 to the Earth’s L2, as illustrated in Figure 5.5.1
(the reverse transfer would also exist).

Such a transfer could prove very useful to the development of space.
For example, this implies that lunar L1 halo orbits are connected to halo
orbits around Earth’s L1 or L2 via low energy pathways. As mentioned,
future space observatories located around the Earth’s L1 or L2 may be
built in a lunar L1 orbit and conveyed to the final destination using tubes
with minimal propulsion requirements. Similarly, when the spacecraft or
instruments require servicing, they may be returned from Earth libration
orbits to the lunar L1 orbit where human servicing may be performed,
which was shown to be of vital importance for keeping the Hubble Space
Telescope operable. Since the lunar L1 orbit may be reached by astronauts
from Earth in a few days, the infrastructure and complexity of long-term



138 5. Trajectories in the Four-Body Problem

(a) (b)

Figure 5.5.1. (a) Artist’s conception of portions of the stable and unstable tubes of the

Sun-Earth-Moon system generated by the halo orbits. The stable tube asymptotically

approaching a Earth L2 halo orbit is shown along with tubes in the Earth-Moon system.

(b) An exploded view of the lunar portion of (a). Arrows indicate the direction of

movement.

space travel is greatly mitigated. The same orbit could reach any point
on the surface of the Moon within hours, thus this portal is also a perfect
location for the return of human presence on the Moon. The lunar L1 orbit
is also an excellent point of departure for interplanetary flight where several
lunar and Earth encounters may be added to further reduce the launch cost
and open up the launch period. The lunar L1 is a versatile hub for a space
transportation system of the future.

Human Servicing of Libration Point Missions from the Lunar L1.
In recent years, halo orbits around the Earth’s libration points (EL1, EL2,
see Figure 5.5.2) have become a popular location for space missions (see
Chapter 1). NASA has a lot of experience with halo orbit missions. In 2001

Earth

Moon’s Orbit
Moon

To Sun

1.5 Million KM 1.5 Million KM

Figure 5.5.2. Schematic diagram of the libration points of the Earth-Moon, and

Sun-Earth systems.

alone NASA is sending two missions to orbit the Earth’s libration points:
MAP is well on its way to EL2 as is Genesis to EL1. The Next Generation
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Space Telescope and the Terrestrial Planet Finder mission (TPF) are both
considering using EL2 orbits. The constant cold environment of EL2 is well
suited to observatories with detectors requiring low temperatures for oper-
ation. Communications geometry from EL2 to the Earth is nearly constant
with the range at roughly 1.5 million km from the Earth. Furthermore, it
requires a ∆V of only 3200 m/s to insert into typical halo orbits from a
200 km parking orbit around the Earth. In general, operations costs are
low: only four to six maneuvers per year are required for station keeping
with a total ∆V budget less than 5 m/s per year.

In the last few years, NASA planners have seriously considered providing
human servicing to libration missions (see Condon and Pearson [2001]). The
problem is that, the 3200 m/s transfer to orbits around the libration points
require approximately 3 months of travel time. With transfer orbits to EL2

well outside of the Earth’s magnetic field, such a voyage would in principle
be not very different from one going to Mars. To reduce the transfer time
in any significant manner (down to one day) requires an increase of the
transfer ∆V by roughly an order of magnitude. The infrastructure cost
and risk for both options are extremely high. Lo and Ross [2001] suggested
an alternate approach by using the Moon’s L1 (lunar L1: LL1) as a base
of operations for servicing missions at the Earth’s libration points.

By placing a Lunar Gateway Habitat in orbit around LL1, the spacecraft
at EL2 can be brought back and forth to LL1 with relatively little cost.
An example trajectory is presented in this section which requires only a
single 14 m/s deterministic maneuver (statistical maneuvers not included)
to convey a spacecraft from LL1 to EL2 orbit (see Figure 5.5.3). Transfers
for EL2 to LL1 would have similar costs. With optimization, even this small
deterministic maneuver may be removed in some instances. The transfer
from the LL1 to EL2 region requires about 40 days. This efficient transfer
is achieved using a methodology similar to the one in the previous section,
with the main difference that the transfer is an intersection of the surface
of tubes in the Earth-Moon and Sun-Earth systems, rather than the transit
and non-transit orbits on either side of the tube surfaces.

The Lunar L1 as a Servicing and Transportation Hub. Lunar L1

is an ideal and logical next step for extended human presence in space be-
yond LEO (Low Earth Orbit). To first order, from energy considerations, it
requires only a ∆V of 3150 m/s to reach LL1 from a 200 km parking orbit
around Earth. Although, this will vary depending on the transfer time. In
the worst case, it is bounded above by transfers to the Moon. We are cur-
rently studying this issue. Station keeping is required once or twice a week
with a total ∆V budget of around 10 m/s per year (Gómez, Howell, Mas-
demont, and Simó [1998a]). However, advances in navigation technology in
the next decade may provide a completely autonomous system for station
keeping with even lower cost. Communications is relatively simple, since
LL1 is close by and always in view of the Earth. And, of course, NASA
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Figure 5.5.3. A transfer between planar Lyapunov orbits around the lunar L1 and

Earth L2. (a) The Lyapunov orbit around the lunar LL1 and the 14 m/s maneuver to

get onto the transfer orbit. The axes are in nondimensional units of the Earth-Moon

system. (b) The transfer orbit going from the Moon to the Earth’s EL2. The axes are

in nondimensional units of the Sun-Earth system.

has a tremendous amount of experience with human missions to the Moon.
This fact alone greatly reduces the risk of this approach.

These facts combine to suggest that a halo orbit around LL1 provides an
ideal location for a “service station” or a “hub” for missions in Earth libra-
tion orbits. Moreover, as shown in Doedel, Paffenroth, Keller, Dichmann,
Galan, and Vanderbauwhede [2003], there are large families of orbits with
similar characteristics to halo orbits in the Earth’s Neighborhood (the re-
gion between EL1 and EL2) which will be useful for future missions. Space-
craft in these orbits may also be serviced by the LL1 Gateway. Beyond the
Earth’s Neighborhood, LL1 can also serve as an excellent point of departure
and arrival for interplanetary flights to Mars, the asteroids, and the outer
solar system, as depicted in Figure 1.2.5. By taking advantage of the tube
dynamics in the Sun-Earth-Moon system, launches from the LL1 Gateway
can effectively increase the narrow launch periods of interplanetary mis-
sions from a few days to weeks and months. This is achieved by launching
earlier and spending the extra time in the Earth’s Neighborhood until a
final Earth flyby with injection onto the desired interplanetary transfer
orbit. During the time in the Earth’s Neighborhood, additional lunar and
Earth flybys can further increase the energy of the spacecraft.



6
Extension to the Spatial Problem:
Halo Orbits and Their Computation

6.1 Introduction

Extension to Three Degrees-of-Freedom. Earlier chapters focus on
the two degree-of-freedom problem, but in this chapter we begin to dis-
cuss the three degree-of-freedom circular restricted three-body problem
(CR3BP), also referred to as the spatial problem. When a comet or space-
craft is relatively far from a planet or moon, the planar model is a good
approximation. As one approaches a planet or moon, the dynamics of the
third dimension become important. With the addition of a third degree of
freedom, new phenomena emerge. In particular, the orbital taxonomy near
the libration points gets more complicated.

For space missions, the third dimension is important for geometric rea-
sons such as constant access to the sun for solar power or to the Earth for
communications. Also, one is often required to approach a planet or moon
out of plane. Controlling the latitude and longitude of a spacecraft’s escape
from and entry into a planetary or moon orbit require three-dimensional
capabilities. For example, a future mission to send a probe to orbit Eu-
ropa may desire a capture into a high inclination polar orbit around Eu-
ropa (Sweetser, Maddock, Johannesen, Bell, Penzo, Wolf, Williams, Ma-
tousek, and Weinstein [1997]; Ludwinski, Guman, Johannesen, Mitchell,
and Staehle [1998]; Scheeres, Guman, and Villac [2001]; Villac and Scheeres
[2001]). Three-dimensional capability is also required when decomposing an
N -body system into three-body subsystems which are not co-planar, such
as the Earth-Sun-spacecraft and Earth-Moon-spacecraft systems. (The tilt
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in the orbital planes of the Earth around the Sun and the Moon around
the Earth is about 5 degrees.) These demands necessitate dropping the
restriction to planar motion, and extension of earlier results to the spatial
problem.

Dynamical Channels in the Spatial Problem. From now on, we fo-
cus on the spatial problem. We will put more emphasis on numerical com-
putations, especially issues concerning halo orbit missions. In this chapter
we present a detailed portrait of the phase space geometry near L1 and L2.
In Chapter 9, we start from this portrait to consider the dynamical chan-
nels connecting the realms in the spatial problem connected by bottlenecks
about L1 and L2. We extend the tube dynamics to the spatial problem and
present an example multi-moon orbiter using the higher dimensional tube
methodology. Tube dynamics in the spatial problem involves considering
the invariant manifolds of a three-sphere of bound orbits, similar to the
role of the cylindrical invariant manifolds of a Lyapunov periodic orbit, a
one-sphere, in the planar problem.

Outline of the Chapter. In this chapter, we first discuss some history
of missions using CR3BP solutions, particularly the halo orbits. We then
introduce the CR3BP and discuss the halo orbits, three-dimensional peri-
odic orbits about the libration points, and discuss how to compute them.
The computation of halo orbits follows standard nonlinear trajectory com-
putation algorithms based on differential correction. Due to the sensitivity
of the problem, an accurate first guess is essential, since the halo orbit is
actually an unstable orbit (albeit with a fairly long time constant in the
Sun-Earth system, about 180 days). This first guess is provided by a high
order analytic expansion using the Lindstedt–Poincaré method. In order
to gain familiarity with the Lindstedt–Poincaré method, we first consider
a textbook example, the Duffing equation. We then use the Lindstedt–
Poincaré method to find a third-order approximation of a halo orbit, and
use this approximation as a first guess in a differential correction scheme.
Finally, we discuss briefly the orbit structure near L1 and L2, laying the
foundation for later chapters.

6.2 Some History of Halo Orbits for Space
Missions

We review some of the history of halo orbits and key missions for which
the methods described in this chapter were developed.

Discovery of Halo Orbits. The points of equilibrium along the line
joining two massive bodies, in particular L1 and L2, have been known for
over two centuries (Euler [1767] and Lagrange [1772]). Their existence was
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known to the pioneers of spaceflight in the mid-twentieth century, but no
application of them was proposed until 1950. At that time, futurist Arthur
C. Clarke suggested that the translunar libration point, L2, would be an
ideal place for relaying TV and radio broadcasts from Earth to colonists
on the far side of the Moon (Clarke [1950]). A decade and a half later,
Robert Farquhar discovered trajectories around L2 in which a communica-
tion satellite could be placed allowing continuous link between the Earth
and the Moon’s far side (Farquhar [1966]). He named such a trajectory
a “halo orbit” as it appeared from the Earth to be a halo encircling the
Moon. In space, a halo orbit looks like the edges of a potato chip,

During the late 1960s and early 1970s, NASA’s Apollo program was un-
derway, and many people were working on aspects of manned lunar opera-
tions. Farquhar published numerous papers extensively covering topics re-
lated to halo orbits, libration point satellite operations in general, and their
applications within the Earth-Moon system and beyond (Farquhar [1968,
1969, 1972]).1 Other authors conducted comprehensive studies of halo orbit
families for the Earth-Moon system (Breakwell and Brown [1979]), and for
all other two mass gravity fields (Howell and Breakwell [1984], and Howell
[1984]).

International Sun-Earth Explorer/International Cometary Ex-
plorer. In 1972, the International Sun-Earth Explorer (ISEE) Program
was estabilished, a joint project of NASA and the European Space Agency
(ESA) which was to involve three spacecraft. One of these, ISEE-3, was
launched into a halo orbit around the Sun-Earth L1 point in 1978, al-
lowing it to collect data on solar wind conditions upstream from Earth.
ISEE-3 accomplished many scientific goals. After the primary mission was
completed, ISEE-3 went on to accomplish other goals, including a flight
through the geomagnetic tail and a comet flyby, by utilizing the interesting
dynamics in the Sun-Earth-Moon system (Farquhar [2001]). The mission
was subsequently renamed the International Cometary Explorer (ICE).

Barcelona Group and SOHO. In the mid-1980s, a team in Barcelona
were the first to study the invariant manifolds of halo orbits and apply
them to the design of a space mission, in particular the Solar and Helio-
spheric Observatory (SOHO) mission (see references Simó, Gómez, Llibre,
and Martinez [1986] and Simó, Gómez, Llibre, Martinez, and Rodŕıguez
[1987]). SOHO did not require the delicate controls provided by this the-
ory, so the actual mission was flown using the classical methods devel-
oped at NASA by Farquhar and coworkers (see, for example, Farquhar
and Dunham [1981]; Farquhar, Muhonen, Newman, and Heuberger [1980];
Farquhar, Muhonen, and Richardson [1977]).

1Unfortunately, NASA scheduled no further moon landings after 1972, and the
agency’s desire for a communication link with the Moon’s far side disappeared (see

Farquhar [2001]).
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Other Missions. Lissajous and halo type trajectories around the collinear
libration points have been considered in the trajectory design of many space
missions, including the Genesis mission and others mentioned in the sup-
plement in §1.2. In the future, the European Space Agency is considering
two missions to L2 in the Sun-Earth system, FIRST and PLANK. Fur-
thermore, for NASA’s Next Generation Space Telescope, the follow-on to
the Hubble Telescope, an L2 libration point orbit is has been considered.
This interest in libration point orbits justifies the study of the dynam-
ics around an extended neighborhood of these points in order that more
complex missions can be envisaged.

6.3 A Few Basic Facts About the CR3BP

Energy Surface and Hill’s Region. The level surfaces of the Hamilto-
nian energy (2.3.13) , E = e = constant, which are also energy surfaces,
are invariant 5-dimensional manifolds. Let M be that energy surface, i.e.,

M(µ, e) = {(x, y, z, ẋ, ẏ, ż) | E(x, y, z, ẋ, ẏ, ż) = e}.

The projection of this surface onto position space is called a Hill’s region

M(µ, e) = {(x, y, z) | Ū(x, y, z) ≤ e}.

The boundary of M(µ, e) is the zero velocity surface. The intersection
of this surface with the xy-plane, i.e., z = 0, is the zero velocity curve in
the xy-plane. The spacecraft can move only within this region, the white
region in Figure 2.4.2.

Our main concern in the rest of the book is the behavior of the orbits
of equations (2.3.8) whose energy is just above that of L2; that is, e > E2,
where the value of the energy integral at the point Li is denoted by Ei.
For this case, the three-dimensional Hill’s region contains a “neck” about
L1 and L2, as shown in Figure 6.3.1. Thus, orbits with an energy just
above that of L2 are energetically permitted to make a transit through
the two neck regions from the interior realm (inside the Earth’s orbit)
to the exterior realm (outside the Earth’s orbit) passing through the
Earth (capture) realm. Moreover, as shown later in this chapter, the
computation of halo orbits also requires the opening of the neck about L1

or L2.

Equilibria of the CR3BP. By applying the same techniques used in
Chapter 2, it can be shown that the system (2.3.8) has five equilibrium
points, all of which are in the xy-plane: three collinear points on the x-
axis, called L1, L2, L3 (see Figure 6.3.1) and two equilateral points called
L4 and L5. These equilibrium points are critical points of the (effective
potential) function Ū .
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Computation of the values of the abscissas of the collinear points requires
the solution of d

dx Ū(x, 0, 0) = 0, and was covered in §2.5. The distance
from Li, i = 1, 2 to the smaller primary is given by γi, the unique positive
solution of (2.5.2).

Equations of Motion near L1 or L2. The equations of motion for a
satellite moving in the vicinity of L1 or L2 can be obtained by translating
the origin to the location of L1 or L2. The change of coordinates is given
by

x̄ =
x− 1 + µ± γ

γ
,

ȳ =
y

γ
,

z̄ =
z

γ
,

where the upper sign is for L1 and the lower sign is for L2. In this new nor-
malized coordinate system, the variables x̄, ȳ, z̄ are scaled so that the
distance between L1 or L2 and the small primary is 1. This scaled system
was introduced in Richardson [1980a] in order to have good numerical prop-
erties for the series expansion below. For simplicity of notation, x, y, z will
still be used to denote the variables in the normalized coordinate system
for the rest of the chapter. For the Sun-Earth L1, γ1 = 1.001090475×10−2

and one unit of normalized distance = 1.497610041×106 km (where we use
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a slightly different Sun-Earth distance than the one given in Table 2.2.1,
L = 1.495978714× 108 km).

Expansion of the Nonlinear Equations. Some computational ad-
vantages can be obtained if the equations are developed using Legendre
polynomials Pn. In order to expand the nonlinear terms, 1−µ

r1
+ µ

r2
, the

following formula can be used,

1√
(x−A)2 + (y −B)2 + (z − C)2

=
1

D

∞∑
n=0

( ρ
D

)n
Pn

(
Ax+By + Cz

Dρ

)
,

where D2 = A2 +B2 +C2 and ρ2 = x2 + y2 + z2. After some calculations,
the equations of motion can be written as

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑
n≥3

cnρ
nPn

(
x

ρ

)

ÿ + 2ẋ+ (c2 − 1)y =
∂

∂y

∑
n≥3

cnρ
nPn

(
x

ρ

)
(6.3.1)

z̈ + c2z =
∂

∂z

∑
n≥3

cnρ
nPn

(
x

ρ

)
where the left-hand side contains the linear terms and the right-hand side
contains the nonlinear ones. The coefficients cn(µ) are given by

cn =
1

γ3

(
(±)nµ+ (−1)n

(1− µ)γn+1

(1∓ γ)n+1

)
.

where the upper sign is for L1 and the lower one for L2. Notice that c2 is
the same as µ̄ (cf. (2.6.2)) from the planar problem discussion of Chapter
2. For the Sun-Earth L1, c2 = 4.0610735668, c3 = 3.0200105081, and c4 =
3.0305378797.

These expressions for the equations of motion are in an ideal form from
the point of view that all orders of the nonlinear expansion can be developed
recursively using the well-known Legendre polynomial relationships (see
Whittaker [1927]). For instance, if we define

Tn(x, y, z) = ρnPn

(
x

ρ

)
,

then Tn is a homogeneous polynomial of degree n that satisfies the recur-
rence

Tn =
2n− 1

n
xTn−1 −

n− 1

n
(x2 + y2 + z2)Tn−2,

starting with T0 = 1 and T1 = x. This is particularly useful if the successive
approximation solution procedure is carried to high orders via algebraic
manipulation software programs.
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6.4 Overview of Halo Orbit Computations

As mentioned previously, the absence of a general solution for the CR3BP
has motivated a number of researchers to develop approximate analytical
solutions. Linear analysis suggests the existence of periodic (and quasi-
periodic) orbits near the collinear libration points. Higher order approxima-
tions can provide further insight into the general nature of such solutions.
They can be used as a first guess for the numerical computation of the
desired orbits. The halo orbit used by the first halo orbit mission ISEE-3
was designed using this methodology. See Farquhar and Kamel [1973] and
Richardson [1980b].

To date, a complete description and computation of the libration orbits
around an extended neighborhood of the collinear libration points has been
obtained. The main objects found are planar and vertical families of Lya-
punov periodic orbits; three-dimensional quasi-periodic Lissajous orbits;
periodic halo orbits; and quasi-halo orbits. For more details, see Howell
and Pernicka [1988], Gómez, Jorba, Masdemont, and Simó [1991a], and
Jorba and Masdemont [1999].

Here, we will follow the presentation of Richardson [1980b] which gives a
succinct summary on how the particular ISEE-3 halo orbit was constructed
using analytical and numerical methods. The third-order analytical solu-
tion was obtained by an application of successive approximations using the
Lindstedt–Poincaré method. The ISEE-3 mission orbit was then produced
from standard differential correction procedures using the third-order so-
lution as the “first guess”.

Periodic Solutions of the Linearized Equations. The existence of
periodic solutions to the nonlinear equations (6.3.1) can be deduced by
considering the linear part of the equations:

ẍ− 2ẏ − (1 + 2c2)x = 0

ÿ + 2ẋ+ (c2 − 1)y = 0 (6.4.1)

z̈ + c2z = 0

It is clear that the z-axis solution, obtained by putting x = 0 and y = 0,
is simple-harmonic since c2 > 0 and does not depend on x and y. How-
ever, the motion in the xy-plane is coupled. As we know from §2.6 and
§2.7, the solution of the characteristic equation of (6.4.1) has two real
and two imaginary roots (±λ,±iωp). Hence, the linear behavior near the
collinear libration point is of the type saddle×center×center with eigenval-
ues (±λ,±iωp,±iωv) given by

λ2 =
c2 − 2 +

√
9c22 − 8c2

2
, ω2

p =
2− c2 +

√
9c22 − 8c2

2
, ω2

v = c2.

Since the two real roots are opposite in sign, arbitrarily chosen initial
conditions will give rise, in general, to unbounded solutions as time in-
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creases. If, however, the initial conditions are restricted so that only the
non-divergent mode is allowed, the xy-solution will be bounded. In this
case, the linearized equations have solutions of the form

x = −Ax cos(ωpt+ φ)

y = κAx sin(ωpt+ φ) (6.4.2)

z = Az sin(ωvt+ ψ)

with

κ =
ω2
p + 1 + 2c2

2ωp
. (6.4.3)

The linearized motion will become quasi-periodic if the in-plane and out-
of-plane frequencies are such that their ratio is irrational. The projections
of the motion onto the various coordinate planes produce Lissajous-type
trajectories, as shown in Figure 6.4.1. Notice that κ is the same as −τ
(cf. (2.7.2)) from Chapter 2.

Halo Orbits in the Linearized Approximation. For the Sun-Earth
L1, ωp = 2.086453455 and ωv = 2.0152105515. Their difference is quite
small. Motion similar on a short time scale to periodic (halo) motion is
obtained if the amplitudes of the in-plane and out-of-plane motions are
of sufficient magnitude so that the nonlinear contributions to the system
produce eigenfrequencies that are equal. For the ISEE-3 halo, shown in
Figure 6.4.2, Az = 110,000 km, Ax = 206,000 km, and Ay = κAx =
665,000 km (with κ = 3.2292680962).

Equations (6.4.2) with ωp = ωv will form the first approximation for
the third-order periodic solution using the Lindstedt–Poincaré procedure
of successive approximations. Details will be given below in §6.5 and §6.6.
Here, we will highlight some of the interesting results.

Amplitude Constraint Relationship. For halo orbits, the amplitudes
Ax and Az are constrained by a certain non-linear algebraic relationship
found as result of the applicaiton of the perturbation method:

l1A
2
x + l2A

2
z + ∆ = 0. (6.4.4)

For Sun-Earth L1 halo orbits, l1 = −15.9650314, l2 = 1.740900800, and
∆ = 0.29221444425.

Hence, any halo orbit can be characterized completely by specifying a
particular out-of-ecliptic plane amplitude Az of the solution to the lin-
earized equations of motion. Both the analytical and numerical develop-
ments employ this identifying scheme. The ISEE-3 spacecraft was targeted
to a halo orbit corresponding to an Az amplitude of 110,000 km.

From the expression (6.4.4), one can find the minimum permissible value
for Ax in order to have a halo orbit (Az > 0). In the case of a periodic
solution about L1 in the Sun-Earth system, the value of Ax is about 14%
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Figure 6.4.1. (top) The general motion around a libration point is shown. (bottom)

The same motion projected onto the various coordinate planes produce Lissajous-type

trajectories. The trajectory is shown around the Sun-Earth L1 point as the origin.

Arrows indicate the clockwise direction of motion in the xy projection. The values of

Ax and Az are not important and are chosen only to illustrate the typical Lissajous

patterns.

of the normalized distance. This amounts to a minimum amplitude of ap-
proximately 200,000 km.

Phase-Angle Relationship. For halo orbits, the phases φ and ψ are
related to each other in a linear fashion:

ψ − φ = mπ/2, m = 1, 3. (6.4.5)

It will be shown later that when Ax is greater than a certain minimum
value, the third-order solution bifurcates. This bifurcation manifests itself
through the phase-angle constraint relation and two solution branches are
obtained according to whether m = 1 or m = 3. The two branches are
viewed as mirror reflections of each other about the xy-plane. For m = 1,
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Figure 6.4.2. The halo orbit used by the ISEE-3 mission. From left to right, the xy,

xz, and yz projections are shown. The Sun-Earth L1 point is the origin, with coordinate

values given in increments of 105 km.
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Figure 6.4.3. The amplitude constraint relationship for Sun-Earth L1 halo orbits. The

coordinate values are given in increments of 105 km.

Az is positive, and we have the northern (class I) halo whose maximum
out-of-plane component is above the xy-plane (z > 0). For m = 3, Az is
negative, and we have the southern (class II) halo whose maximum out-of-
plane component is below the xy-plane (z < 0). Northern and southern halo
orbits with the same Az amplitude are mirror images across the xy-plane.
In Figure 6.4.4, a northern and southern halo orbit about the Sun-Earth
L2 are shown.
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Figure 6.4.4. A northern halo (top) and southern halo (bottom) about the Sun-Earth

L2. From left to right, the xy, xz, and yz projections are shown. The xy projections

are the same. Arrows indicate the direction of motion in the xy and yz projections. The

Sun-Earth L2 point is the dot at the origin. Coordinate values are given in increments

of 105 km. |Az |=330,000 km for both halos.

6.5 Periodic Orbits and the
Lindstedt–Poincaré Method

Periodic orbits are of fundamental importance in the study of dynamical
systems in general, and Hamiltonian systems in particular. They are also
important destinations for spacecraft missions, e.g. halo orbits. In order to
compute families of periodic orbits, one often uses analytical approxima-
tions. The Lindstedt–Poincaré method is one such method which we
will use.

To introduce and illustrate the Lindstedt–Poincaré method, let us study
the Duffing equation,

q̈ + q + εq3 = 0, (6.5.1)

where ε is a small parameter.

Finding a Periodic Solution for the Duffing Equation. For ε = 0,
(6.5.1) has a periodic solution

q = a cos t,
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for the initial conditions q(0) = a, q̇(0) = 0.
For ε 6= 0, we look for a periodic solution. A naive approach would be to

try to find a solution of the following form,

q =

∞∑
n=0

εnqn(t) = q0(t) + εq1(t) + ε2q2(t) + · · · , (6.5.2)

with the initial conditions q(0) = a, q̇(0) = 0. This implies that q0(0) =
a, q̇0(0) = 0 and qn(0) = 0, q̇n(0) = 0 for n ≥ 1.

By substituting the solution (6.5.2) into equation (6.5.1) and equating
terms having same power of ε, one gets a system of recursive differential
equations:

q̈0 + q0 = 0,

q̈1 + q1 = −q3
0 ,

q̈2 + q2 = −3q2
0q1,

and so on. Clearly, the solution for q0 in the first equation with initial
conditions q0(0) = a, q̇0(0) = 0 is

q0 = a cos t.

Substituting this expression for q0 into the second equation gives

q̈1 + q1 = −q3
0 = −a3 cos3 t = −1

4
a3(cos 3t+ 3 cos t).

The solution for q1 with initial conditions q1(0) = 0, q̇1(0) = 0 is

q1 = −3

8
a3t sin t+

1

32
a3(cos 3t− cos t).

The term t sin t is called a secular term and such terms grow in amplitude
as t grows. Due to the presence of secular terms, a naive method such as
an expansion of the solution in a power series in ε does not work. The
Lindstedt–Poincaré method is designed to get around this difficulty.

The Lindstedt–Poincaré Method. The main idea behind the Lindstedt–
Poincaré method builds on the observation that non-linearity alters the
frequency of the linearized system. This change of frequency, from 1 to
ν(ε), has to be taken into consideration, and it can be done efficiently by
introducing a new independent variable,

τ = ν(ε)t,

so that for the rescaled Duffing equation,

q′′ + ν−2(q + εq3) = 0, (6.5.3)
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with τ as the independent variable, the desired periodic solution will still
be 2π−periodic. Expand ν−1 as follow

ν−1 = 1 + εν1 + ε2ν2 + · · · .

Correspondingly, expand the desired periodic solution in a power series in
ε:

q =

∞∑
n=0

εnqn(τ) = q0(τ) + εq1(τ) + ε2q2(τ) + · · · . (6.5.4)

Substitute the power series expansion of q (6.5.4) into the rescaled Duffing
equation (6.5.3) and equate terms with the same power of ε. This gives
equations for successive approximations:

q′′0 + q0 = 0,

q′′1 + q1 = −q3
0 − 2ν1q0,

q′′2 + q2 = −3q2
0q1 − 2ν1(q1 + q3

0)− (ν2
1 + 2ν2)q0,

and so on.
Now we come to a key point: potential secular terms can be avoided by

imposing suitable conditions on νn. Again, the solution for q0 in the first
equation with the initial conditions q0(0) = a, q̇(0) = 0 is

q0 = a cos τ.

By substituting q0 = a cos τ into the second equation, we get

q′′1 + q1 = −a3 cos3 τ − 2ν1a cos τ,

= −1

4
a3 cos 3τ −

(
3

4
a2 + 2ν1

)
a cos τ.

In previous naive method, we had ν1 ≡ 0 and a secular term appeared
because the cos τ term has the same frequency as the oscillator q′′1 + q1 on
the left-hand-side of the equation. However, if we set ν1 = −3a2/8, we can
get rid of the cos τ term so that no secular term appears. Then the solution
for the second equation is given by,

q1 = − 1

32
a3 (cos τ − cos 3τ) ,

for the initial conditions q1(0) = 0, q̇(0) = 0.
Therefore, to first-order in ε, we have a periodic solution

q = a cos τ − 1

32
εa3 (cos τ − cos 3τ) +O(ε2),

= a cos νt− 1

32
εa3 (cos νt− cos 3νt) +O(ε2),
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with

ν =

{
1− εν1 −

1

2
ε2(2ν2 − ν2

1) + · · ·
}
,

= 1 +
3

8
εa2 +O(ε2).

In summary, the Lindstedt–Poincaré method involves successive adjust-
ments of frequencies to avoid secular terms and allows one to obtain ap-
proximate periodic solutions.

6.6 Third-Order Richardson Expansion

Recall that the CR3BP equations can be developed using Legendre poly-
nomials Pn, as in (6.3.1). A third-order approximation was used in Richard-
son [1980a]:

ẍ− 2ẏ − (1 + 2c2)x =
3

2
c3(2x2 − y2 − z2)

+2c4x(2x2 − 3y2 − 3z2) +O(4),

ÿ + 2ẋ+ (c2 − 1)y = −3c3xy −
3

2
c4y(4x2 − y2 − z2) +O(4),

z̈ + c2z = −3c3xz −
3

2
c4z(4x

2 − y2 − z2) +O(4).

Construction of Periodic Solutions. As explained earlier, halo-type
periodic solutions are obtained by assuming that the amplitudes Ax and
Az of the linearized solution (6.4.2) are large enough so that the nonlinear
contributions to the system produce eigenfrequencies which are equal (ωp =
ωv). With this assumption, the linearized equations can be rewritten as

ẍ− 2ẏ − (1 + 2c2)x = 0,

ÿ + 2ẋ+ (c2 − 1)y = 0, (6.6.1)

z̈ + ω2
pz = 0,

where ω2
p has replaced the coefficient c2 in the last equation of (6.4.1).

These linear equations have a periodic solution with frequency ωp

x = −Ax cos(ωpt+ φ),

y = κAx sin(ωpt+ φ), (6.6.2)

z = Az sin(ωpt+ ψ),

which can be used as the seed for constructing successive approximations.
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Correction Term. By forcing the linearized z equation (6.4.1) to the
form (6.6.1), it becomes necessary to rewrite the left-hand side of the z
equation of (6.6.1) and to introduce a correction term ∆ = ω2

p−c2 = ω2
p−ω2

v

on the right-hand side when higher-order approximations are constructed.
The new third-order z equation then becomes,

z̈ + ω2
pz = −3c3xz −

3

2
c4z(4x

2 − y2 − z2) + ∆z +O(4).

It can be shown that for motion about L1 in the Sun-Earth system that
∆ should obey the order-of-magnitude relation ∆ = 0.29221 = O(A2

z).
Accordingly, the ∆z contribution to the solution will first appear in the
expressions for the third-order corrections.

Lindstedt–Poincaré Method. Richardson [1980a] developed a third-
order periodic solution using a Lindstedt–Poincaré type of successive ap-
proximations (cf. §6.5). To help remove secular terms, a new independent
variable τ and a frequency connection ν are introduced via,

τ = νt.

Here,

ν = 1 +
∑
n≥1

νn, νn < 1.

The νn are assumed to be O(Anz ) and are chosen to remove secular terms
as they appear during the course of the development of the successive
approximations solution. Notice that Az � 1 in normalized units and it
plays the role of ε.

The equations of motion are then written in terms of new independent
variable τ

ν2x′′ − 2νy′ − (1 + 2c2)x =
3

2
c3(2x2 − y2 − z2)

+2c4x(2x2 − 3y2 − 3z2) +O(4),

ν2y′′ + 2νx′ + (c2 − 1)y = −3c3xy

−3

2
c4y(4x2 − y2 − z2) +O(4),

ν2z′′ + ω2
pz = −3c3xz

−3

2
c4z(4x

2 − y2 − z2) + ∆z +O(4).

To find the third-order successive approximation solution is a lengthy
process. Here are some highlights.

The generating solution used is the linearized solution (6.6.2) with t
replaced by τ . Most of the secular terms can be removed by proper speci-
fication of the νn. It is found that

ν1 = 0, ν2 = s1A
2
x + s2A

2
z, (6.6.3)
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which gives the frequency ωpν and the period (T = 2π/ωpν) of a halo orbit.
However, not all of the secular terms can be removed in this manner.

Additionally, it becomes necessary to specify amplitude and phase angle
constraint relationships, as mentioned earlier. These expressions are

l1A
2
x + l2A

2
z + ∆ = 0, (6.6.4)

ψ − φ = mπ/2, m = 1, 3. (6.6.5)

Halo Orbits in the Third-Order Approximation. The third-order
solution in Richardson [1980a] is given by:

x = a21A
2
x + a22A

2
z −Ax cos τ1

+(a23A
2
x − a24A

2
z) cos 2τ1 + (a31A

3
x − a32AxA

2
z) cos 3τ1,

y = κAx sin τ1

+(b21A
2
x − b22A

2
z) sin 2τ1 + (b31A

3
x − b32AxA

2
z) sin 3τ1,

z = δmAz cos τ1

+δmd21AxAz(cos 2τ1 − 3) + δm(d32AzA
2
x − d31A

3
z) cos 3τ1.

where τ1 = ωpτ + φ and δm = 2−m,m = 1, 3. Two solution branches are
obtained according to whether m = 1 or m = 3.

Values of Constants. The constants si, li, and aij , bij and dij are com-
plicated expressions involving c2, c3 and c4, which we reproduce here.

a21 =
3c3(κ2 − 2)

4(1 + 2c2)
,

a22 =
3c3

4(1 + 2c2)
,

a23 =− 3c3ωp
4κd1

(
3κ3ωp − 6κ(κ− ωp) + 4

)
,

a24 =− 3c3ωp
4κd1

(2 + 3κωp),

b21 =− 3c3ωp
2d1

(3κωp − 4),

b22 =− 3c3ωp
d1

,

d21 =− c3
2ω2

p

,

a31 =− 9ωp
4d2

(
4c3(κa23 − b21) + κc4(4 + κ2)

)
+

9ω2
p + 1− c2

2d2

(
3c3(2a23 − κb21) + c4(2 + 3κ2)

)
,

a32 =− 9ωp
4d2

(4c(3κa24 − b22) + κc4)
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− 3

2d2

(
9ω2

p + 1− c2
)

(c3(κb22 + d21 − 2a24)− c4) ,

b31 =
3

8d2
8ωp

(
3c3(κb21 − 2a23)− c4(2 + 3κ2)

)
+

3

8d2

(
(9ω2

p + 1 + 2c2)(4c3(κa23 − b21) + κc4(4 + κ2)
)
,

b32 =
9ωp
d2

(c3(κb22 + d21 − 2a24)− c4)

+
3(9ω2

p + 1 + 2c2)

8d2
(4c3(κa24 − b22) + κc4) ,

d31 =
3

64ω2
p

(4c3a24 + c4) ,

d32 =
3

64ω2
p

(
4c3(a23 − d21) + c4(4 + κ2)

)
,

s1 =
(
2ωp(ωp(1 + κ2)− 2κ)

)−1

×
(

3

2
c3(2a21(κ2 − 2)− a23(κ2 + 2)− 2κb21)− 3

8
c4(3κ4 − 8κ2 + 8)

)
,

s2 =
(
2ωp(ωp(1 + κ2)− 2κ)

)−1

×
(

3

2
c3(2a22(κ2 − 2) + a24(κ2 + 2) + 2κb22 + 5d21) +

3

8
c4(12− κ2)

)
,

l1 =− 3

2
c3 (2a21 + a23 + 5d21)− 3

8
c4
(
12− κ2

)
+ 2ω2

ps1,

l2 =
3

2
c3 (a24 − 2a22) +

9

8
c4 + 2ω2

ps2,

where κ is given by (6.4.3) and d1, d2 are

d1 =
3ω2

p

κ

(
κ(6ω2

p − 1)− 2ωp
)
,

d2 =
8ω2

p

κ

(
κ(11ω2

p − 1)− 2ωp
)
.

For the Sun-Earth L1, s1 = −8.246608317 × 10−1, s2 = 1.210985938 ×
10−1, l1 = −1.596560314× 101 and l2 = 1.740900800.

Halo Orbit Phase-Angle Relationship. A bifurcation manifests through
the phase-angle relationship:

• For m = 1, δm > 0. Northern halo.

• For m = 3, δm < 0. Southern halo.

Clearly, northern and southern halos are mirror images of each other across
the xy-plane. See, for instance, Figure 6.4.4.
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Halo Orbit Amplitude Constraint Relationship. Since there exists
an amplitude constraint relationship (6.6.4), the minimum value for Ax to
have a halo orbit (i.e., for Az > 0) is

√
|∆/l1|, which is about 200,000 km.

Moreover, a halo orbit can be characterized completely by its z-amplitude
Az. For the ISEE-3 halo with Az =110,000 km, its x-amplitude was,

Ax = 206, 000 km,

which corresponds to a y-amplitude of,

Ay = κAx = 665, 000 km.

Halo Orbit Period Amplitude Relationship. The halo orbit period
T = 2π/ωpν can be computed as a function of Az via the amplitude con-
straint relationship (6.6.4) and the frequency connection ν (6.6.3). This
relationship is shown in Figure 6.6.1. The ISEE-3 halo had a period of
177.73 days.
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Figure 6.6.1. The halo orbit period (T ) vs. z amplitude (Az) relationship for Sun-Earth

L1 halo orbits. The halo orbits have periods of a little less than half an Earth year.

6.7 Numerical Computation of Halo Orbits
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While third-order approximations provide much qualitative insight, they
are insufficient for serious study of accurate motion near L1 or L2. An-
alytical approximations must be combined with numerical techniques to
generate a halo orbit accurate enough for mission design. This problem is
well suited to a differential correction process discussed in §4.2, using the
Richardson approximation as the first guess.

State Transition Matrix for CR3BP. The state transition matrix
along a reference orbit for the CR3BP,

δx̄(t) = Φ(t, t0)δx̄(t0),

can be computed numerically by integrating simultaneously the following
42 ODEs:

˙̄x = f(x̄), (6.7.1)

Φ̇(t, t0) = Df(x̄)Φ(t, t0), (6.7.2)

with initial conditions:

x̄(t0) = x̄0,

Φ(t0, t0) = I6.

Here, equations (6.7.1) are CR3BP equations (2.3.8) written in the first-
order form. The Jacobian matrix Df(x̄) is

Df(x̄) =

(
0 I3
−U 2Ω

)
,

where matrix Ω can be written as,

Ω =

 0 1 0
−1 0 0
0 0 0

 .

Matrix U has the form,

U =

 Ūxx Ūxy Ūxz
Ūyx Ūyy Ūyz
Ūzx Ūzy Ūzz

 ,

and is evalutated along the reference solution. Matrix I3 is the 3×3 identity
matrix.

Numerical Computation of Halo Orbits. To begin the procedure of
using differential correction for finding a periodic solution, both an initial
state and a final state must be defined. Symmetries of halo orbits can be
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used to aid this step. Recall that halo orbits are symmetric about the xz-
plane (y = 0), and they intersect this plane perpendicularly (ẋ = ż = 0).
Thus, the initial state vector takes the form,

x̄0 = (x0, 0, z0, 0, ẏ0, 0)T .

Obtain a first guess for the elements of this state vector from the third-
order approximations. The equations of motion are then integrated until
the trajectory crosses the xz-plane. To produce a periodic orbit, a perpen-
dicular crossing is needed, and so the desired final (target) state vector
needs to have the form,

x̄f = (xf , 0, zf , 0, ẏf , 0)T .

Of course, the first crossing of the xz-plane occurs at a time equal to
one half of the period of the orbit. It is likely, however, that actual values
for ẋf and żf are not zero at the first crossing. The three non-zero initial
conditions (x0, z0, and ẏ0) can be manipulated in an attempt to drive these
final velocities (ẋf and żf ) to zero.

Recall that differential correction uses the state transition matrix to
change initial conditions,

δx̄f = Φ(tf , t0)δx̄0.

The change δx̄0 can be determined by the difference between actual and
desired final states (δx̄f = x̄df − x̄f ). Three initial states (δx0, δz0, δẏ0) are
available to target two final states (δẋf , δżf ).

Rather than invert a two by three matrix subject to a minimum norm
to find the appropriate changes for x0, z0, and ẏ0, it is more convenient to
constrain one of the initial state variables, e.g., δz0 = 0. This results in a
2× 2 matrix which is easily inverted to find variations δx0 and δẏ0.

Similarly, the revised initial conditions x̄0 + δx̄0 are used to begin a
second iteration. This process is continued until ẋf = żf = 0 (within some
acceptable tolerance). Usually, convergence to a solution is achieved within
a few (≤ 5) iterations.

6.8 Libration Orbits near Collinear Points

In last decade or so, members of the Barcelona group such as Gómez, Jorba,
Masdemont and Simó have done an extensive study of the dynamics of li-
bration orbits near the collinear points. To obtain an accurate description,
two different but complementary approaches have been used. On the one
hand, an effective computation of the center manifold of the collinear points
has been devised to give an overall qualitative description of the dynamics
of these libration orbits. On the other hand, a Lindstedt–Poincaré method
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of higher order expansions has been used to compute various types of libra-
tion orbits, such as halo, Lissajous, and “quasi-halo” orbits (discussed later
in this section). In this and the next section, we will describe briefly these
two approaches and their results. For more details, the reader can consult
Chapter 9 or the original papers, such as Gómez, Jorba, Masdemont, and
Simó [1991a], Gómez, Masdemont, and Simó [1997, 1998], and Jorba and
Masdemont [1999].

Linear Behavior and Expansion of the Hamiltonian. Recall from
equation (2.3.11) that the Hamiltonian is given by

H(x, y, z, px, py, pz) = pxẋ+ py ẏ + pz ż − L

=
1

2

(
(px + y)2 + (py − x)2 + p2

z

)
+ Ū(x, y, z),

(6.8.1)

where px, py and pz are the conjugate momenta to the variables (x, y, z).
Using similar techniques as on the Lagrangian side, the linearization

of the Hamiltonian around L1,2 shows that the local behavior near these
points are of the type saddle×center×center. So, using a real, linear, and
symplectic change of coordinates, it is easy to cast the second-order part
of the preceding Hamiltonian

H2 =
1

2

(
p2
x + p2

y

)
+ ypx − xpy − c2x2 +

c2
2
y2 +

1

2
p2
z +

c2
2
z2,

into its real normal form,

H2 = λxpx +
ωp
2

(y2 + p2
y) +

ωv
2

(z2 + p2
z). (6.8.2)

Note that for simplicity, we have kept in equation (6.8.2) the same notation
for the new variables even after a coordinate change.

For the following computations it is convenient to “diagonalize” the
second-order terms. This is done by introducing the complex change of
coordinates (

q2

p2

)
=

1√
2

(
1 i
i 1

)(
y
py

)
,(

q3

p3

)
=

1√
2

(
1 i
i 1

)(
z
pz

)
,

(6.8.3)

and renaming q1 = x and p1 = px, the second-order part of the Hamiltonian
becomes

H2 = λq1p1 +
√
−1ωpq2p2 +

√
−1ωvq3p3 (6.8.4)

From now on we will use the following notation. If x = (x1, . . . , xn) is
a vector of complex numbers and k = (k1, . . . , kn) is an integer vector,
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we denote by xk the term xk11 · · ·xknn (in this context we define 00 as 1).
Moreover, we define |k| as

∑
j |kj |.

In order to have all possible orbits in the center manifold, let us expand
the initial Hamiltonian H (6.8.1) using the coordinates that give us H2 as
in (6.8.4). Then the expanded Hamiltonian takes the form

H(q, p) = H2(q, p) +
∑
n≥3

Hn(q, p),

= H2(q, p) +
∑
n≥3

∑
|k|=n

hkq
k1
1 pk21 q

k3
2 pk42 q

k5
3 pk63 , (6.8.5)

where H2 is given in (6.8.4) and Hn denotes an homogeneous polynomial
of degree n.

Reduction to the Center Manifold. The next step is to perform
canonical transformations to (6.8.5) to obtain

H(q, p) = H2(q, p) +
∑
n≥3

∑
|k|=n,k1=k2

hkq
k1
1 pk21 q

k3
2 pk42 q

k5
3 pk63 .

The purpose is to “kill” all the monomials with k1 6= k2. Of course, this is
done up to a finite order N . Call I = q1p1, and the Hamiltonian looks like

H = HN (I, q2, p2, q3, p3) +RN+1(q, p).

Now, if we drop the remainder RN+1 which is very small near L1,2, we see
that I is a first integral. Setting I = 0, we skip the hyperbolic part and
reduce the Hamiltonian to its center manifold.

Finally, using the inverse change of variables of (6.8.3), the truncated
Hamiltonian HN can be expanded in real form and we obtain

HN (0, q2, p2, q3, p3) = H2 +

N∑
n=3

Hn(0, q2, p2, q3, p3),

where explicitly,

H2 = H2(0, q2, p2, q3, p3) =
ωp
2

(
q2
2 + p2

2

)
+
ωv
2

(
q2
3 + p2

3

)
.

For convenience, the new variables are called again q, p.
All the computations have been implemented by writing specific symbolic

manipulators in the Fortran or C programming languages that can do all
the procedures up to an arbitrary order. For practical purposes, and in
order to have an acceptable balance between precision and computing time,
the numerical scheme has been implemented up to order N = 15.
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Libration Orbits around Collinear Points. As shown in the previous
section, orbits in the center manifold can be obtained by setting q1 = p1 = 0
in the initial conditions, (q1, p1, q2, p2, q3, p3). Moreover, if we consider only
orbits of same energy, three free variables remain. Looking at the orbits
when they cross a surface of section, all the libration orbits with a selected
energy can be obtained from only two variables in the initial conditions. For
instance, the initial conditions can be chosen selecting arbitrary values for
q2 and p2, by setting q3 = 0 (the surface of section) and finally computing p3

in order to be in the selected level of Hamiltonian energy. The propagation
of these initial conditions, looking when and where they crosses the surface
of section again and again, gives what is called the images of the Poincaré
map in the variables (q2, p2) on q3 = 0.

However, we want to see the orbits in CR3BP coordinates. For this
purpose we can take the initial conditions as before, but we look at the
Poincaré map of the orbit when it crosses and re-crosses the plane z = 0 in
the CR3BP coordinates. The orbits are then clearly seen by plotting their
(x, y)-CR3BP coordinates on the section. We note that due to the linear
part of the CR3BP equations of motion around the collinear equilibrium
points, z = 0 is a surface of section for all the libration orbits in a neighbor-
hood of the equilibrium point, except for the planar ones (the ones having
z = ż = 0) which are contained in the z = 0 plane.

This is the procedure that we have used to obtain Figure (6.8.1), where
the libration orbits around L1 and L2 are displayed for some values of the
energy of the CR3BP giving qualitative different pictures.

We note that each level of energy we have a bounded region in the
Poincaré section. The boundary of the plot is a planar Lyapunov orbit of
the selected energy contained in the surface of section. It is the only one
orbit contained in the xy-plane and it is essentially related to the frequency
ωp of H2. The fixed point, in the central part of the figures, corresponds
to an almost vertical periodic orbit (see Figure 6.8.2), essentially related
to the frequency ωv of H2. Surrounding the central fixed point, we have
invariant curves corresponding to Lissajous orbits. The motion in this re-
gion is essentially quasi-periodic (except for very small chaotic zones that
cannot be seen in the pictures).

Depending on the value of the energy integral, there appear two fixed
points close to the boundaries of the plot. A fixed point means again a
periodic orbit, and in this case, they are the well known halo orbits of
class I (northern) and class II (southern). Surrounding the fixed points
corresponding to the halo orbits, we have again invariant curves related to
quasi-periodic motions. They are Lissajous orbits that we call quasi-halo
orbits.

Finally, in the transition zone from central Lissajous to quasi-halo orbits
there is an homoclinic connection of the planar Lyapunov orbit. We note
that the homoclinic trajectory that goes out from the orbit and the one
that goes in, do not generally coincide; they intersect with a very small
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Figure 6.8.1. Poincaré maps of the orbits in the central manifold of L1 (four

left figures) and L2 (four right figures) for the following four increasing values of

the energy from top to bottom: -1.500425, -1.50041322952164, -1.50040145756682,

and -1.50039257918817. The mass parameter used is that of the Sun-Earth system,

µ = 3.040423398444176× 10−6. Normalized coordinates are used in the figures.
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angle. This phenomenon is known as splitting of separatrices. We also note
in this case, that the planar Lyapunov orbit is unstable even in the central
manifold.

In the next section we will show how the planar and vertical Lyapunov,
Lissajous, halo and quasi-halo family of orbits can be computed using
Lindstedt–Poincaré procedures and ad hoc algebraic manipulators. In this
way one obtains their expansions in CR3BP coordinates suitable to be used
in a friendly way. In Figure 6.8.2 a sample of all these orbits is shown.
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Figure 6.8.2. 3D representation of several types of orbits around L1. Upper left:

vertical periodic orbit with α = 0.0 and β = 0.1. Upper right: Lissajous orbit with

α = 0.05 and β = 0.15. Lower left: halo orbit with β = 0.1. Lower right: quasi-halo orbit

with β = 0.2 and γ = 0.067. The upper plots are in CR3BP coordinates. The lower plots

are in L1 normalized coordinates.

6.9 Computation of Libration Orbits in the
Center Manifold

Computation of Lissajous Orbits. We will start with the computa-
tion of the Lissajous trajectories (two dimensional tori) and the halo orbits
(one dimensional tori) using the Lindstedt–Poincaré method. The expo-
sition in this section follows the unpublished notes “State of the Art” by
Gómez and Masdemont. If we consider the linear part of the system (6.3.1),
its solution can be written as

x(t) = −α cos(ωpt+ φ1),
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y(t) = κα sin(ωpt+ φ1), (6.9.1)

z(t) = β cos(ωvt+ φ2),

where ωp =

√
2−c2+

√
9c22−8c2

2 , ωv =
√
c2 and κ =

ω2
p+1+2c2

2ωp
. The parame-

ters α and β are the in-plane and out-of-plane amplitudes of the orbit and
φ1, φ2 are the phases. These linear solutions are already Lissajous trajec-
tories. When we consider the nonlinear terms of the equations, we look for
formal series solutions in powers of the amplitudes α and β of the type

x =

∞∑
i,j=1

 ∑
|k|≤i,|m|≤j

aijkm cos(kθ1 +mθ2)

αiβj ,

y =

∞∑
i,j=1

 ∑
|k|≤i,|m|≤j

bijkm sin(kθ1 +mθ2)

αiβj , (6.9.2)

z =

∞∑
i,j=1

 ∑
|k|≤i,|m|≤j

cijkm cos(kθ1 +mθ2)

αiβj ,

where θ1 = ωt + φ1 and θ2 = νt + φ1 . Due to the presence of nonlinear
terms, the frequencies ω and ν cannot be kept equal to ωp and ωv, and
they must be expanded in powers of the amplitudes

ω =

∞∑
i,j=0

ωijα
iβj = ωp +

∞∑
i,j=1

ωijα
iβj ,

ν =

∞∑
i,j=0

νijα
iβj = ωv +

∞∑
i,j=1

νijα
iβj .

The goal is to compute the coefficients aijkm, bijkm, cijkm, ωij , and νij
recursively up to a finite order N = i+ j. First, identifying the coefficients
of the general solution (6.9.2) with the ones obtained from the solution
of the linear part (6.9.1), we see that only non zero values are a1010 = 1,
b1010 = κ, c1010 = 1, ω00 = ωp and ν00 = ωv. Then, inserting the linear
solution (6.9.1) in (6.3.1), we get a reminder for each equation, which is a
series in α and β beginning with terms of order i + j = 2. In order to get
the coefficients of order 2, the known order 2 terms must be equated to the
unknown order 2 terms of the left hand side. The general step is similar. It
assumes that the solution has been computed up to a certain order n− 1.
Then it is substituted in the right-hand side of (6.3.1) producing terms of
order n in α and β. These known order n terms must be equated with the
unknown terms of order n of the left-hand side.

This procedure can be implemented up to high orders and the results
obtained are satisfactory. In this way we get, close to the equilibrium point,
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a big set of KAM tori. In fact, between these tori there are very narrow
stochastic zones (because the resonances are dense). Hence we will have di-
vergence everywhere. However, small divisors will show up only at high or-
ders (except the one due to the 1:1 resonance), because at the origin ωp/ωv
is close to 29/28. The high order resonances have a very small stochastic
zone and the effect is only seen after a long time interval. It is not difficult
to find “practical” convergence regions in the (α, β)-plane by just compar-
ing the formal series solution evaluated at some epoch, and the solution
obtained using numerical integration of the full equations of motion. In
Figure 6.9.1, we show these convergence regions by displaying the values of
α and β for which the difference between the analytical expansions (trun-
cated at different orders) and the result of the numerical integration after
π time units is lower than 10−6 non-dimensional CR3BP units.
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Figure 6.9.1. Domain of practical convergence of the Lindstedt–Poincaré expan-
sion of the Lissajous orbits around L1 in the Earth-Sun system. The different
lines correspond to orders 5, 15 and 35 for the expansions.

Computation of Halo Orbits to High Order. As discussed earlier,
halo orbits are periodic orbits which bifurcate from the planar Lyapunov
periodic orbits (Lissajous orbits with β = 0) when the in plane and out
of plane frequencies are equal. This is a 1:1 resonance that appears as a
consequence of the nonlinear terms of the equations. Of course we have
to look for these one-dimensional invariant tori as series expansion with
a single frequency. These solutions do not appear as a solution of the lin-
earized equations. In order to apply the Lindstedt–Poincaré procedure we
modify the equations of motion (6.3.1) as before by adding the product of
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the factors ∆ and z to the third equation, where ∆ is a frequency type
series,

∆ =

∞∑
i,j=0

fijα
iβj ,

that must verify the condition ∆ = 0. As before, we start looking for
the (non trivial) librating solutions with one frequency of the linearized
equations, which is

x(t) = α cos(ωpt+ φ1),

y(t) = κα sin(ωpt+ φ1), (6.9.3)

z(t) = β cos(ωpt+ φ2).

We note that after this first step, halo orbits are determined up to order 1,
and ∆ = 0 is read as f00 = 0. Halo orbits depend only on one frequency or
one amplitude since they are one-dimensional invariant tori, so we do not
have two independent amplitudes α and β. The relation between α and β
is contained in the condition ∆ = 0 which defines implicitly α = α(β).

When we consider the full equations, we look for formal expansions in
powers of the amplitudes α and β of the type

x(t) =

∞∑
i,j=1

 ∑
|k|≤i+j

aijk cos(kθ)

αiβj ,

y(t) =

∞∑
i,j=1

 ∑
|k|≤i+j

bijk sin(kθ)

αiβj ,

z(t) =

∞∑
i,j=1

 ∑
|k|≤i+j

dijk cos(kθ)

αiβj ,

where θ = ωt+ φ and, as in the case of two-dimensional invariant tori, the
frequency ω must be expanded as ω =

∑∞
i,j=0 ωijα

iβj . The procedure for
the computation of the unknown coefficients aijk, bijk, dijk, ωij and fij is
similar to the one described for the Lissajous trajectories.

As halo orbits constitute a one parameter family of periodic orbits, they
can be identified by a single parameter. This can be the normalized z-
amplitude, β, of the orbit, that is, the amplitude of the first harmonic in
the expansion of the z variable, in the normalized coordinates previously
introduced. For small amplitudes they can also be uniquely identified by
the frequency ω.

Computation of Quasi-Halo Orbits. Quasi-halo orbits are quasi-periodic
orbits on two-dimensional tori around a halo orbit. They depend on two
basic frequencies. Given a halo orbit of frequency ω, the series expansions
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for the coordinates of the quasi-halo orbits will be of the form

x(t) =

∞∑
i=1

 ∑
|k|<i,|m|<i

akmi cos (k(ωt+ φ1) +m(νt+ φ2))

 γi,

y(t) =

∞∑
i=1

 ∑
|k|<i,|m|<i

bkmi sin (k(ωt+ φ1) +m(νt+ φ2))

 γi,

z(t) =

∞∑
i=1

 ∑
|k|<i,|m|<i

ckmi cos (k(ωt+ φ1) +m(νt+ φ2))

 γi,

These expansions depend on two frequencies, ω and ν, and one amplitude,
γ. This amplitude is related to the size of the torus around the “base” halo
orbit which is taken as the backbone. The frequency ν is the second natural
frequency of the torus, and it is close to the normal frequency around the
base halo orbit.

In order to apply the Lindstedt–Poincaré method to compute the quasi-
halo orbits, it is convenient to perform a change of variables which trans-
forms the halo orbit to an equilibrium point of the equations of motion.
Then, orbits librating around the equilibrium point in the new coordinates
correspond to orbits librating around the halo orbit in the original ones.
The details of the procedure can be found in Gómez, Masdemont, and Simó
[1997, 1998].
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7
Invariant Manifolds and End-to-End
Transfer

7.1 Introduction

A number of old as well as recent missions have been designed to take ad-
vantage of the scientific interest in the region of space near libration points
in the Sun-Earth system (see §6.2 and §5.4). In support of missions that
include increasingly complex trajectories and incorporate libration point
orbits, more efficient techniques and new philosophies for design must be
considered. In this chapter, the Genesis mission (see supplement in §1.2)
is used to demonstrate the usefulness of dynamical systems theory in tra-
jectory design. Of particular significance is the use of invariant manifolds
to produce a transfer from the Earth to a Sun-Earth libration point orbit
and to return the spacecraft back to the Earth with a day side re-entry.
Furthermore, the methodology used to meet launch and return constraints
will also be presented. See Barden [1994], Howell, Barden, and Lo [1997],
and Lo, Williams, Bollman, Han, Hahn, Bell, Hirst, Corwin, Hong, Howell,
Barden, and Wilson [2001] and references therein.

Invariant Manifolds. Transfer in the three body problem has not been
investigated extensively until the last few decades. Since there are few
analytical tools available for this problem, researchers must depend on
numerical approaches which were not readily available until the 1960s. Ap-
parently, the first in-depth analysis of transfers between an orbit about a
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primary and a libration point was in D’Amario [1973] which studied the
fuel-optimal transfer between collinear libration points and circular orbits
around either the Earth or the Moon. In 1980, Farquhar et al. published
their post-mission analysis results on the transfer trajectory between the
Earth and the nominal L1 halo orbit used by ISEE-3 (Farquhar, Muhonen,
Newman, and Heuberger [1980]). However, Gómez, Jorba, Masdemont, and
Simó [1991b] were the first to use invariant manifold theory to aid in deter-
mining transfers to a libration point orbit from an Earth parking orbit. By
building on the results of Gómez et al., Howell et al. combined invariant
manifold methods with differential correction schemes to create a design
tool useful for generating transfers from an Earth parking orbit to a halo
orbit in the Sun-Earth system. In this chapter, we will follow the approach
of Howell, Barden, Wilson, and Lo [1997].

The optimal Genesis trajectory was found by computing and understand-
ing the characteristics of the invariant manifolds associated with its halo
orbit. The transfer trajectory was constructed using the stable manifold
of the L1 halo orbit which approaches the Earth (in reverse time), some
pieces of which are shown in Figure 7.1.1. Following the completion of the
halo orbit phase of the mission, the vehicle automatically leaves the libra-
tion point region with no departure maneuver, as the return trajectory was
constructed to be on the halo orbit’s unstable manifold, Figure 7.1.2.

Halo Orbit

Lunar Orbit

Figure 7.1.1. Stable manifold used to design the Genesis transfer orbit.

Since the return was designed as a segment of the unstable manifold
associated with the halo orbit, the orbit naturally unwinds from the halo
shape. The requirement to return to the Utah Test and Training Range for a
mid-air helicopter recovery required that the vehicle return during daylight
hours. A trajectory from the unstable manifold that provides a dayside
Earth return was found; however, it requires that the vehicle first enter
the L2 region before returning to the Earth. This free transfer exploits the
heteroclinic behavior of the L1 and L2 regions. This transport mechanism,
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Halo Orbit

Earth

Genesis
Return

Figure 7.1.2. Unstable manifold used to design the Genesis return orbit.

which was discussed in Chapter 3 is what governs the temporary planetary
capture of comets and provides the free return of the Genesis mission. The
region of space that can be reached with the unstable manifolds of the orbit
is vast; however, the segment of the manifold that provides an acceptable
return to Earth is extremely small as illustrated in Figure 7.1.2. The Earth
return requires very precise targetting of a very narrow corridor of phase
space.

Outline of the Chapter. While the study of the periodic orbit in the
context of the restricted three-body problem has a long history, only re-
cently have significant advances been made in issues concerning transfer
trajectories to these types of orbits using invariant manifolds.

In §7.2, we discuss how to approximate stable and unstable manifolds of
a halo orbit, based on the stability analysis of a periodic orbit discussed in
§4.3. These approximations are then used as the first step in a numerical
search for transfer trajectories from an Earth parking orbit to a halo orbit
in the vicinity of the L1 or L2 libration point. In §7.3 and §7.4, we will
discuss how to incorporate a simple differential correction scheme, the Halo
Orbit Insertion (HOI) corrector, into the design process (see Howell, Mains,
and Barden [1994]). The numerical results in their work include direct and
indirect transfers from the Earth to halo orbits near L1 and L2.

In §7.5, the differential corrector used to find the end-to-end Genesis tra-
jectory will be discussed. Frequently, a simple differential corrector such as
the HOI corrector may not work. The trajectory may be too “stiff,” i.e.,
the initial condtions are too sensitive or there are too many constraints
at the end point than there are parameters at the starting point. In these
cases, one can break the trajectory into segments by adding ∆V s and using
a two-level differential correction scheme to get a solution that meets spec-
ified launch and return constraints. Differential correction is schematically
illustrated in Figure 7.1.3 and will be discussed in detail at the end of the
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chapter.

Figure 7.1.3. Use differential correction to patch various pieces of solution arcs together

into a trajectory that meets specified launch and return constraints. The points represent

position (R) and velocities (V ) at certain times (ti) and the arcs connecting them are

solutions of the equations of motion. Differential correction is a multiple shooting method

which patches together solution arcs.

7.2 Computation of Invariant Manifolds
Associated to a Halo Orbit

The computation of the stable and unstable manifolds associated with
a particular halo orbit can be accomplished numerically. The procedure is
based on the monodromy matrix discussed in §4.3 which is the state transi-
tion matrix after one period of a periodic orbit (the halo orbit, in this case).
For any point x̄0 along the halo orbit (a fixed point of a Poincaré map),
the mondromy matrix at x̄0 serves essentially as the linearization of the
Poincaré map near the fixed point. As with the linearization of any discrete
mapping of a fixed point, the characteristics of the local geometry of the
phase space can be determined from the eigenvalues and eigenvectors of the
monodromy matrix. The eigenvectors can then be used in approximating
the local invariant manifolds near x̄0.

Eigenvalues and Eigenvectors of the Monodromy Matrix in CR3BP.
Recall that the state transition matrix Φ(t) along a halo orbit can be ob-
tained numerically by integrating the variational equations on the halo
orbit at the same time that the halo orbit is computed (see §6.7). After
that, the eigenvalues of the monodromy matrix can also be computed nu-
merically. For halo orbits, two of the eigenvalues are 1 and the remaining
four eigenvalues include one real pair and one complex pair. In summary,

λ1 > 1, λ2 =
1

λ1
, λ3 = λ4 = 1, , λ5 = λ̄6, |λ5| = 1.

where λ5 and λ6 are complex conjugates, and λ1 and λ2 are real. The
determinant of any matrix is equal to the product of its eigenvalues and
the determinant of the monodromy matrix is equal to one by Liouville’s
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theorem. Thus, since λ1 and λ2 are real, the moduli of λ5 and λ6 must be
one.

1. The first pair (λ1, λ2), with λ1 · λ2 = 1 and λ1 � 1, is associated
with the unstable characteristic of the small and medium sized halo
orbits. (For example, λ1 ≈ 1500 for halo orbits around the Sun-
Earth L1 and L2.) They describe dynamics which are hyperbolic in
nature (see Figure 4.4.2). The value λ1 is the dominant eigenvalue.
The eigenvector associated to λ1 (we call it e1(0)) gives the most
expanding direction. Using the state transition matrix, we can obtain
the image of e1(0) under the variational flow: e1(τ) = Φ(τ, 0) · e1(0).
At each point of the halo orbit, the vector e1(τ), together with the
vector tangent to the orbit, span a plane. This plane is tangent to
the local unstable manifold. By forward continuation of points under
the flow, we can produce the full unstable manifold.

Using the symmetry (3.3.1) we obtain the stable manifold and, in
particular, the vector e2(τ) = Φ(τ, 0)e2(0). The eigenvalue of e2(0)
is λ2.

2. The second pair, (λ3, λ4) = (1, 1), is associated with the neutral
variables (i.e., the non-unstable modes). However, there is only one
(right) eigenvector of M with eigenvalue equal to one. This vector
e3(t) is the tangent vector to the halo orbit. We call it e3(0) at time
t = 0 and e3(t) in general.

The other eigenvalue, λ4 = 1, is associated with variations of the en-
ergy, or any equivalent variable. For small size halo orbits, a suitable
variable associated with this eigenvalue is a parameter of the family
of halo orbits, such as the z-amplitude or the period.

Along the orbit, these two vectors generate a family of planes which
are sent from one into another by the variational flow. The mon-
odromy matrix restricted to this plane has the following Jordan canon-
ical form (

1 ε
0 1

)
.

The fact that ε is not zero is due to the variation of the period when
the orbit changes across the family.

3. The third pair is associated to the complex eigenvalues λ5 = λ̄6

of modulus one. The monodromy matrix, restricted to the plane
spanned by the corresponding pair of eigenvectors associated to λ5, λ6

has the following form (
cos θ − sin θ
sin θ cos θ

)
,
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i.e., it is a rotation. This behavior is related to the existence of
quasiperiodic orbits around the halo orbit, the quasi-halos discussed
in §6.8. For more information, see Gómez, Masdemont, and Simó
[1998].

Use Eigenvectors of the Monodromy Matrix as Initial Guesses for
the Stable and Unstable Manifolds. The eigenvector with eigenvalue
greater than 1 is the unstable one; the eigenvector with the eigenvalue less
than 1 is the stable one. Let Y s(X0) denote the normalized (to 1) stable
eigenvector, and Y u(X0) denote the normalized unstable eigenvector. We
now use these to compute the approximate manifolds as follows: As in
equation (4.4.2), let

Xs(X0) = X0 + εY s(X0) (7.2.1)

be the initial guess for the stable manifold at X0 along the halo orbit, as
illustrated in Figure 4.4.2, and let

Xu(X0) = X0 + εY u(X0)

be the initial guess for the unstable manifold at X0. Here ε is a small
displacement from X0. The magnitude of ε should be small enough to be
within the validity of the linear estimate, yet not so small that the time
of flight becomes too large due to the asymptotic nature of the stable and
unstable manifolds. Gómez, Jorba, Masdemont, and Simó [1991a] suggest
values of ε corresponding to position displacements of 200 km to 250 km in
the Sun-Earth system to get the two branches of the trajectory along the
stable and unstable manifolds. By integrating the unstable vector forwards,
we generate a trajectory shadowing the unstable manifold. By integrating
the stable vector backwards, we generate a trajectory shadowing the stable
manifold. For the manifold at X(t), one can simply use the state transition
matrix to transport the eigenvectors from X0 to X(t):

Y s(X(t)) = Φ(t, t0;X0)Y s(X0). (7.2.2)

Since the state transition matrix does not preserve the norm, the resulting
vector must be renormalized.

7.3 Earth-to-Halo Differential Corrector

There are few places along a halo orbit where the corresponding stable
manifold passes at the exact altitude of the parking orbit. So, to add flex-
ibility in determining transfer and explore other applications, a differen-
tial correction procedure, in combination with a continuation algorithm, is
needed for the design process. Various approaches can be used to develop
an appropriate corrector. If the manifold and the parking orbit are nowhere
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tangent, within the bounds of some specified set of conditions (e.g., time
of flight), the problem is redefined as the search for a path between the
parking orbit and any point on the manifold. Here, a local approximation
of the stable manifold is available near the halo and the corrector solves
for the transfer path from the Earth to this position.

Recall from Chapter 6 that the idea of the differential corrector is best
described as a process of targeting. Given a reference trajectory X̄(t) going
from X̄0 to X̄1 under the natural dynamics Ẋ = f(X), we want to make
slight adjustments, δX̄0, of the initial state X̄0 so that the new trajectory
will end up at the desired final state Xd. In order to do so, we need to know
the sensitivity of the final state X̄1 to small changes in the initial state δX̄0.
This linear approximation is precisely given by the state transition matrix
evaluated along the reference trajectory X̄(t):

δX̄1 = Φ(t1, t0)δX̄0. (7.3.1)

Recall that Φ is the linearized flow map along the reference trajectory,

Φ(t1, t0) = ∂φ(t1,t0;X̄0)
∂X and will be denoted below as ∂X̄1/∂X̄0 when it is

convenient.
For the halo orbit insertion (HOI) problem, a simple differential correc-

tor encapsulated in equation (7.3.1) can be used. This differential corrector
used in the computation of Earth-to-halo transfer trajectories was devel-
oped in Mains [1993]. For more details, see Barden [1994] and Howell,
Mains, and Barden [1994].

The HOI Problem is also called the Launch Problem, or the Earth-to-
Halo Transfer Problem, as illustrated in Figure 7.3.1. The question is: How
do we find the optimum transfer trajectory from the Earth to the halo
orbit? Which is the best HOI point to insert into the halo orbit? That
depends on what is meant by the “best”, i.e., what are the conditions that
we need to optimize. Clearly, one of the major concerns is the magnitude
of the HOI ∆V and TTI ∆V (Transfer Trajectory Insertion). Other con-
straints could be the orbital elements of the Earth parking orbit, the time
from TTI to HOI, etc. It all depends on the problem. Hence, there is no
unique “best” solution. There are many best solutions, depending on the
constraints.

Nevertheless, as ∆V is usually a precious commodity for space missions,
minimizing ∆V is important. To that end, the use of the stable manifold is
crucial. The question is: How do we get a good initial guess for a near op-
timal transfer trajectory? Since the stable manifold naturally inserts onto
the halo orbit without a maneuver, it provides a very good guess for the
HOI transfer trajectory. The problem is, the stable manifold for a partic-
ular halo orbit may not get close enough to the Earth to insert onto the
manifold. Hence, one condition for a good first guess to the transfer tra-
jectory is to find a halo orbit whose stable manifold comes close to the
Earth. Additionally, one needs to find that piece of the stable manifold
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y

z xHalo Orbit

Transfer Trajectory

Figure 7.3.1. The Launch Problem: finding the best solution from Transfer Trajectory

Insertion (TTI) to Halo Orbit Insertion (HOI).

that comes closest to the Earth at the earliest possible instance. We inte-
grate the stable manifold backwards to find these trajectories. Let X(t) be
such a trajectory lying on the stable manifold, X(t0) = X0 = HOI point,
X(t1) = X1 = TTI point. But, most likely, X1 will be unsuitable as a TTI
point. Perhaps, the altitude is too high, compared with the 200 km altitude
parking orbit used by most launch vehicles. Or the inclination of the start
of the transfer trajectory is too far away from the inclination of the parking
orbit. We need to differentially correct to find a piece of the suitable stable
manifold which approaches our TTI launch constraints.

Select Suitable Variables for the Initial and the Final States.
One of the key things in constructing a differential corrector is to select a
set of suitable variables which are being physically controlled and which
provide stable numerical algorithms. For the Launch Problem, one set of
good variables for the initial and the final states are:

X0 = {x0, y0, z0,∆Vxy, β,∆Vz} = HOI

X1 = {ha, α, λ, γ, V1, ξ} = TTI

The initial state X0 is given in CR3BP coordiantes with origin at the
barycenter. Note that the cartesian velocities have been replaced by state
elements describing the change in velocity (∆V ) between the transfer tra-
jectory and the nominal orbit at HOI. The vector ∆V is given in ecliptic
cylindrical coordinates in the above. The magnitude of the change in ve-
locity in the xy-plane is represented by ∆Vxy, and the angle between ∆Vxy
and the x-axis is denoted by β. Finally, ∆Vz describes the velocity change
in the z-direction. These quantities can be expressed in terms of cartesian
components as

∆Vxy = [(ẋ0 − ẋh)2 + (ẏ0 − ẏh)2]
1
2 (7.3.2)

β = tan−1

[
ẏ0 − ẏh
ẋ0 − ẋh

]
(7.3.3)
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∆Vz = ż0 − żh, (7.3.4)

where the subscript h identifies the velocity components on the nominal
path at the HOI, and ẋ0, ẏ0 and ż0 are the velocity components on the
transfer path at HOI.

The final state X1 is defined to be near the Earth at the TTI point.
The variable ha is the altitude of the spacecraft above the Earth, and α
is the angle between the rotating x-axis and the projection of the position
vector r on the xy-plane. λ is the elevation angle, the angle between the
position vector r and the xy-plane. γ is the flight path angle (the angle
between the velocity and the local horizontal) while V1 is the magnitude
of the velocity. Finally, ξ is the angle between the final plane of motion of
the spacecraft and the xy−plane (inclination of the launch parking orbit).
These quantities can be expressed in terms of cartesian components as
follows:

ha = (x̄2
1 + y2

1 + z2
1)

1
2 −R, (7.3.5)

α = tan−1

(
y1

x̄1

)
, (7.3.6)

λ = tan−1

 z1

(x̄2
1 + y2

1)
1
2

 , (7.3.7)

γ = cos−1

 [(y1ż1 + z1ẏ1)2 + (z1ẋ1 − x̄1ż1)2(x̄1ẏ1 − y1ẋ1)2]
1
2

(ha +R)(ẋ2
1 + ẏ2

1 + ż2
1)

1
2

 ,(7.3.8)

V1 = (ẋ2
1 + ẏ2

1 + ż2
1)

1
2 , (7.3.9)

ξ = cos−1

 x̄1ẏ1 − y1ẋ1

(ha +R)(ẋ2
1 + ẏ2

1 + ż2
1)

1
2

 , (7.3.10)

where R is the radius of the Earth and x̄1 = x1 − 1 + µ. The geometry
associated with some of these new variables can be seen in Figure 7.3.2.

x

y

x

Figure 7.3.2. Definition of state elements.
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Earth-to-Halo Differential Correction Scheme. Now we need to
formulate a strategy: What do we vary? What do we hold fixed? Since we
want to get onto the halo orbit, we must fix the position of X0, i.e., we
fix {x0, y0, z0}. But, we can vary the velocity at HOI. Having determined
which initial states can be varied, any constraints on the target states must
be defined. Of particular interest are the altitude, flight path angle, and
the angle α. The remaining three “final” states are free variables. Using
the chain rule, the variations in the TTI states can now be written as a
function of the variations in the HOI states,

δha =
∂ha
∂∆Vxy

δ∆Vxy +
∂ha
∂β

δβ +
∂ha
∂∆Vz

δ∆Vz +
∂ha
∂σ1

δσ1, (7.3.11)

δγ =
∂γ

∂∆Vxy
δ∆Vxy +

∂γ

∂β
δβ +

∂γ

∂∆Vz
δ∆Vz +

∂γ

∂σ1
δσ1, (7.3.12)

δα =
∂α

∂∆Vxy
δ∆Vxy +

∂α

∂β
δβ +

∂α

∂∆Vz
δ∆Vz +

∂α

∂σ1
δσ1, (7.3.13)

where σ1 is the stopping time at X1 which is allowed to vary. The above
relationships can then be used to produce suitable differential correctors.
First consider expressions for the left hand side. Since we want the TTI
to occur at perigee, i.e., γ = 0, for the most effective use of the ∆V , the
numerical simulation is terminated when γ achieves its target value (zero).
Therefore, δγ is always assumed to be zero. Now let the desired target end
states be h∗a and α∗. Then the variations are related to the actual states as
follows:

δha = h∗a − ha, δα = α∗ − α.

Note that, with the termination conditions on γ fixed, only two states are
targeted. To produce a system of two equations and two unknowms, an
additional constraint is required on the three velocity states at HOI. It is
straightforward to simply fix one of the velocity states at a constant value
leaving only two states free to be varied. If ∆Vz is held constant, the result
is a relationship between errors in two states at TTI and changes in two
HOI velocity states, i.e., a state relation matrix that is expressed in the
form [

h∗a − ha
α∗ − α

]
=

[
B11 B12

B21 B22

] [
δ∆Vxy
δβ

]
,

where

B11 =
∂ha
∂∆Vxy

− ∂ha/∂σ1

∂γ/∂σ1

∂γ

∂∆Vxy

B12 =
∂ha
∂β
− ∂ha/∂σ1

∂γ/∂σ1

∂γ

∂β

B21 =
∂α

∂∆Vxy
− ∂ha/∂σ1

∂γ/∂σ1

∂γ

∂∆Vxy
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B22 =
∂α

∂β
− ∂ha/∂σ1

∂γ/∂σ1

∂γ

∂β
.

To obtain Bij , we first solve δσ1 as a function of δ∆Vxy and δβ (with
δγ = δ∆Vz = 0) from the equation (7.3.12), then substitute the resulting
expression into equations (7.3.11) and (7.3.13) and simplify.

Also, as noted previously, the partial derivatives in the formulas for Bij
can be expressed as functions of the state transition matrix along the halo
orbit. Let XR

i = (xi, yi, zi, ẋi, ẏi, żi), i = 0, 1 be the state vector represent-
ing the initial HOI and the final TTI states in the CR3BP coordinates,
then the 6 × 6 state transition matrix Φ can be defined in terms of four
3× 3 submatrices

Φ =

[
Φrr Φrv
Φvr Φvv

]
.

Since each of the new variables is a function of the original CR3BP variables
(see equations (7.3.2)-(7.3.10)), the partial derivatives of the new variables
can be written in terms of the partials of the CR3PB varibles, or Φij .

Now take B11 as an example. The partial derivatives in its formula can
be evaluated from the following expressions:

∂ha
∂∆Vxy

=
[

∂ha

∂x1

∂ha

∂y1
∂ha

∂z1

]
Φrv


∂ẋ0

∂∆Vxy
∂ẏ0

∂∆Vxy
∂ż0

∂∆Vxy

 ,
∂γ

∂∆Vxy
=
[

∂γ
∂x1

∂γ
∂y1

∂γ
∂z1

∂γ
∂ẋ1

∂γ
∂ẏ1

∂γ
∂ż1

] [ Φrv
Φvv

]
∂ẋ0

∂∆Vxy
∂ẏ0

∂∆Vxy
∂ż0

∂∆Vxy

 ,
∂ha
∂σ1

=
[

∂ha

∂x1

∂ha

∂y1
∂ha

∂z1

] ẋ1

ẏ1

ż1

 ,

∂γ

∂σ1
=
[

∂γ
∂x1

∂γ
∂y1

∂γ
∂z1

∂γ
∂ẋ1

∂γ
∂ẏ1

∂γ
∂ż1

]

ẋ1

ẏ1

ż1

ẍ1

ÿ1

z̈1

 .

For more details, see Mains [1993].

7.4 Numerical Results

Global Behavior of Stable Manifolds. The first step in the search
for Earth-to-halo transfer trajectories is to characterize the behavior of
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the globalized stable manifold that orginates from different regions along
the halo orbit. Thus, numerical computation of the manifolds associated
with various points on the halo orbit is useful. Here, we follow the work of
Barden [1994]. With no prior knowledge of which regions are best suited for
transfers, some specified number of points are defined along the halo orbit,
equally spaced in time. In the case of a northern L1 halo with Az =120,000
km, there are 300 points at intervals of 0.59 days. Each point is defined as
a fixed point on the halo orbit (points 1, 2, . . . , k). The local approximation
of the stable manifold is computed for point number 1. The approximation
for every other point on the halo can now be calculated by using the state
transition matrix between point 1 and the point of interest:

Y si = Φ(ti, t1)Y s1 ,

where the subscript i indicates the i-th point. For each point, initial state
vectors are calculated using equation (7.2.1) and are then use to initiate
backward integration to globalize the state manifold. The appropriate pass
distance at the Earth is then recorded and labeled case i. Point number
1 is defined as the minimum z point (y = 0) and subsequent points are
labeled in sequential clockwise order in the xy-projection, the direction of
motion along the halo.

151.0148.0 149.5 150.5150.0149.0148.5
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Figure 7.4.1. Fixed points that identify stable manifolds passing near Earth for L1

and L2 halo orbits (Az =120,000 km.)

In addition to this halo orbit, a southern halo orbit near L2 with the
same value of out-of-plane amplitude, Az, and the same number of points
is analyzed. For the L2 orbit, point 1 is defined at the maximum z point and
the numbers proceed clockwise along the orbit. For each of these points,
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the corresponding stable manifold is propagated backward in time using
the method previously described. A critical pass distance from the Earth
of 100,000 km is arbitrarily chosen. The results are presented in Figure
7.4.1 for both the L1 and L2 halo orbits with Az =120,000 km. (Note that
these transfer are three-dimensional, but the primary characteristics of each
transfer can be viewed in the xy-projection. The other two projections are
therefore omitted.) The medium-sized dots identify each point associated
with a stable manifold that passes the Earth within the critical pass dis-
tance. These points would seem to be good candidates to produce the best
results in terms of transfer cost. In examing the L1 output data, the lowest
distance on a first pass is approximately 4910 km altitude at point 167,
marked with a large dot in Figure 7.4.1. This result is consistent with the
example in Gómez, Jorba, Masdemont, and Simó [1991a]. Manifolds in this
general region of the nominal halo, that is, between points 152-182, include
first Earth passes that are between 4900 and 8700 km altitude. The closest
passages along the L2 orbit are in the region defined by points 155-185,
with the lowest, 4960 km at point 170. In general, these regions with the
lowest first passage altitudes seem to support comments in Stalos, Folta,
Short, Jen, and Seacord [1993] that halo orbit insertion maneuvers may be
smaller near the “halo apogee.”

Ideally, the “best” result would be to find a stable manifold that passes at
an altitude exactly equal to that of the desired parking orbit. For the halo
orbit seen in Figure 7.4.1, no such manifolds are found, at least on the first
pass by the Earth. However, two points are identified with corresponding
manifolds that possess the desired altitude with respect to the Earth on a
pass beyond the first. After multiple passes, the stable manifold associated
with point 99 on the L1 orbit, passes the Earth at an altitude of 185
km. The resulting xy-projection of the path can be seen in Figure 7.4.2.
The result for point 99 is significant because it is a possible transfer with
no HOI cost: a free transfer. The obvious trade off is the time of flight
(TOF); for this transfer, TOF is approximately 336 days (as compared to
114 days for ISEE-3). The other stable manifold that results in a path
reaching an altitude of 185 km, and also occurs after multiple passes, is
associated with point 4. The TOF for this transfer is over 778 days which
makes practical use doubtful. However, this particular transfer is extremely
useful in suggesting new solutions such as a halo-to-halo transfer between
different libration points and it is analyzed in greater detail later in Barden
[1994].

The same analysis can be performed for slightly larger amplitude halo
orbits with the same corresponding region appearing to be favorable, e.g.,
“halo apogee”. In fact, for slightly larger amplitude halo orbits, there are
pieces of the manifold which reach the desired low altitudes (185 km) on
their first pass, yielding free transfers with TOFs on the order of only 100
days.



184 7. Invariant Manifolds and End-to-End Transfer

1.0

0.5

0

-1.5

-1.0

. 

1.5

y 
(1

0
6  

k
m

)

-0.5

151.0148.0 149.5 150.5150.0149.0148.5

x (106 km)

Figure 7.4.2. Transfer near fixed point 99; no halo insertion cost.

A Differential Correction Process to Generate Transfer Trajecto-
ries. For various resons, it may be necessary to target a specific point on
or near a particular halo orbit. Of course, the stable manifold associated
with such a fixed point generally does not pass the Earth at a reasonable
altitude for a parking orbit. Thus differential correction is used to produce
a transfer. This final step begins with the globalized stable manifold and
corrects on the velocity at X0 based on differences between the computed
and desired “final” states at TTI. The need for a continuation algorithm
becomes clear when attempting to produce an ISEE-3 type transfer to the
minimum z point on the halo. The stable manifold first passes the Earth at
an altitude of approximately 550,000 km, far beyond the linear range if it
is desired to target an altitude of 185 km. Instead of targeting an altitude
of 185 km initially, however, another target altitude (h(1)) is chosen that is
slightly less than 550,000 km. Upon converging to a solution that reaches
h(1), the resulting trajectory is then used as an initial guess for a new,
lower altitude (h(2)). This is repeated until a transfer is determined that
originates near an altitude of 185 km; the final transfer can thus be deter-
mined. The continuation process can be visualized in Figure 7.4.3 where
intermediate transfers are bounded by the initial path generated from the
stable manifold and the final transfer trajectory with an HOI cost of 32.3
m/s.
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Figure 7.4.3. Example of continuation.

As was mentioned, no point along the L1 halo of amplitude Az =120,000
km corresponds to a 185 km altitude Earth passage distance at its first
perigee. Yet, a direct transfer from Earth to the halo orbit may be desirable.
(A direct transfer is defined such that backwards integration along the
transfer path from the halo reaches the Earth parking orbit, or TTI, on
the first pass.) To construct a direct transfer that may be less costly than
the result in Figure 7.4.3 an alternative is to choose any point with a
manifold that passes closer to the Earth. The stable manifold associated
with the previously mentioned point 167 passes closest at 4910 km. Using
this stable manifold as a first guess for the differenitial corrector, a transfer
trajectory can be determined. See Figure 7.4.4. It is noted that this result
requires 20.3 m/s for insertion. Further improvement in the cost may be
possible by adjusting some the parameters used in the definition of the
target point and the computation of the manifold.

7.5 Return Trajectory Differential
Correction
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Figure 7.4.4. Transfer near fixed point 167; halo insertion cost = 20.3 m/s.

Frequently, a simple differential corrector such as the HOI corrector
above may not work. The trajectory is too “stiff”. The initial condtions
are too sensitive. Or there are too many constraints at the end point than
there are parameters at the starting point. In these cases, we simply break
the trajectory into segments by adding additional ∆V ’s. The places where
two different trajectory segments are patched together are called patch
points. In this instance, we are using multiple shooting, instead of simple
shooting.

But straight multiple shooting is frequently very sensitive and conver-
gence becomes a problem unless an extremely good initial guess is provided,
which is frequently hard to come by. A variant which we call two-level dif-
ferential correction proceeds as follows. We start with multiple segments
of trajectories which may be discontinuous in position and velocity.1

Level I Differential Corrector. We vary the velocities at the patch
points to correct the discontinuity of position using the state transition
matrix. For this corrector, we work on one segment at a time, even though
there are multiple segments. Usually, only one iteration is performed. Hence
the position discontinuity is reduced, corrected to first order. Constraints

1We thank Roby Wilson for sharing his unpublished notes on the differential corrector

for the Genesis trajectory, on which this section is based.
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are not applied at this level.
Let us describe the procedure in more detail. The Level I differential

corrector is based on only two patch points: an initial state and a final target
state (see Figure 7.5.1). The goal is to determine changes in the initial
velocity such that, after appropriate propagation, the final position and
time is achieved. This is essentially the solution of a two-point boundary
value problem.

Figure 7.5.1. Level I Differential Corrector: two patch points.

The following linear system represents the relationship between changes
in the state at one patch and changes in the other patch point,[

δR2 − V2δt2
δV2 − a2δt2

]
=

[
A21 B21

C21 D21

] [
δR1 − V1δt1
δV1 − a1δt1

]
, (7.5.1)

where the vector (t1, R1, V1, a1) represents the state at the initial time, and
(t2, R2, V2, a2) represents the state at the final time. Here,Ri = (xi, yi, zi), V =
(ẋi, ẏi, żi), ai = (ẍi, ÿi, z̈i), i = 1, 2. The subscripts on the submatrices de-
note the direction of the state transition matrix. For example, A12, rep-
resents changes in the position of state 1 due to changes in the postion
at state 2, while C21 represents changes in the velocity of state 2 due to
changes in the position of state 1.

The formulation for the Level I differential corrector can be described by
the following five terms,

dimensions : 14, (7.5.2)

fixed constraints : δR1 = 0; δt1 = δt2 = 0, (7.5.3)

targets : δR2 = −∆R2 = R2d −R2, (7.5.4)

controls : δV1, (7.5.5)

free : δV2. (7.5.6)

The dimension is the total number of parameters available in the problem.
Since there are only two states (epoch, position, velocity) there are 2×7 =
14 total dimensions. Notice that acceleration is not included because of the
constraint δt1 = δt2 = 0. The fixed constraints are the parameters in the
problem that are not allowd to vary. In this case the initial position is fixed
so the variation in R1 is zero. The initial and final times are also fixed so no
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variation is allowed in these quantities. The targets describes the target or
goal of the differential correction process. In this case, we are attempting to
achieve a prescribed final position, therefore the variation in final position
(δR2) is set to be the error between the desired position (R2d) and the
actual position (R2). The controls are the parameters that are available
to be varied to meet the targets. In this case, the initial velocity (V1) is
used to target the final position. Finally, the free parameters are those that
do not enter into the differential correction process. In this case, the final
velocity (V2) is free. Note that the degrees of freedom from each of the fixed
constraints, targets, controls, and free parameter must equal the number
of dimensions of the problem.

From this description of the process, it is necessary to determine a re-
lationship between the targets and the controls, while meeting the fixed
constraints. Applying the constraints in equation (7.5.3) to the variations
in equation (7.5.1) results in the following relationship.[

δR2

δV2

]
=

[
A21 B21

C21 D21

] [
0
δV1

]
, (7.5.7)

from which, the targets (R2) and controls (V1) can be related by

δR2 = B21δV1. (7.5.8)

This variational equation can be used to determine the changes in initial
velocity required to reduce the changes in final postion, that is,

δV1 = B−1
21 δR2, (7.5.9)

or
∆V1 = B−1

21 ∆R2, (7.5.10)

where ∆ now denotes actual changes in the state of the patch points. If
this change in initial velocity (∆V1) is applied to current initial state and
propagated forward to the final state, the error in final position (∆R2)
should be smaller than the previous iteration. Note that δR2 is chosen as
−∆R2 in order to reduce the velocity error ∆V1. Since the relationships
developed are linear, while the propagation is decidedly non-linear, this is
an iterative process which usually converges to within a desired tolerance
within a few iterations.

Note that a similar relationship can be derived by applying the con-
straints in equation (7.5.3) to the inverse of equation (7.5.1). This results
in the following relationship[

0
δV1

]
=

[
A12 B12

C12 D12

] [
δR2

δV2

]
. (7.5.11)

From this relationship, two variational equations can be determined. By
eliminating δV2 and solving for δR2 in terms of δV1, the relationship

δR2 = [C12 −D12B
−1
12 A12]−1δV1, (7.5.12)
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between the controls and targets is derived. This expression is equivalent
to the one in equation (7.5.9). In general, the most compact form will be
used with the understanding that other equivalent forms could be used
interchangeably. We now proceed to the Level II Corrector.

Level II Differential Corrector. The Level II differential corrector is
a procedure based on three or more patch points. The goal of the Level
II corrector is to simultaneously determine some set of changes for all of
the patch points to meet some given set of targets. The first patch point
is called the initial state, the last patch point is called the final state, and
all the rest are termed interior patch points. The set of patch points define
trajectory segments (or legs) between consecutive patch points. Hence, if
there are n patch points, there are n − 1 trajectory segments connecting
the patch points.

Figure 7.5.2. Level II Differential Corrector: 3 patch points.

An example problem with three patch points is represented in Figure
7.5.2 where subscript 1 denotes the initial state, 2 is the interior state, and 3
is the final state. For interior states, the state at the end of the propagation
from the previous patch point is given the superscript (−) and is called the
incoming state. Conversely, the outgoing state at the beginning of the next
trajectory leg is denoted with a (+) supersript.

For this particular configuration, the following linear relationships be-
tween state variations are valid,[

δR−2 − V
−
2 δt−2

δV −2 − a
−
2 δt
−
2

]
=

[
A21 B21

C21 D21

] [
δR1 − V1δt1
δV1 − a1δt1

]
, (7.5.13)[

δR+
2 − V

+
2 δt+2

δV +
2 − a

+
2 δt

+
2

]
=

[
A23 B23

C23 D23

] [
δR3 − V3δt3
δV3 − a3δt3

]
. (7.5.14)

Note that for this problem, each trajectory segment is treated as indepen-
dent with respect to the rest of the segments in the solution. This means,
for example, the variations in the initial state (at point 1) do not directly
affect changes on the second segment from 2+ to 3. This is a critical as-
sumption that will be explained momentarily.

Using the same terminology as before, the formulation for this particular
Level II differential corrector is

dimensions : 28,
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fixed constraints : R−2 = R+
2 = R2; t−2 = t+2 = t2,

targets : δV −2 , δ2V
+,

(actually) δ∆V2 = δV +
2 − δV

−
2 = ∆Vd − (V +

2 − V
−
2 ),

controls : δR1, δt1, δR2, δt2, δR3, δt3,

free : δV1, δV3.

As before, dimensions represents the number of parameters available in
the problem. In general, for the Level II corrector the number of dimen-
sions is equal to 2(n − 1) × 7 representing two states for each trajectory
segment (counting incoming and outgoing states as distinct). The fixed
constraints represent the continuity constraints at all of the interior patch
points. This ensures that the trajectory is continous in position and time
(via application of the Level I differential corrector). In general, there are
(n − 1) × 4 fixed constraints. It is these constraints on position and time
that allows trajectory segments to be treated as independent, thus iso-
lating the variational effects of each state’s changes to only one segment.
If these fixed constraints are changed, the Level II differential corrector
must be re-derived. The targets for the Level II corrector are the velocities
at the interior patch points. More specifically, the velocity discontinuity
(∆V2 = V +

2 − V −2 ) between the incoming velocity and the outgoing ve-
locity is targeted to a specified value. If a fully continuous trajectory is
desired, then the targeted value (∆Vd) is zero. If a deterministic maneuver
is allowed at this patch point, then the desired value can be some non-zero
vector. There are (n− 2)× 3 such targets, 3 for each interior patch point.
Additionally, it is possible to specify arbitrary constraints at any of the
patch points. These constraints become additional targets. The discussion
of these constraints is detailed in the next section. For the Level II cor-
rector, the controls are the positions and times of all the patch points in
the problem including the initial and final states. So, in general, there are
n × 4 control parameters. Note that unless there are too many additional
constraints added to the targets, this system will be naturally underdeter-
mined. Finally, the free parameters in this formulation are the initial and
final velocities (V1 and V3 respectively).

To solve the 3 patch point problem, the following variations are necessary
relating the targets (∆V2) to the controls (δR1, δt1, δR2, δt2, δR3, δt3), i.e.,

d∆V2

dRi
;

d∆V2

dti
; i = 1, 2, 3. (7.5.15)

By using similar procedures as in Level I, we obtain

d∆V2

dR1
= −∂V

−
2

∂R1
= −B−1

12 ,

d∆V2

dt1
= −∂V

−
2

∂t1
= −B−1

12 V1,
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d∆V2

dR2
=
∂V +

2

∂R2
− ∂V −2
∂R2

= −B−1
32 A31 +B−1

12 A12,

d∆V2

dt2
=
∂V +

2

∂t2
− ∂V −2

∂t2
= a+

2 − a
−
2 +B−1

32 A32V
+
2 −B

−1
12 A12V

−
2 ,

d∆V2

dR3
=
∂V +

2

∂R3
= B−1

32 ,

d∆V2

dt3
=
∂V −2
∂t3

= −B−1
32 V3.

So the complete relationship describing the Level II differential corrector
for this setup is

δ∆V2 = M


δR1

δt1
δR2

δt2
δR3

δt3

 , (7.5.16)

where

M =
[

d∆V2

dR1

d∆V2

dt1
d∆V2

dR2

d∆V2

dt2
d∆V2

dR3

d∆V2

dt3

]
, (7.5.17)

is the matrix containing all of the partial derivatives and is given by the
name state relationship matrix or SRM. This linear system is underde-
termined, that is, there are more controls than targets. Hence, there are
infinitely many solutions to this linear system. Choosing the smallest Eu-
clidean norm produces a solution to this system given by

δR1

δt1
δR2

δt2
δR3

δt3

 = MT (MMT )−1δ∆V2 (7.5.18)

Note that MT (MMT )−1 is commonly known as a pseudo-inverse. By se-
lecting δ∆V2 = ∆Vd − (V +

2 − V
−
2 ), a set of changes can be determined to

the patch point positions and times. These changes are added to the patch
point states and the trajectory is re-coverged using a Level I differential
correction process. The resulting solution should have a lower target cost
(∆V2 in this case) than the previous iteration.

Level II with Constraints Often times it is necessary to specify addi-
tional constraints on a particular trajectory solution. The Level II differ-
ential corrector described in the previous section can be modified to allow
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constraints at any of the patch points that describe the solution. This is
possible so long as the constraint is of the form

αij = αij(Ri, Vi, ti),

that is, the constraint αij is a function of position, velocity, and time of
the patch point. The first subscript index i on the constraint denotes the
patch point that the constraint is associated with, while the second index j
denotes the constraint number at that patch point. This allows for multiple
constraints at multiple patch points.

Functionally, the constraints are additional targets in the terminology
used to describe the differential corrector. Thus, it is necessary to determine
the variations of the desired constraints relative to the controls present in
the solution procedure. These variations are placed in the SRM relating
targets to the controls. This new relationship can be written as[

δ∆Vi
δαij

]
=

[
d∆Vi

dRk

d∆Vi

dtk
dα
dRk

dα
dtk

] [
δ∆Rk
δtk

]
= M̄

[
δ∆Rk
δtk

]
where the matrix M̄ is the augumented SRM that contains the velocity and
constraint variables.

The derivation of the constraint variations with respect to the patch
points is consistent with the derivation from the previous section relating
the velocity discontinuities to the patch points. Thus, a given constraint
has variations from at most the patch points on the trajectory segments
immediately before and after, as well as the patch point itself where the
constraint is defined. Hence, a given constraint αij requires the following
total derivatives

dαij
dRk

,
dαij
dtk

for k = (i− 1), i, (i+ 1) (7.5.19)

at a particular patch point i.
As an example, consider the constraint on radial distance from a refer-

ence. In this case, the constraint is given by

αij = |Ri| −Rd,

where Rd is the desired radial distance. Since the constraint is only specified
in terms of the independent variable Ri, the only non-zero derivaive is

dα

dRi
=

∂α

∂Ri
=
RTi
|Ri|

.

For constraints that depend on velocity, the situation becomes more com-
plex. In the formulation of the specific Level II differential corrector from
the previous section, velocities depend on the positions and times of the



7.5 Return Trajectory Differential Correction 193

patch points (via the Level I differential correction process). Thus the total
derivatives in equation (7.5.19) can be expressed as

dαij
dRk

=
∂αij
∂Rk

+
∂αij

∂V −k

∂V −k
∂Rk

+
∂αij

∂V +
k

∂V +
k

∂Rk
(7.5.20)

dαij
dtk

=
∂αij
∂tk

+
∂αij

∂V −k

∂V −k
∂tk

+
∂αij

∂V +
k

∂V +
k

∂tk
. (7.5.21)

Take as an example the simple end-state (RN , tN , VN ) constraint that
are formally stated as

CN1 = RN −Rd
CN2 = tN − td
CN3 = VN − Vd

we have the following related variations

dCN1

dRN
= I3

dCN2

dtN
= 1

dCN3

dRN
= B−1

N−1,NAN−1,N

dCN3

dtN
= −aN −B−1

N−1,NAN−1,NVN

dCN3

dRN−1
= −B−1

N−1,N

dCN3

dtN−1
= B−1

N−1,NVN

where I3 is the 3 × 3 identity matrix. By appropriate choice of the inde-
pendent parameters, any constraint functions active in the solution can be
driven to zero, thus enforcing the constraints. For more details, see Wilson
and Howell [1998].
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8
Transfer Correction Maneuvers and
Station-Keeping Strategies

8.1 Introduction

When initially computing an impulsive burn for spacecraft trajectory, one
makes the idealistic assumption that the rocket on the vehicle can deliver
the exact amount of thrust necessary to boost the velocity of the space-
craft the amount ∆V required by orbital dynamics. In practice, deviations
from the required ∆V are introduced by inaccuracies in the rocket engine
which must be corrected by subsequent impulsive maneuvers. Furthermore,
correction may be necessary to compensate for effects, gravitational or oth-
erwise, which are not taken into account by dynamical models.

We can separate correction maneuvers into two categories. The first,
which are called transfer correction maneuvers, occur during the trans-
fer phase of the space mission, e.g., transfer from the Earth to a Sun-Earth
libration point orbit. The second category of correction maneuvers are those
which keep a spacecraft on a desired periodic orbit or within a bounded
region of the phase space, e.g., a Lissajous orbit around the Sun-Earth
libration point. These are called station-keeping maneuvers. We will
cover both kinds of correction maneuvers within the context of libration
point missions in this chapter. Due to the sensitivity of trajectories near
the libration points, correction maneuvers are necessary for the success of
any libration point mission.

Transfer Correction Maneuvers Using Optimal Control. The first
part of this chapter (§8.2-8.5) addresses the computation of the required
trajectory correction maneuvers for a halo orbit space mission to compen-
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sate for the launch velocity errors introduced by inaccuracies of the launch
vehicle. By combining dynamical systems theory with optimal control tech-
niques, we are able to provide a compelling portrait of the complex land-
scape of the trajectory design space. This approach enables automation of
the analysis to perform parametric studies that simply were not available
to mission designers a few years ago, such as how the magnitude of the
errors and the timing of the first transfer correction maneuver affects the
correction ∆V . The impetus for combining dynamical systems theory and
optimal control in this problem arose in the context of design issues for the
Genesis Discovery Mission (see supplement in §1.2).

Station-Keeping Strategies. Since periodic and quasi-periodic libra-
tion point trajectories are unstable, spacecraft moving on such orbits need
control to remain close to their nominal orbit. The second part of this
chapter (§8.6-8.7) explores two particular station-keeping strategies for a
halo orbit mission using the Target Point strategy and the Floquet Mode
approach. For details, see Gómez, Howell, Masdemont, and Simó [1998a].

Halo and Lissajous orbits are solutions that represent bounded motion
in the vicinity of a collinear libration point. The problem of controlling
a spacecraft moving near an inherently unstable libration point orbit is
important. In the late 1960s Farquhar suggested several station-keeping
strategies for nearly-periodic solutions near the collinear points (Farquhar
[1966, 1968, 1969]). Later, a station-keeping method for spacecraft mov-
ing on halo orbits in the vicinity of the Earth-Moon translunar libration
point was developed by Breakwell, Kamel, and Ratner [1974]. These studies
assumed that the control could be modelled as continuous. In contrast, spe-
cific mission requirements led to an impulsive burn station-keeping strategy
for the first actual libration point mission. Launched in 1978, the ISEE-3
spacecraft, mentioned in §6.2, remained in a near-halo orbit associated with
the interior libration point, L1, of the Sun-Earth/Moon barycenter system
for approximately three and half years. Impulsive maneuvers at discrete
time intervals (up to 90 days) were successfully implemented as a means of
trajectory control. The ∆V required was minimal. Since that time, more
detailed investigations have resulted in various station-keeping strategies,
including the two discussed here as the Target Point and Floquet Mode
approaches.

The Target Point method (as presented by Howell and Pernicka [1988],
Howell and Gordon [1994], and Keeter [1994]) computes corrective maneu-
vers by minimizing a weighted cost function. The cost function is defined
in terms of a corrective maneuver as well as position and velocity devia-
tions from a nominal orbit at a number of specified future times ti. The
nominal state vectors at each time ti are called “target points.” The tar-
get points are selected along the trajectory at discrete time intervals that
are downstream of the maneuver. In contrast, the Floquet Mode approach,
as developed by Simó, Gómez, Llibre, and Martinez [1986], incorporates
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invariant manifold theory and Floquet modes to compute the maneuvers.
Floquet modes associated with the monodromy matrix are used to deter-
mine the unstable component corresponding to the local vector error. The
maneuvers are then computed to eliminate the dominant unstable compo-
nent of the error. Both approaches can maintain control of the vehicle over
the duration of the simulation. Although the Target Point approach is more
straightforward, a clear advantage in favor of the Floquet Mode approach
is the qualitative information and analysis that becomes available. This
may be more critical in the Earth-Moon system where the timescale for
instability is short. In any case, some combination of these ideas is likely
to improve the results. The simplicity and robustness of the Target Point
method can complement the qualitative advantages of the Floquet Mode
approach.

8.2 Halo Orbit Mission Correction
Maneuvers

We will continue using Genesis as an example for the generic prodecure
outlined here. In this chapter, we will assume that the halo orbit, H(t), and
the stable manifold M(t) are fixed and provided. Hence we will not dwell
further on the theory of their computation which is well covered in earlier
chapters and other references (see Howell, Barden, and Lo [1997]). Instead,
let us turn our attention to the transfer correction maneuver (TCM) prob-
lem.

Our main goal in this chapter is to show the feasability of merging op-
timal control software with dynamical systems methods to compensate for
launch vehicle errors, to which libration point missions are particularly sen-
sitive. For this task, we have used a particular piece of software, COOPT,
as our demonstration tool. There are many other good software packages
which could have been used, such as MISER, used in Liu, Teo, Jennings,
and Wang [1998] and Rehbock, Teo, Jennings, and Lee [1999], NTG (Non-
linear Trajectory Generation) of Milam [2003], and the iterative dynamic
programming approach of Luus [2000]. However, our goal is not to compare
software packages. Rather, it is to combine dynamical systems theory with
optimal control techniques to solve a sophisticated problem for an actual
space mission.

The Transfer Correction Maneuver. Genesis was launched in 2001
from a Delta 7326 launch vehicle using a Thiakol Star37 motor as the
final upper stage. The most important error which was expected by the
inaccuracies of the launch vehicle was the velocity magnitude error. In this
case, the expected error is 7 m/s (1 sigma value) relative to a velocity boost
of approximately 3200 m/s from a 200 km circular altitude Earth orbit.
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Although a 7 m/s error for a 3200 m/s maneuver may seem small, it
actually is considered quite large. Unfortunately, one of the characteristics
of halo orbit missions is that, unlike interplanetary mission launches, they
are extremely sensitive to launch errors. Typical interplanetary launches
can correct launch vehicle errors 7 to 14 days after the launch. In contrast,
halo orbit missions must generally correct the launch error within the first
7 days after launch or the ∆V required to correct will increase beyond the
spacecraft’s propulsion capability. The most important transfer correction
maneuver is called TCM1, being the first TCM of the mission. Two ‘clean
up’ maneuvers, TCM2 and TCM3, generally follow TCM1 after a week or
more, depending on the situation.

In the early stages of the launch, the spacecraft is in an elliptical orbit
around the Earth. Thus, using conic models in this phase is appropriate.
From the energy equation for a spacecraft in a conic orbit about the Earth,

E =
V 2

2
− GM

R
, (8.2.1)

where E is Keplerian energy, V is velocity, GM is the gravitational mass of
the Earth, and R is the distance of the spacecraft from the Earth’s center,
it follows that

δV =
δE

V
, (8.2.2)

where δV and δE denote the variations in velocity and energy, respectively.
The launch velocity error imparts an energy error δE to the spacecraft
transfer orbit. In particular, for a highly elliptical orbit such as the one
for Genesis soon after launch (see Figure 1.2.6) , V decreases sharply as
a function of time since launch. Hence, the magnitude of the correction
maneuver ∆V required to cancel the resulting δV grows sharply with time
since launch. For a large launch vehicle error, which is possible in the case
of Genesis, the correction maneuver TCM1 can quickly grow beyond the
capability of the spacecraft’s propulsion system.

The computation of TCMs is performed on the ground, relying upon
accurate knowledge of the spacecraft’s position and velocity. The time nec-
essary for initial spacecraft checkout procedures, which frequently require
several days after launch, compel us to investigate the effect of delays in
the timing of TCM1. To thoroughly check out the spacecraft’s position,
velocity, and condition, it is desirable to delay TCM1 by as long as possi-
ble, even at the expense of an increased ∆V for TCM1. Consequently, the
Genesis navigation team prefered that TCM1 be performed at 2 to 7 days
after launch, or later if at all possible.

The design of the Genesis TCM1 retargeted the state after launch back to
the nominal Halo Orbit Insertion (HOI) state (see Lo, Williams, Bollman,
Han, Hahn, Bell, Hirst, Corwin, Hong, Howell, Barden, and Wilson [2001]).
This approach is based on linear analysis and is adequate only if TCM1
were to be performed within 24 hours after launch. But as emphasized,
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this was not the case for Genesis, which could permit a TCM1 only after
24 hours past launch, and probably more like 2 to 7 days past launch. See
also Wilson, Howell, and Lo [1999] for another approach to targeting that
may be applicable for a mission like Genesis.

The requirement of a relatively long time delay between launch (when er-
ror is imparted) and TCM1 (when error is corrected) suggests that one use
a nonlinear approach, combining dynamical systems theory with optimal
control techniques. We explore two similar but slightly different approaches
and are able to obtain in both cases an optimal maneuver strategy that
fits within the Genesis ∆V budget of 150 m/s for the transfer portion of
the trajectory. These two approaches are:

1. Halo Orbit Insertion (HOI) technique: use optimal control techniques
to retarget the halo orbit with the original nominal trajectory as the
initial guess.

2. Stable Manifold Orbit Insertion (MOI) technique: target the stable
manifold.

Both methods are shown to yield good results. We cover these methods in
§8.3-8.5, which come from Serban, Koon, Lo, Marsden, Petzold, Ross, and
Wilson [2002].

8.3 Optimal Control for Transfer Correction
Maneuvers

We now introduce the general problem of optimal control for the space-
craft trajectory planning problem. We start by recasting the TCM problem
as a spacecraft trajectory planning problem. Mathematically they are ex-
actly the same. We discuss the spacecraft trajectory planning problem as
an optimization problem and highlight the formulation characteristics and
particular solution requirements. Then the loss in fuel efficiency caused
by possible perturbation in the launch velocity and by different delays in
TCM1 is exactly the sensitivity analysis of the optimal solution. COOPT,
the software we use, is described later in this section. It is an excellent tool
in solving this type of problem, both in providing a solution for the trajec-
tory planning problem with optimal control, and in studying the sensitivity
of different parameters (Serban and Petzold [2001]).

We emphasize that the objective in this part of the chapter is not to
design the original nominal transfer trajectory, but rather to investigate
recovery issues related to possible launch velocity errors which cause the
spacecraft to deviate from the nominal trajectory. We therefore assume
that a nominal transfer trajectory (corresponding to zero errors in launch
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velocity) is available. For the nominal trajectory in our numerical exper-
iments in this chapter, we do not use the actual Genesis mission transfer
trajectory, but rather an approximation obtained with a more restricted
model, which has a single maneuver of about 13 m/s at the point of in-
sertion onto the halo orbit. It has been shown by Howell, Barden, and Lo
[1997] that the general qualitative characteristics found in the restricted
models translate well when extended into more accurate models; we expect
the same correlation with this work as well.

Recasting TCM as a Trajectory Planning or Rendezvous Prob-
lem. Although different from a dynamical systems perspective, the HOI
and MOI problems are very similar once cast as optimization problems.
In the HOI problem, a final maneuver (jump in velocity) is allowed at
THOI = tmax, while in the MOI problem, the final maneuver takes place
on the stable manifold at TMOI < tmax and no maneuver is allowed at
THOI = tmax. A halo orbit insertion trajectory design problem can be sim-
ply posed as the following.

Statement of the problem: Find the maneuver times and
sizes to minimize fuel consumption (∆V ) for a trajectory start-
ing near Earth and ending on the specified halo orbit around
the libration point L1 of the Sun-Earth system at a position
and with a velocity consistent with the HOI time.

One can think of the TCM problem as a rendezvous problem. After
launch, and the subsequent launch error, the actual spacecraft goes off the
nominal trajectory. Since placement of the spacecraft on the nominal tra-
jectory at the appropriate location and time is important for our problem,
imagine that a virtual spacecraft remains on the nominal trajectory (cor-
responding to zero launch error). Our goal then is to perform maneuvers
such that the actual spacecraft will rendezvous with the virtual spacecraft
on the nominal trajectory. From the rendezvous point onward, the actual
spacecraft will then be on the nominal trajectory.

The optimization problem as stated has two important features. First,
it involves discontinuous controls, since the impulsive maneuvers are rep-
resented by jumps in the velocity of the spacecraft. A reformulation of the
problem to cast it into the framework required by continuous optimal con-
trol algorithms will be discussed later in this section. Secondly, the final
halo orbit insertion time THOI, as well as all intermediate maneuver times,
must be included among the optimization parameters (p). This too requires
further reformulation of the dynamical model to capture the influence of
these parameters on the solution at a given optimization iteration.

Next, we discuss the reformulations required to solve the HOI discontin-
uous control problem; modifications of the following procedure required to
solve the MOI problem are discussed in §8.5. We assume that the evolution
of the spacecraft is described by a generic set of six ordinary differential



8.3 Optimal Control for Transfer Correction Maneuvers 201

equations (ODEs)
ẋ = f(t,x), (8.3.1)

where x = (xp; xv) ∈ R6 contains both positions (xp) and velocities (xv).
The dynamical model of Equation (8.3.1) can be either the CR3BP or a
more complex model that incorporates the influence of the Moon and other
planets or non-gravitational effects. In this chapter, we use the CR3BP
approximation to illustrate the method.

To deal with the discontinuous nature of the impulsive control maneu-
vers, the equations of motion (e.o.m.) are solved simultaneously on each
interval between two maneuvers. Let the maneuvers take place at times
Ti, i = 1, 2, ..., n and let xi(t), t ∈ [Ti−1, Ti] be the solution of Equa-
tion (8.3.1) on the interval [Ti−1, Ti] (see Figure 8.3.1).

H(t)
z

x

y

HOI

Figure 8.3.1. Transfer trajectory. Maneuvers take place at times Ti, i = 1, 2, ..., n. In

the stable manifold insertion problem, there is no maneuver at Tn, i.e., ∆vn = 0.

To capture the influence of the maneuver times on the solution of the
e.o.m. and to be able to solve the e.o.m. simultaneously, we scale the time in
each interval by the duration ∆Ti = Ti−Ti−1. This is a standard technique
for optimizing over the final integration time. As a consequence, all time
derivatives in Equation (8.3.1) are scaled by 1/∆Ti. The dimension of the
dynamical system is thus increased to Nx = 6n.

Position continuity constraints are imposed at each maneuver, that is,

xpi (Ti) = xpi+1(Ti), i = 1, 2, ..., n− 1. (8.3.2)

In addition, the final position is forced to lie on the given halo orbit (or
stable manifold) at the proper time, that is,

xpn(Tn) = xpH(Tn), (8.3.3)

where the halo orbit is parameterized by the HOI time Tn. Recall that the
halo orbit, H(t) = (xpH(t); xvH(t)), (and also the stable manifold M(t)),



202 8. Transfer Correction Maneuvers and Station-Keeping

is fixed and provided. Equation 8.3.3 is the constraint for the rendezvous
problem at hand. If the insertion phase were not imposed, then the position
on the halo orbit would be parameterized by an independent variable, i.e.,
the right hand side of Equation 8.3.3 would be xpH(τ) where τ is a free
optimization parameter.

Additional constraints dictate that the first maneuver (TCM1) is delayed
by at least a prescribed amount TCM1min, that is,

T1 ≥ TCM1min, (8.3.4)

and that the order of maneuvers is respected,

Ti−1 < Ti < Ti+1, i = 1, 2, ..., n− 1. (8.3.5)

With a cost function defined as some measure of the velocity disconti-
nuities

∆vi = xvi+1(Ti)− xvi (Ti), i = 1, 2, ..., n− 1,

∆vn = xvH(Tn)− xvn(Tn),
(8.3.6)

the optimization problem becomes

min
Ti,xi,∆vi

C(∆vi), (8.3.7)

subject to the constraints in Equations (8.3.2)-(8.3.6). Note that veloci-
ties at the intermediate maneuver points and the final insertion point are
matched using bursts ∆vi, i = 1, 2, ..., n − 1, and vn, respectively. More
details on selecting the form of the cost function are given in §8.4.

Launch Errors and Sensitivity Analysis. In many optimal control
problems, obtaining an optimal solution is not the only goal. The influence
of problem parameters on the optimal solution (the so called sensitivity
of the optimal solution) is also needed. Sensitivity information provides
a first-order approximation to the behavior of the optimal solution when
parameters are not at their optimal values or when constraints are slightly
violated.

In the problems treated in this chapter, for example, we are interested
in estimating the changes in fuel efficiency (∆V ) caused by possible per-
turbations in the launch velocity (εv0) and by different delays in the first
maneuver (TCM1). As we show in §8.4, the cost function is very close to
being linear in these parameters (TCM1min and εv0). Therefore, evaluat-
ing the sensitivity of the optimal cost is a very inexpensive and accurate
method of assessing the influence of different parameters on the optimal
trajectory (especially in our problem).

In COOPT, we make use of the Sensitivity Theorem (see Bertsekas
[1995]) for nonlinear programming problems with equality and/or inequal-
ity constraints:
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8.3.1 Theorem. Let f , h, and g be twice continuously differentiable and
consider the family of problems

minimize f(x)

subject to h(x) = u, g(x) ≤ v,
(8.3.8)

parameterized by the vectors u ∈ Rm and v ∈ Rr. Assume that for (u, v) =
(0, 0) this problem has a local minimum x∗, which is regular and which
together with its associated Lagrange multiplier vectors λ∗ and µ∗, satisfies
the second order sufficiency conditions. Then there exists an open sphere
S centered at (u, v) = (0, 0) such that for every (u, v) ∈ S there is an
x(u, v) ∈ Rn, λ(u, v) ∈ Rm, and µ(u, v) ∈ Rr, which are a local minimum
and associated Lagrange multipliers of problem (8.3.8). Furthermore, x(·),
λ(·), and µ(·) are continuously differentiable in S and we have x(0, 0) =
x∗, λ(0, 0) = λ∗, µ(0, 0) = µ∗. In addition, for all (u, v) ∈ S, We have

∇up(u, v) = −λ(u, v),

∇vp(u, v) = −µ(u, v),
(8.3.9)

where p(u, v) is the optimal cost parameterized by (u, v),

p(u, v) = f(x(u, v)). (8.3.10)

The influence of delaying the maneuver TCM1 is thus directly com-
puted from the Lagrange multiplier associated with the constraint of Equa-
tion (8.3.4). To evaluate sensitivities of the cost function with respect to
perturbations in the launch velocity (εv0), we must include this perturbation
explicitly as an optimization parameter and fix it to some prescribed value
through an equality constraint. That is, the launch velocity is set to

v(0) = vnom
0

(
1 +

εv0
‖vnom

0 ‖

)
, (8.3.11)

where vnom
0 is the nominal launch velocity and

εv0 = ε, (8.3.12)

for a given ε. The Lagrange multiplier associated with the constraint in
Equation (8.3.12) yields the desired sensitivity.

Description of the COOPT Software. COOPT is a software package
for optimal control and optimization of systems modeled by differential-
algebraic equations (DAE), developed by the Computational Science and
Engineering Group at the University of California, Santa Barbara. It has
been designed to control and optimize a general class of DAE systems,
which may be quite large. Here we describe the basic methods used in
COOPT. We consider the DAE system

F(t,x, ẋ,p,u(t)) = 0,

x(t1, r) = x1(r),
(8.3.13)
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where the DAE is index zero, one, or semi-explicit index two (see Ascher
and Petzold [1998], or Brenan, Campbell, and Petzold [1995]) and the ini-
tial conditions have been chosen so that they are consistent (that is, the
constraints of the DAE are satisfied). The control parameters p and r and
the vector-valued control function u(t) must be determined such that the
objective function∫ tmax

t1

Ψ(t,x(t),p,u(t)) dt+ Θ(tmax,x(tmax),p, r), (8.3.14)

is minimized and some additional equality and/or inequality constraints

g(t,x(t),p, r,u(t)) R 0, (8.3.15)

are satisfied. The optimal control function u∗(t) is assumed to be continu-
ous. To represent u(t) in a low-dimensional vector space, we use piecewise
polynomials on [t1, tmax], where their coefficients are determined by the op-
timization. For ease of presentation we can therefore assume that the vector
p contains both the parameters and these coefficients (we let Np denote
the combined number of these values) and discard the control function u(t)
in the remainder of this section. Also, we consider that the initial states
are fixed and therefore discard the parameters r from the formulation of
the optimal control problem. Hence, we consider

F(t,x, ẋ,p) = 0, x(t1) = x1, (8.3.16a)∫ tmax

t1

ψ(t,x(t),p) dt+ Θ(tmax,x(tmax),p) minimized,(8.3.16b)

g(t,x(t),p) R 0. (8.3.16c)

There are a number of well-known methods for direct discretization of
the optimal control problem in Equations (8.3.16), for the case in which
the DAEs can be reduced to ODEs in standard form. COOPT implements
the single shooting method and a modified version of the multiple shooting
method, both of which allow the use of adaptive DAE software.

In the multiple shooting method, the time interval [t1, tmax] is divided
into subintervals [ti, ti+1] (i = 1, . . . , Ntx), and the differential equations
in Equation (8.3.16a) are solved over each subinterval, where additional
intermediate variables Xi are introduced. On each subinterval we denote
the solution at time t of Equation (8.3.16a) with initial value Xi at ti by
x(t, ti,Xi,p).

Continuity between subintervals in the multiple shooting method can be
achieved via the continuity constraints

Ci
1(Xi+1,Xi,p) ≡ Xi+1 − x(ti+1, ti,Xi,p) = 0. (8.3.17)

The additional constraints of Equation (8.3.16c) are required to be sat-
isfied at the boundaries of the shooting intervals

Ci
2(Xi,p) ≡ g(ti,Xi,p) R 0. (8.3.18)
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Following common practice, we write

Φ(t) =

∫ t

t1

ψ(τ,x(τ),p) dτ, (8.3.19)

which satisfies Φ′(t) = ψ(t,x(t),p), Φ(t1) = 0. This introduces another
equation and variable into the differential system in Equation (8.3.16a).
The discretized optimal control problem becomes

min
X2,...,XNtx,p

Φ(tmax) + Θ(tmax), (8.3.20)

subject to the constraints

Ci
1(Xi+1,Xi,p) = 0, (8.3.21a)

Ci
2(Xi,p) R 0. (8.3.21b)

This problem can be solved by an optimization algorithm. We use the
solver SNOPT (see Gill, Murray, and Saunders [1997, 1998]), which incor-
porates a sequential quadratic programming (SQP) method (see Gill, Mur-
ray, and Wright [1981]). The SQP methods require a gradient and Jacobian
matrix that are the derivatives of the objective function and constraints
with respect to the optimization variables. We compute these derivatives
via DAE sensitivity software DAE (Li and Petzold [2000]). The sensitivity
equations to be solved by DAE are generated via the automatic differentia-
tion software ADIFOR (see Bischof, Carle, Corliss, Griewank, and Hovland
[1992] and Bischof, Carle, Hovland, Khademi, and Mauer [1998]).

This basic multiple shooting type of strategy can work very well for small-
to-moderate size ODE systems, and has an additional advantage that it is
inherently parallel. However, for large-scale ODE and DAE systems there
is a problem because the computational complexity grows rapidly with the
dimension of the ODE system. COOPT implements a highly efficient mod-
ified multiple shooting method (Gill, Jay, Leonard, Petzold, and Sharma
[2000]; Serban and Petzold [2001]) which reduces the computational com-
plexity to that of single shooting for large-scale problems. However, we have
found it sufficient to use single shooting for the trajectory design problems
treated in this chapter.

8.4 Numerical Results for the Halo Orbit
Insertion Problem
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Circular Restricted Three-Body Problem. As mentioned earlier,
we use the equations of motion derived under the CR3BP assumption as
the underlying dynamical model in Equation (8.3.1). In this model, it is
assumed that the primaries (Earth and Sun in our case) move on circular
orbits around the center of mass of the system and that the third body
(the spacecraft) does not influence the motion of the primaries. We write
the equations in a rotating frame, as in Figure 2.3.1.

Using nondimensional units, the equations of motion in the CR3BP
model (cf. (2.3.8)), written as a set of first order ODEs, are

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 = 2x2 −
∂Ū

∂x1

ẋ5 = −2x1 −
∂Ū

∂x2

ẋ6 =
∂Ū

∂x3

(8.4.1)

where

x = [x1, x2, x3, x4, x5, x6]T = [x, y, z, vx, vy, vz]
T

Ū = −1

2
(x2

1 + x2
2)− 1− µ

r1
− µ

r2
− 1

2
µ(1− µ)

r1 =
(
(x1 + µ)2 + x2

2 + x2
3

)1/2
r2 =

(
(x1 − 1 + µ)2 + x2

2 + x2
3

)1/2
(8.4.2)

and µ is the ratio between the mass of the Earth and the mass of the
Sun-Earth system,

µ =
m⊕

m⊕ +m�
, (8.4.3)

where ⊕ denotes the Earth and � the Sun. For the Sun-Earth system,
we use µ = 3.03591 × 10−6. In the above equations, time is scaled by the
period of the primaries orbits (T/2π, where T = 1 year), positions are
scaled by the Sun-Earth distance (L ≡ d⊕� = 1.49597927 × 108km), and
velocities are scaled by the Earth’s average orbital speed around the Sun
(2πL/T = 29.80567 km/s). We note that the values used are more precise
than the values for this system given in Table 2.2.1.

Choice of Cost Function. At this point we need to give some more
details on the choice of an appropriate cost function for the optimization
problem (8.3.7). Typically in space missions, the spacecraft performance is
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measured in terms of the maneuver sizes ∆vi. We consider the following
two cost functions.

C1(∆v) =

n∑
i=1

‖∆vi‖2 (8.4.4)

and

C2(∆v) =
n∑
i=1

‖∆vi‖ (8.4.5)

where ‖ · ‖ denotes the usual Euclidean norm.
While the second of these may seem physically the most meaningful,

as it measures the total sum of the maneuver sizes, such a cost function
is nondifferentiable whenever one of the maneuvers vanishes. In our case,
this problem occurs already at the first optimization iteration, as the ini-
tial guess transfer trajectory only has a single nonzero maneuver at halo
insertion. The first cost function, on the other hand, is differentiable ev-
erywhere.

Although the cost function C1 is more appropriate for the optimizer, it
raises two new problems. Not only is it not as physically meaningful as the
cost function C2, but, in some particular cases, decreasing C1 may actually
lead to increases in C2.

To resolve these issues, we use the following three-stage optimization
sequence:

1. Starting with the nominal transfer trajectory as initial guess, and al-
lowing initially n maneuvers, we minimize C1 to obtain a first optimal
trajectory, T ∗1 .

2. Using T ∗1 as initial guess, we minimize C2 to obtain T ∗2 . It is possible
that during this optimization stage some maneuvers can become very
small. After each optimization iteration we monitor the feasibility of
the iterate and the sizes of all maneuvers. As soon as at least one
maneuver decreases under a prescribed threshold (typically 0.1 m/s)
at some feasible configuration, we stop the optimization algorithm.

3. If necessary, a third optimization stage, using T ∗2 as initial guess and
C2 as cost function is performed with a reduced number of maneu-
vers n̄ (obtained by removing those maneuvers identified as “zero
maneuvers” in step 2).

Merging Optimal Control with Dynamical Systems Theory. Next,
we present results for the halo orbit insertion problem and later for the sta-
ble manifold insertion problem (§8.5). In both cases we are investigating the
effect of varying times for TCM1min on the optimal trajectory, for given
perturbations in the nominal launch velocity. The staggered optimization
procedure described above is applied for values of TCM1min ranging from
1 day to 5 days and perturbations in the magnitude of the launch velocity
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εv0 ranging from −7 m/s to +7 m/s. We present typical transfer trajecto-
ries, as well as the dependency of the optimal cost on the two parameters
of interest. In addition, using the algorithm presented in §8.3, we perform a
sensitivity analysis of the optimal solution. For the Genesis TCM problem
it turns out that sensitivity information of first order is sufficient to char-
acterize the influence of TCM1min and εv0 on the spacecraft performance.

The merging of optimal control and dynamical systems theory has been
done through the use of invariant manifolds, in this case the stable invariant
manifold of the target halo orbit. This merging can take one of two forms:
(1) the use of a nominal transfer trajectory which is near the invariant
manifold as an accurate initial guess, or (2) the targeting of the stable
invariant manifold itself.

Halo Orbit Insertion (HOI) Problem. In this problem we directly
target the selected halo orbit with the last maneuver taking place at the
HOI point. Using the optimization procedure described in the previous sec-
tion, we compute the optimal cost transfer trajectories for various combina-
tions of TCM1min and εv0. In all of our computations, the launch conditions
are those corresponding to the nominal transfer trajectory, i.e.,

xnom
0 = 1.496032475412839× 108 km

ynom
0 = 1.943203061350240× 103 km

znom
0 = −2.479095822700627× 103 km

(vnom
0 )x = −4.612683390613825 km/s

(vnom
0 )y = 9.412034579485869 km/s

(vnom
0 )z = −3.479627336419212 km/s

with the launch velocity perturbed as described in §8.3. These initial con-
ditions are given in the Earth-Sun barycentered rotating frame.

As an example, we present complete results for the case in which the
launch velocity is perturbed by -3 m/s and the first maneuver correc-
tion is delayed by at least 3 days. Initially, we allow for n = 4 maneu-
vers. In the first optimization stage, the second type of cost function has
a value of C∗1 = 1153.998 (m/s)

2
after 5 iterations. This corresponds to

C∗2 = 50.9123 m/s. During the second optimization stage, we monitor the
sizes of all four maneuvers, while minimizing the cost function C1. After
23 iterations, the optimization was interrupted at a feasible configuration
when at least one maneuver decreased below a preset tolerance of 0.1 m/s.
The corresponding cost function is C∗∗2 = 45.1216 m/s with four maneuvers
of sizes 33.8252 m/s, 0.0012 m/s, 0.0003 m/s, and 11.2949 m/s. In the last
optimization stage we remove the second and third maneuvers and again
minimize the cost function C2. After 7 optimization iterations an optimal
solution with C∗∗∗2 = 45.0292 m/s is obtained. The two maneuvers of the
optimal trajectory have sizes of 33.7002 m/s and 11.3289 m/s and take
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place at 3.0000 and 110.7969 days after launch, respectively. The resulting
optimal trajectory is presented in Figure 8.4.1.
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Figure 8.4.1. HOI problem. Optimal transfer trajectory for TCM1min = 4 days,

εv0 = 3 m/s, and n = 4. The optimal trajectory has n̄ = 2 maneuvers (represented

by circles).

Lagrange multipliers associated with the constraints of Equations (8.3.4)
and (8.3.12) give the sensitivities of the optimal solution with respect to
launching velocity perturbation, −10.7341 (m/s)/(m/s), and delay in the
first maneuver correction, 4.8231 (m/s)/day.

Computational and Communication Times. All experiments were
performed on a PC workstation with an Intel Pentium III 800 MHz pro-
cessor running Linux 2.2.12. The code was compiled with gcc with second
level optimization. A typical run (the first optimization stage of the case
presented in Figure 8.4.1) takes 0.29 s for the problem set-up and 4.23 s
for the actual optimization.

For an actual TCM, this computation step is practially instantaneous.
Most of the time delay is taken up before this step, by the determination of
the position and velocity of the spacecraft, which reveals the launch error.
Once the appropriate maneuver has been computed on the ground, it takes
only a matter of seconds to communicate the maneuver information to the
spacecraft.

Accuracy. We want to compute maneuvers at least as accurately as they
can be implemented, given the accuracy to which the spacecraft’s position
and velocity can be measured. For a mission in the Earth’s neighborhood,
such as Genesis, the measurement accuracy is about 1 km for position and
about 0.01 m/s for velocity. For all of our computations, the integration
accuracy was well within these measurement limits.
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Launch Errors and Sensitivity Analysis. The staggered optimiza-
tion procedure is applied for all values of TCM1min and εv0 in the regime of
interest. In a first experiment, we investigate the possibility of correcting
for errors in the launch velocity using at most two maneuvers (n = 2). The
surface of optimal cost (C2 in m/s) as a function of these two parameters
is presented in Figure 8.4.2. Numerical values are given in Table 8.4.1.
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Figure 8.4.2. HOI problem. Influence of TCM1min and εv0 on the optimal cost (C2 in

m/s) for n = 2.

Except for the cases in which there is no error in the launch velocity (and
for which the final optimal transfer trajectories have only one maneuver
at HOI), the first correction maneuver is always on the prescribed lower
bound TCM1min. The evolution of the time at which the halo insertion
maneuver takes place as a function of the two parameters considered is
shown in Figure 8.4.3.

Recalling that the nominal transfer trajectory has THOI = 110.2 days, it
follows that, for all cases investigated, halo orbit insertion takes place at
most 18.6 days earlier or 28.3 days later than in the nominal case.

Several important observations can be drawn from these results. First,
it can be seen that, for all cases that we investigated, the optimal costs are
well within the ∆V budget allocated for transfer correction maneuvers (150
m/s for the Genesis mission). Secondly, as the second plot in Figure 8.4.2
shows, the cost function surface is very close to being linear with respect
to both TCM1min time and launch velocity error. This suggests that first
order derivative information, as obtained from sensitivity analysis of the
optimal solution (§8.3), provides a very good approximation to the surface.
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TABLE 8.4.1. HOI problem. Optimal costs (C2 in m/s) for different launch velocity

perturbations and delays in first trajectory correction maneuver for n = 2.

εv0 TCM1 (days)
(m/s) 1 2 3 4 5

-7 64.8086 76.0845 88.4296 99.6005 109.9305
-6 54.0461 67.0226 77.7832 86.8630 95.8202
-5 47.1839 57.9451 66.6277 74.4544 81.8284
-4 40.2710 48.8619 55.8274 62.0412 67.9439
-3 33.4476 39.8919 45.0290 49.6804 54.1350
-2 26.6811 30.9617 34.3489 37.3922 40.3945
-1 19.9881 22.2715 23.7848 25.2468 26.6662
0 13.4831 13.3530 13.4606 13.3465 13.2919
1 23.1900 21.9242 23.2003 24.4154 25.5136
2 26.2928 30.2773 33.3203 35.9203 38.3337
3 34.6338 38.8496 43.5486 47.7200 51.6085
4 41.4230 47.5266 53.9557 62.3780 65.1411
5 45.9268 56.2245 64.4292 75.0188 81.4325
6 53.9004 64.9741 76.6978 83.8795 95.2313
7 61.4084 75.9169 85.4875 98.4197 106.0411
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Figure 8.4.3. HOI problem. Influence of TCM1min and εv0 on the halo orbit insertion

time (THOI in days) for n = 2.

For a few points on the cost function surface, we present tangents obtained
from sensitivity data in Figure 8.4.4.

Finally, the halo orbit insertion time is always close enough to that of the
nominal trajectory so as to not affect either the collection of the solar wind
or the rest of the mission (mainly the duration for which the spacecraft
evolves on the halo orbit before initiation of the return trajectory).
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to TCM1min.

In a second set of numerical experiments, we allow initially for as many
as n = 4 maneuvers. This additional degree of freedom in the optimization
leads to further reductions in the optimal cost function, as data in Table
8.4.2 shows.

The corresponding cost function surface is presented in Figure 8.4.5.
It is interesting to note that all optimal transfer trajectories have n̄ = 2

maneuvers for negative errors in the launch velocity, n̄ = 1 maneuver if
there is no error, and n̄ = 3 maneuvers for positive launch velocity errors.
As in the previous case, the time for the first correction maneuver is always
on the prescribed lower bound (i.e., TCM1 = TCM1min), while the halo
orbit insertion time, shown in Figure 8.4.6, is at most 2.6 days earlier or
21.4 days later than in the nominal case.

8.5 Numerical Results for the Stable
Manifold Orbit Insertion Problem

Obtaining a Good Initial Guess. In the MOI problem the last nonzero
maneuver takes place on the stable manifold and there is no maneuver to
insert onto the halo orbit. This implies that, in addition to the constraints
of Equation (8.3.3) imposing that the final position is on the halo orbit,
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TABLE 8.4.2. HOI problem. Optimal costs (C2 in m/s) for different launch velocity

perturbations and delays in first transfer correction maneuver for the best case over

n = 2, 3, 4.

εv0 TCM1 (days)
(m/s) 1 2 3 4 5

-7 61.0946 76.0852 88.4295 99.3123 109.9174
-6 54.0461 67.0212 77.7832 86.8994 95.8202
-5 47.1389 57.9277 66.6277 74.4513 81.8572
-4 40.2710 48.8619 55.7984 62.0398 67.9438
-3 33.3664 39.8919 45.0290 49.6804 54.1357
-2 26.6720 30.9617 34.3489 37.3911 40.3945
-1 19.9674 22.1091 23.7848 25.2640 26.6618
0 13.4598 13.2902 13.4428 13.2907 13.2919
1 19.8257 21.9026 23.2005 24.4149 25.4359
2 26.2933 30.2773 33.3077 35.9203 38.3337
3 32.8151 38.8496 43.5486 47.7200 51.6085
4 39.3646 47.5279 53.9557 59.7078 65.1117
5 45.9127 56.2333 64.4292 71.7790 78.7022
6 52.4968 64.9741 74.9477 83.8795 92.3090
7 59.0967 73.7398 85.4875 95.9822 105.8960
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Figure 8.4.5. HOI problem. Influence of TCM1min and εv0 on the optimal cost (C2 in

m/s). In each case, the best trajectory over n = 2, 3, 4 was plotted.

constraints must be imposed to match the final spacecraft velocity with
the velocity on the halo orbit. These highly nonlinear constraints, together
with the fact that a much larger parameter space is now investigated (we
target an entire surface as opposed to just a curve) make the optimization
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Figure 8.4.6. HOI problem. Influence of TCM1min and εv0 on the halo orbit insertion

time (THOI in days). In each case, the best trajectory over n = 2, 3, 4 was plotted.

problem much more difficult than the one corresponding to the HOI case.
The first problem that arises is that the nominal transfer trajectory is not a
good enough initial guess to ensure convergence to an optimum. To obtain
an appropriate initial guess we use the following procedure:

Step 1. We start by selecting an HOI time, THOI. This yields the position
and velocity on the halo orbit.

Step 2. The above position and velocity are perturbed in the direction of
the stable manifold and the equations of motion in Equation (8.4.1)
are then integrated backwards in time for a selected duration TS .
This yields an MOI point which is now fixed in time, position, and
velocity.

Step 3. For a given value of TCM1min and with εv0 = 0, and using the
nominal transfer trajectory as initial guess, we use COOPT to find a
trajectory that targets this MOI point, while minimizing C1.

With the resulting trajectory as an initial guess and the desired value of εv0
we proceed with the staggered optimization presented before to obtain the
final optimal trajectory for insertion on the stable manifold. During the
three stages of the optimization procedure, both the MOI point and the
HOI point are free to move (in position, velocity, and time) on the stable
manifold surface and on the halo orbit, respectively.

The fact that we are using local optimization techniques implies that
the computed optimal trajectories are very sensitive to the choice of the
initial guess trajectory. For given values of the problem parameters (such
as initial number of maneuvers, perturbation in launch velocity, and lower
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bound on TCM1) we find optimal trajectories in a neighborhood of the
initial guess trajectory. In other words, computed optimal trajectories can
be ‘steered’ towards regions of interest by appropriate choices of initial
guess trajectories. For example, taking the launch time to be TL = 0 and
the HOI time (T ∗HOI) of the nominal transfer trajectory as a reference point
on the halo orbit, we can investigate a given zone of the design space by
an appropriate choice of the HOI point of our initial guess trajectory with
respect to T ∗HOI (step 1 of the above procedure). That is, we select a value
T0 such that THOI = T ∗HOI +T0. The point where the initial guess trajectory
inserts onto the stable manifold is then defined by selecting the duration
TS for which the equations of motion are integrated backwards in time
(step 2 of the above procedure). This gives a stable manifold insertion
time of TMOI = THOI − TS = T ∗HOI + T0 − TS . Next, we use COOPT to
evaluate these various choices for the initial guess trajectories (step 3 of the
above procedure). A schematic representation of this procedure is shown
in Figure 8.5.1.

Halo
orbit

Nominal
transfer trajectory

Perturbed
transfer trajectory

Trajectory on
stable manifold

x

y
z

Figure 8.5.1. MOI Problem. Description of the initial guess computation procedure.

For different combinations of T0 and TS , Table 8.5.1 presents values of
C∗2 (∆v) =

∑n
i=1 ‖∆vi‖ corresponding to the optimal initial guess trajec-

tory that targets the resulting MOI point. Note that, for a given value T0,
there exists a value TS for which we are unable to compute an initial guess
trajectory. This is due to the fact that, for these values of T0 and TS , the
resulting TMOI is too small for COOPT to find a trajectory that targets
the MOI point from TL = 0.

Regions Best Suited for MOI Insertion. From the data given in
Table 8.5.1 we can identify regions of the stable manifold that are best
suited for MOI insertion. Examples of such regions are:
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TABLE 8.5.1. MOI problem. Initial guess trajectories obtained for different choices of

the parameters T0 and TS . All times are given in nondimensional units.

T0 THOI TS TMOI C∗2
(m/s)

-0.25 1.65916 0.25 1.40916 45.7317
0.50 1.15916 93.2419
0.75 - -

0.00 1.90916 0.25 1.65916 21.7515
0.50 1.40916 45.1291
0.75 1.15916 94.0839
1.00 - -

0.75 2.65916 0.25 2.40916 21.1051
0.50 2.15916 21.4791
0.75 1.90916 24.8072
1.00 1.65916 23.9035
1.25 1.40916 43.2514
1.50 1.15916 86.1323
1.75 - -

1.50 3.40916 0.25 3.15916 15.9145
0.50 2.90916 16.2152
0.75 2.65916 15.6983
1.00 2.40916 17.6370
1.25 2.15916 27.5903
1.50 1.90916 18.9711
1.75 1.65916 19.4283
2.00 1.40916 28.3686
2.25 1.15916 51.8521
2.50 0.90916 105.7831
2.75 0.65916 212.9997
3.00 0.40916 519.7044
3.25 - -

• (Region A) MOI trajectories that insert to the halo orbit in the same
region as the nominal transfer trajectory and which therefore corre-
spond to initial guess trajectories with small T0;

• (Region B) MOI trajectories that have HOI points on the “far side”
of the halo orbit and which correspond to initial guess trajectories
with halo insertion time around T ∗HOI + 1.50 (T0 = 1.50 · 365/2π =
174.27 days).

These choices are confirmed by the examples from Wilson, Howell, and
Lo [1999]. Trajectories in Region B might, at first glance, appear unsuited
for the Genesis mission as they would drastically decrease the duration
for which the spacecraft evolves on the halo orbit (recall that design of
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the return trajectory dictates the time at which the spacecraft must leave
the halo orbit). However, as the typical MOI trajectory of Figure 8.5.2
shows, all trajectories on the stable manifold asymptotically wind onto the
halo orbit and are thus very close to the halo orbit for a significant time.
This means that collection of solar wind samples can start much earlier
than halo orbit insertion, therefore providing enough time for all scientific
experiments before the spacecraft leaves the halo orbit.
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Figure 8.5.2. MOI Problem. Optimal transfer trajectory for TCM1min = 4 days,

εv0 = −3 m/s, and n = 4. The optimal trajectory has a cost function of C2 = 49.1817 m/s

and n̄ = 2 maneuvers. The first maneuver takes place at TCM1 = 4 days, the second

one at TMOI = 112.11 days, while HOI takes place THOI = 173.25 days after launch.

Once we select a region of the stable manifold by selecting an appropriate
initial guess trajectory, we can perform the same type of analysis as done
for the HOI problem of §8.4. In what follows, we consider the case in which
we correct for perturbations in launch velocity by seeking optimal MOI
trajectories in Region B, that is, on the far side of the halo from the Earth.
For given values of εv0 and TCM1min, we first compute an MOI initial
guess trajectory with T0 = 1.50 and TS = 0.75 and then use the staggered
optimization procedure described in §8.4 to find an optimal MOI trajectory
in this vicinity.

We present results from such computations in Table 8.5.2. It can be
seen that the optimal MOI trajectories are very close (in terms of their
associated cost function C2) to the corresponding HOI trajectories. These
results can be understood if we recall that the nominal transfer trajectory
that we use in our experiments actually inserts onto the halo orbit directly
as opposed to the manifold. To take full advantage of the stable manifold
in correcting for launching errors, one may need to start with a nominal
transfer trajectory that inserts onto the stable manifold. For missions that
are designed to have such nominal transfer trajectories, correction trajecto-
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ries that also insert onto the stable manifold are expected to be much more
efficient than those obtained with the current formulation of the problem.

TABLE 8.5.2. MOI problem. Optimal costs (C2 in m/s) for different launching velocity

perturbations and delays in first transfer correction maneuver.

TCM1min (days) εv0 (m/s) C2 (m/s)

3 -3 45.1427
-4 55.6387
-5 65.9416
-6 76.7144
-7 87.3777

4 -3 49.1817
-4 61.5221
-5 73.4862
-6 85.7667
-7 99.3405

5 -3 53.9072
-4 66.8668
-5 81.1679
-6 94.3630
-7 109.2151

Summary and Remarks. In §8.2-8.5, we explored new approaches for
automated parametric studies of optimal transfer correction maneuvers for
a halo orbit mission. Using the halo orbit insertion approach, for all the
launch velocity errors and TCM1min considered we found optimal recovery
trajectories. The cost functions (fuel consumption in terms of ∆V ) are
within the allocated budget even in the worst case (largest TCM1min and
largest launch velocity error).

Using the stable manifold insertion approach, we obtained similar results
to those found using HOI targeted trajectories. The failure of the MOI
approach to reduce the ∆V significantly may be because the optimization
procedure (even in the HOI targeted case) naturally finds trajectories ‘near’
the stable manifold.

The main contribution of dynamical systems theory to the problem of
finding optimal recovery trajectories is in the construction of good initial
guess trajectories in sensitive regions which allows the optimizer to home
in on the solution. We feel that this aspect of our work will be important
in many other future mission design problems. Many missions in the future
will also require the use ofoptimal control in the context of low thrust. The
software and methods of this chapter can be used with little change for
such problems.
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8.6 Station-Keeping with the Target Point
Approach

Station-Keeping for Libration Point Orbits. Periodic and quasi-
periodic orbits near libration points are regularly chosen as nominal orbits
for missions. Because of the instability of these orbits, occasional “nudges”
from on-board thrusters are necessary to keep the spacecraft on track–near
the nominal orbit.

Once the nominal orbit is specified, strategies must be implemented to
keep the actual spacecraft trajectory sufficiently close to the nominal path.
As in the previous sections, in this and the next section all maneuvers
are assumed to be impulsive and occur at discrete times. We outline two
approaches: Target Point and Floquet Mode. In this section, we look at the
Target Point approach.

Target Point Station-Keeping. The goal of the Target Point station-
keeping algorithm is to compute and implement maneuvers to maintain a
spacecraft “close” to the nominal orbit, i.e., within a tube of some specified
radius centered about the reference path. To accomplish this task, a control
procedure is derived from minimization of a cost function. The cost function
C is defined by weighting both the control energy required to implement a
station-keeping maneuver, (∆v), and a series of expected deviations of the
six-dimensional state from the nominal orbit at specified future times ti.
This procedure was developed by Howell and Pernicka [1988] and Howell
and Gordon [1994].

The Cost Function. The cost function to be minimized is written as

C = ∆vTQ∆v +

n∑
i=1

δpi
TRpi δpi +

n∑
i=1

δvi
TRvi δvi, (8.6.1)

where superscript T denotes transpose. The variables in the cost function
include the corrective maneuver, ∆v at some time tc. The δpi are defined as
3× 1 column vectors representating linear approximations of the expected
deviations of the actual spacecraft trajectory from the nominal path at
specified future times ti. Likewise, the 3×1 vectors δvi represent deviations
of the spacecraft velocity at the corresponding ti. The future times at which
predictions of the position and velocity state of the vehicle are compared
to the nominal path are denoted as target points. They are represented
as ∆ti such that ti = t0 + ∆ti where t0 is the initial reference time. In the
following study, the case of three future target points will be presented.

In equations (8.6.1), Q,Rpi and Rvi are 3 × 3 weighting matrices. The
weighting matrix Q is symmetric positive definite; the other weighting ma-
trices are symmetric positive semi-definite. The weighting matrices are gen-
erally treated as constants that must be specified as inputs. Selection of
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appropriate weighting matrix elements is a trial and error process that has
proven to be time-consuming. A methodology has been developed that au-
tomatically selects and updates the weighting matrices for each maneuver.
This “time-varying” weighting matrix algorithm is based solely on empiri-
cal observations.

Computation of ∆v. For simplicity, let us assume that the maneuver
is implemented at tc = t0 with (δp0, δv0) as the initial position and ve-
locity deviations. Then the state transition matrix provides the following
relationship: [

δpi
δvi

]
= Φ(ti, t0)

[
δp0

δv0 + ∆v

]
=

[
Ai0 Bi0
Ci0 Di0

] [
δp0

δv0 + ∆v

]
.

(8.6.2)

This allows us to compute the expected deviations (δpi, δvi) at the target
time ti in terms of initial deviations (δp0, δv0) and the maneuver ∆v.
Therefore, the cost function C can be written in terms of submatrices of
the state transiton matrix and the variables δp0, δv0 and ∆v.

Determination of the ∆v corresponding to the relative minimum of this
cost function, denoted ∆v∗, shows that the required maneuver ∆v depends
linearly on the position and velocity deviations needed to be corrected:

∆v∗ = −
[
Q+

3∑
i=1

BTi0R
p
iBi0 +DTi0R

v
iDi0

]−1

×
[(

3∑
i=1

BTi0R
p
iBi0 +DTi0R

v
iDi0

)
δv0 +

(
3∑
i=1

BTi0R
p
iAi0 +DTi0R

v
i Ci0

)
δp0

]
.

The performance of the Target Point algorithm is not truly “optimal,”
though it has been flight demonstrated to successfully control spacecraft
at reasonable costs. This accomplishment alone provides the mission de-
sign with a quick and efficient way to obtain reasonable station-keeping
strategies. Given some procedure to select the weighting matrices, the ma-
neuver is computed from the above equation. The corrective maneuver
(∆v) is a function of spacecraft drift (in both position and velocity with
respect to the nominal orbit), the state transition matrix elements asso-
ciated with the nominal orbit, and the weighting matrices. Note that this
general method could certainly accommodate inclusion of additional tar-
get points. Although the nominal orbit that is under consideration here is
periodic, the methodology does not rely on periodicity; it could be applied
to any type of motion.

Additonal Constraints. Three additional constraints are specified in
the station-keeping procedure to restrict maneuver implementation.

1. The time elapsed between successive maneuvers must be greater than
or equal to a specified minimum time interval, ∆tmin. This constraint
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may be regulated by the orbit determination process, scientific pay-
load requirements, and mission operations. Time intervals of one to
three days are considered for the Earth-Moon libration points and
40-80 days for Sun-Earth libration points.

2. The second constraint is a scalar distance (dmin) that specifies a min-
imum deviation from the nominal path in position space that must be
exceeded prior to maneuver execution. For distances less than dmin,
maneuver computations do not occur.

3. In the Target Point approach, the magnitude of position deviations
are compared between successive tracking intervals. If the magnitude
is decreasing, a maneuver is not calculated.

For a corrective maneuver to be computed, all three criteria must be sat-
isfied simultaneously.

After a maneuver is calculated by the algorithm, an additional constraint
is specified on the minimum allowable maneuver magnitude, ∆vmin. If the
magnitude of the calculated ∆v is less than ∆vmin, then the recommen-
dated maneuver is cancelled. This constraint is useful in avoiding “small”
maneuvers that are approximately the same order of magnitude as the
maneuver errors. It also serves to model actual hardware limitations, as
modern propulsion devices have restrictions concerning the minimal con-
trol impulse that can be accurately executed.

8.7 Station-Keeping with Floquet Mode
Approach

An alternate strategy for station-keeping is the Floquet Mode approach,
a method that is significantly different from the Target Point approach.
As discussed in §7.2, the behavior of the flow near a nominal halo orbit
can be determined by the eigenvalues λi, i = 1, . . . , 6 and the eigenvectors
ei, i = 1, . . . , 6 of M , the monodromy matrix.

The emphasis for the Floquet Mode approach is on formulating a con-
troller which will effectively eliminate the unstable component of the error
vector

δE(t) = (δx, δy, δz, δẋ, δẏ, δż),

defined as the difference between the actual coordinates obtained by track-
ing and the nominal ones computed isochronously on the nominal orbit.

At any epoch, t, δE(t) can be expressed in terms of the Floquet modes,
ēi(t), as

δE(t) =

6∑
1

αiēi(t).
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The objective of the controller is to add a maneuver

∆v = (0, 0, 0,∆vx,∆vy,∆vz)

such that the magnitude of the component of the error vector in the unsta-
ble direction, α1, is reduced to zero. The five remaining components do not
produce large departures from the nominal orbit. By contrast, the compo-
nent of the error vector along the unstable mode increases by a factor of
λ1 (� 1) in each revolution.

Note that it is convenient to use the Floquet modes ēi(t) instead of the
vector ei(t) to avoid exponential growth because these 6 modes are periodic
vectors defined by

ēi = exp

(
− t

T
log λi

)
· ei(t)

where T is the period of the halo orbit.
For practical implementation it is useful to compute the so-called pro-

jection factor Π along ē1(t) which is normal to the hyperplane Γ spanned
by the vectors ē2(t) to ē6(t) such that ē1(t) ·Π = 1.

To eliminate the component along the unstable direction α1ē1(t), we
need to add a maneuver ∆v so that

(δE + ∆v) ·Π = 0.

That is, the resulting vector (δE + ∆v) lies in hyperplane Γ and does not
have an unstable component.

Hence, ∆v needs to be chosen such that

∆vxπ4 + ∆vyπ5 + ∆vzπ6 + α1 = 0,

where π4, π5, π6 are the last 3 components of Π. Choosing a two axis con-
toller with ∆vz = 0, and minimizing the Euclidean norm of ∆v. We obtain

∆vx = − α1π4

π2
4 + π2

5

, ∆vy = − α1π5

π2
4 + π2

5

.

In a similar way, a one or three axis controller can be formulated.

Constaints for Maneuver Implementation. Similar to the Target
Point approach, several constraints that impact the maneuvers are spec-
ified in the procedure. Some of the most relevant are the time interval
between two consecutive tracking epochs (tracking interval), the minimum
time interval between maneuvers, and the minimum value of α1 at which
no maneuver will be considered.

• Special emphasis must be placed on the evolution of α1, examples of
which are shown in Figure 8.7.1. With no tracking errors, this param-
eter increases exponentially with time. When adding tracking errors,
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a minimum value αmin which is related to the orbit determination
accuracy must be selected in order to prevent a useless maneuver. To
avoid a (exponentially increasing) costly maneuver, αmax is chosen: if
α1 ≥ αmax, a maneuver will be executed. When αmax > α1 > αmin, a
maneuver is executed only if an error has been growing exponentially
in the previous time step.

• The time between successive maneuvers must be greater than some
minimum, ∆tmin. This interval is regulated by orbit determination
process, scientific payload requirements and mission operations. Time
intervals of 1 to 2 days in the Earth-Moon system are typical.

• If ∆v < ∆vmin (say, 2 cm/s), the recommended maneuver is can-
celled. This is done in order to avoid “small” maneuvers that are of
the same order of magnitude as the maneuver implementation errors.
It also serves to model actual hardware limitations.

For details of numerical explorations of both Floquet Mode and Target
Point methods, see Gómez, Howell, Masdemont, and Simó [1998a].
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Figure 8.7.1. Evolution with time of the unstable component of the controlled orbit.

The dotted points correspond to the epochs at which the tracking has been performed.

In the upper figure tracking and the maneuvers are performed without error. In the

lower figure, errors in both parameters have been introduced (errors still measured in

units of 10−5). It is clearly seen, in this last situation, that the unstable component is

not so nicely cancelled as in the first one.



9
Invariant Manifolds and Complex
Mission Designs

9.1 Introduction

The invariant manifold structures of the collinear libration points for the
restricted three-body problem provide the framework for understanding
transport phenomena from a geometric point of view. In particular, the
stable and unstable invariant manifold tubes associated to libration point
orbits are the phase space conduits transporting material between primary
bodies for separate three-body systems. Tubes can be used to construct
new spacecraft trajectories, such as a “Petit Grand Tour” of the moons
of Jupiter. Previous chapters focused on the planar circular restricted
three-body problem. The current chapter extends the results to the three-
dimensional case.

Besides stable and unstable manifold tubes, center manifolds of the
collinear libration points have played a very important role in space mis-
sion design. In Chapter 6, we provided a full description of different kinds
of libration motions in a large vicinity of these points. In this chapter, we
take the next obvious step, and as in Chapter 3, show the existence of
heteroclinic connections between pairs of libration orbits, one around the
libration point L1 and the other around L2. Since these connections are
asymptotic orbits, no maneuver is needed to perform the transfer from one
libration orbit to the other.
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Extending Results from Planar Model to Spatial Model. Pre-
vious work discussed in earlier chapters, based on the planar circular re-
stricted three-body problem (PCR3BP), revealed the basic structures con-
trolling the dynamics. But actual missions require three-dimensional ca-
pabilities, such as control of the latitude and longitude of a spacecraft’s
escape from and entry into a planetary or moon orbit. For example, a fu-
ture mission to send a probe to orbit Europa may desire a capture into a
high inclination polar orbit around Europa. Three-dimensional capability
is also required when decomposing an multibody system into three-body
subsystems which are not coplanar, such as the Earth-Sun-spacecraft and
Earth-Moon-spacecraft systems (The tilt in the orbital planes of the Earth
around the Sun and the Moon around the Earth is about 5 degrees.) These
demands necessitate dropping the restriction to planar motion, and exten-
sion of earlier results to the spatial model (CR3BP).

In this chapter, we discuss work shown presented in Gómez, Koon, Lo,
Marsden, Masdemont, and Ross [2001, 2004]). We show that the invariant
manifold structures of the collinear libration points still act as the separa-
trices between two types of motion: (i) inside the invariant manifold tubes,
the motion consists of transit through a neck, the transit orbits; (ii) outside
the tubes, no such transit motion is possible. We design an algorithm for
constructing orbits with any prescribed itinerary and obtain some results
for a basic itinerary. Furthermore, we apply these new techniques to the
construction of a three-dimensional Petit Grand Tour of the Jovian moon
system. By approximating the dynamics of the Jupiter-Europa-Ganymede-
spacecraft four-body system as two 3-body subsystems, we seek intersec-
tions (in position space) between the tubes of transit orbits enclosed by
the stable and unstable manifold tubes.

If the tubes intersect in phase space, we have found a free transfer. Oth-
erwise a ∆V will be necessary to “jump” between the tubes in the two sub-
systems. As shown in Figure 1.2.9 in Chapter 1, we design an example low
energy transfer trajectory from an initial Jovian insertion trajectory, lead-
ing to Ganymede and finally to Europa, ending in a high inclination orbit
around Europa. It requires a ∆V to jump between the Jupiter-Ganymede
and Jupiter-Europa subsystems where the maneuver is labeled in Figure
1.2.9(a).

Computation of the Center Manifold and Its Stable and Unsta-
ble Manifolds. In Chapter 6, we established that the linear behavior
of collinear libration points is of the type saddle×center×center. This be-
havior is inherited by the libration orbits, all of which are highly unstable
(Gómez, Jorba, Masdemont, and Simó [1991a, 1998b]; Szebehely [1967]).
Hence, numerical exploration in the neighborhood of the libration points
is not straightforward for two reasons. The first one is high dimensionality
of the problem (six phase space dimensions), which makes the explorations
rather long, even using simple models like the CR3BP. The second reason
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is the highly unstable character of the solutions near the libration points.
Due to this instability, errors in the initial conditions multiply by a large
factor (on the order of the unstable eigenvector for a halo orbit,� 1) every
half revolution of the secondary around the primary, making it difficult to
get an idea of the flow and the orbits in the vicinity of these points.

However, the instability can be handled and the dimensionality reduced
by a procedure called reduction to the center manifold, to be introduced
shortly (see also Gómez, Jorba, Masdemont, and Simó [1991a]; Jorba and
Masdemont [1999]). The fundamental idea is based on canonical transfor-
mations of the Hamiltonian equations by the Lie series method, imple-
mented in a different way from the “standard” procedure introduced in
Deprit [1969]. The change of variables allows us to have a two degree-of-
freedom Hamiltonian containing only the orbits in the center manifold.
Roughly speaking, this means we remove the main instability. For each
level of energy, the orbits are in a three-dimensional manifold that can be
represented and viewed globally in a two-dimensional Poincaré surface of
section.

The procedure gives a complete description of the libration orbits around
an extended neighborhood of the collinear libration points. The main ob-
jects found are: planar and vertical families of Lyapunov periodic orbits;
Lissajous orbits; periodic halo orbits; and quasi-halo orbits. Apart from
using purely numerical procedures, these orbits have also been computed,
starting from the equations of motion of the CR3BP and implementing
semi-analytic procedures based in asymptotic series of the Lindsted-Poincaré
type, as discussed in Chapter 6 and elsewhere (see Gómez, Jorba, Masde-
mont, and Simó [1991a]; Gómez, Masdemont, and Simó [1997, 1998]; Jorba
and Masdemont [1999]).

In this chapter we implement a slightly different procedure for the com-
putation of the reduction to the center manifold, in order to have all the
possible initial conditions in the center manifold of a selected level of en-
ergy. Then, the connections between the orbits of L1 and L2 are constructed
looking for the intersections of the unstable manifold of a libration orbit
around Li with the stable one of a libration one around L3−i for i = 1, 2.
The orbits are asymptotic to both libration orbits in the same level of en-
ergy and thus, in the ideal situation of the CR3BP, no ∆V is required to
perform the transfer from one orbit to the other.

This efficient way of computing stable and unstable manifolds for the
center manifold of a selected level of energy allows us to construct the
Petit Grand Tour of Jovian moons.

9.2 The Linearized Hamiltonian System

Studying the linearization of the dynamics near the equilibria is of course an
essential ingredient for understanding the more complete nonlinear dynam-
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ics (Conley [1968]; McGehee [1969]; Appleyard [1970]; Koon, Lo, Marsden,
and Ross [2000]). In fact, it can be shown that for a value of Jacobi constant
just below that of L1 (L2), the nonlinear dynamics in the equilibrium re-
gion R1 (R2) is qualitatively the same as the linearized picture that we will
describe below. For details, see §9.7 as well as other references (Gómez and
Masdemont [2000]; Jorba and Masdemont [1999]; Hartman [1964]; Wig-
gins, Wiesenfeld, Jaffé, and Uzer [2001]). This geometric insight will be
used later to guide our numerical explorations in constructing orbits with
prescribed itineraries.

Expansion of CR3BP Hamiltonian around Collinear Equilibria.
From the work of Chapter 6, the Hamiltonian for the restricted three-body
problem has the form

H =
1

2

(
p2
x + p2

y + p2
z

)
+ ypx − xpy −

1− µ
r1
− µ

r2
.

Moreover, its expansion around a collinear equilibrium point is given by

H =
1

2

(
p2
x + p2

y + p2
z

)
+ ypx − xpy −

∑
n≥2

cn(µ)ρnPn

(
x

ρ

)
. (9.2.1)

where ρ2 = x2 + y2 + z2 and Pn is the Legendre polynomial of degree n.
The coefficients cn are given by

cn =
1

γ3
j

(
(±1)nµ+ (−1)n

(1− µ)γn+1
j

(1∓ γj)n+1

)
, for Lj , j = 1, 2

where γj is the distance between Lj and the second primary. As usual, the
upper sign is for L1 and the lower one for L2.

This expression for the Hamiltonian is in an ideal form because all orders
of the nonlinear expansion can be developed recursively using the well-
known Legendre polynomial relationships. For instance, if we define

Tn(x, y, z) = ρnPn

(
x

ρ

)
,

then Tn is a homogeneous polynomial of degree n that satisfies the following
recurrence relations

Tn =
2n− 1

n
xTn−1 −

n− 1

n
(x2 + y2 + z2)Tn−2,

which start with T0 = 1 and T1 = x. This is particularly useful if the
successive approximation procedure is carried to high orders via algebraic
manipulation software.
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Normal Form for the Linearized Hamiltonian. The linearization
around the equilibrium point is given by the second-order terms of the
CR3BP Hamiltonian

H2 =
1

2

(
p2
x + p2

y

)
+ ypx − xpy − c2x2 +

c2
2
y2 +

1

2
p2
z +

c2
2
z2. (9.2.2)

It will be shown below that the local behavior near these points are of
the type saddle×center×center, and a real linear and symplectic change of
coordinates can be found to cast the second-order part of the Hamiltonian
(9.2.2) into its real normal form,

H2 = λq1p1 +
ωp
2

(q2
2 + p2

2) +
ωv
2

(q2
3 + p2

3). (9.2.3)

This normal form will be used in performing qualitative analysis in §9.3
and can also be considered as a first step of normal form computations for
the full Hamiltonian. Here, λ, ωp and ωv are positive real numbers given
by

λ2 =
c2 − 2 +

√
9c22 − 8c2

2
, ω2

p =
2− c2 +

√
9c22 − 8c2

2
, ω2

v = c2.

Since c2 > 1 for collinear points, the vertical direction in (9.2.2) is an
harmonic oscillator with frequency ωv =

√
c2. As the vertical direction is

already uncoupled from the planar ones, in what follows we will focus first
on the planar directions, i.e.,

H2 =
1

2

(
p2
x + p2

y

)
+ ypx − xpy − c2x2 +

c2
2
y2. (9.2.4)

For simplicity, we keep the same name H2 for the Hamiltonian. The next
step is to compute a symplectic change of variables such that the Hamilto-
nian (9.2.4) is in normal form.

Symplectic Matrix and Canonical Transformation. The canonical
Hamiltonian equations for an autonomous system with Hamiltonian
H(q, p) = H(z), where z = (q, p) = (q1, . . . , qn; p1, . . . , pn) ∈ R2n can be
written in a compact form as follows:

ż = J∇H(z). (9.2.5)

Here, ∇ = (∂z1 , . . . , ∂z2n) is the gradient operator on R2n, and J is the
2n× 2n symplectic matrix

J =

(
0 In
−In 0

)
where In denotes the n× n identity matrix.
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Since J satisfies JT = −J , it defines a symplectic form Ω on R2n:

Ω(u, v) = uTJv, u, v ∈ R2n,

which is a non-degenerate bilinear skew symmetric form. A matrix M is
said to be symplectic if it satisfies

MTJM = J. (9.2.6)

Notice that J is symplectic since J−1 = JT . The right hand side of (9.2.5)
is called the symplectic gradient of H.

Now let us consider the effect that a change of variables,

z̄ = φ(z), (9.2.7)

has on a Hamiltonian system associated with H. Note that the Hamilto-
nian equations obtained from the Hamiltonian H ◦ φ can be different from
the equations obtained by applying the transformation φ to the Hamilto-
nian equations associated with H. When these two systems of differential
equations coincide, it is said that the transformation φ preserves the Hamil-
tonian character of the system.

A change of variables is called canonical when it preserves the Hamil-
tonian character of the system. Canonical transformations are very useful
both from the theoretical and the practical points of view, since they allow
one to work on a single function, the Hamiltonian, instead of a system of
2n differential equations. It can be shown as shown that a transformation
is canonical if and only the differential of the change at any point is a
symplectic matrix.

Differentiate equation (9.2.7), we obtain

˙̄z =
∂φ

∂z
ż. (9.2.8)

Substituting equation (9.2.5) into (9.2.8) and apply the chain rule, we have

˙̄z =
∂φ

∂z
ż

=
∂φ

∂z
J∇H(z)

=
∂φ

∂z
J

(
∂H

∂z
(z)

)T
=
∂φ

∂z
J

(
∂H

∂z̄
(z̄)

∂φ

∂z

)T
=
∂φ

∂z
J

(
∂φ

∂z

)T (
∂H

∂z̄
(z̄)

)T
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=
∂φ

∂z
J

(
∂φ

∂z

)T
∇H(z̄)

Hence, the coordinate change, z̄ = φ(z), preserves the Hamiltonian char-
acter if and only if

∂φ

∂z
J

(
∂φ

∂z

)T
= J. (9.2.9)

This proves our claim since it is easy to show that

MJMT = J (9.2.10)

is equivalent to equation (9.2.6) by taking the inverse of (9.2.10) and by
knowing the fact that symplectic matrices form a group.

For a linearized Hamiltonian system associated with H2 (see (9.2.4)), a
symplectic linear coordinate change is clearly canonical.

Eigenvalues. The equations of motion associated the Hamiltonian (9.2.4)
are given by the linear system

ẋ
ẏ
ṗx
ṗy

 = J∇H2 = JHess(H2)


x
y
px
py

 .

Define JHess(H2) as matrix M

M =


0 1 1 0
−1 0 0 1
2c2 0 0 1
0 −c2 −1 0

 . (9.2.11)

Similar to §2.7, the characteristic polynomial is

p(β) = β4 + (2− c2)β2 + (1 + c2 − 2c22). (9.2.12)

Let α = β2, then the roots of p(α) = 0 are as follows

α1 =
c2 − 2 +

√
9c22 − 8c2

2
, α2 =

c2 − 2−
√

9c22 − 8c2
2

.

Since c2 > 1 and the last term of p(α) = 0 is negative, this quadratic equa-
tion must have one positive and one negative root. So, we have α1 > 0 and
α2 < 0. This shows that the equilibrium point is a saddle×center×center.
Thus, let us define λ as

√
α1 and ωp as

√
−α2.
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Eigenvectors. Now, we want to find the eigenvectors of matrix (9.2.11)
and use them to construct a symplectic linear change of variables which will
cast (9.2.4) into its real normal form. In doing so, we will take advantage
of the special form of this matrix. Denote the matrix M −βI4 by Mβ , then

Mβ =

(
Aβ I2
B Aβ

)
, Aβ =

(
−β 1
−1 −β

)
, B =

(
2c2 0
0 −c2

)
.

Now, the elements of the kernel, denoted as (k1, k2), can be found by first
solving

(B −A2
β)k1 = 0,

and then

k2 = −Aβk1.

Thus, the (column) eigenvectors of M are given by

(2β, β2 − 2c2 − 1, β2 + 2c2 + 1, β3 + (1− 2c2)β), (9.2.13)

where β denotes one of the eigenvalues.
Let us start with the eigenvectors related to iωp. From (9.2.12), we obtain

ω4
p − (2− c2)ω2

p + (1 + c2 − 2c22) = 0.

After substituting β = iωp to the expression of the eigenvector (9.2.13)
and separating real and imaginary parts as uωp

+ ivωp
, we obtain two

eigenvectors

uωp
= (0,−ω2

p − 2c2 − 1,−ω2
p + 2c2 + 1, 0),

vωp = (2ωp, 0, 0,−ω3
p + (1− 2c2)ωp).

Moreover, the rest of eigenvectors associated with eigenvalues ±λ can also
be obtained similarly

u+λ = (2λ, λ2 − 2c2 − 1, λ2 + 2c2 + 1, λ3 + (1− 2c2)λ),

u−λ = (−2λ, λ2 − 2c2 − 1, λ2 + 2c2 + 1,−λ3 − (1− 2c2)λ).

Symplectic Change of Variables. Initially, we consider the change of
variables defined by the matrix C

C = (u+λ, uωp
, u−λ, vωp

)

which comprises the four eigenvectors. To find out whether this matrix is
symplectic or not, we check CTJC = J . It is tedious but not difficult to
see that

CTJC =

(
0 D
−D 0

)
, D =

(
dλ 0
0 dωp

)
,
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where

dλ = 2λ((4 + 3c2)λ2 + 4 + 5c2 − 6c22),

dωp
= ωp((4 + 3c2)ω2

p − 4− 5c2 + 6c22).

This implies that we need to apply some scaling on the columns of C in
order to have a symplectic change. Since it can be shown that dλ > 0 and
dωp

> 0 for 0 < µ ≤ 1
2 , the scaling is given by the factors s1 =

√
dλ and

s2 =
√
dωp .

To obtain the final change, we have to take into account the vertical
direction (z, pz): to put it into real normal form we use the substitution

z =
1
√
ωv
q3, pz =

√
ωvp3.

This implies that the final change is given by the symplectic matrix C

=



2λ
s1

0 0 −2λ
s1

2ωp

s2
0

λ2−2c2−1
s1

−ω2
p−2c2−1

s2
0 λ2−2c2−1

s1
0 0

0 0 1√
ωv

0 0 0

λ2+2c2+1
s1

−ω2
p+2c2+1

s2
0 λ2+2c2+1

s1
0 0

λ3+(1−2c2)λ
s1

0 0
−λ3−(1−2c2)λ

s1

−ω3
p+(1−2c2)ωp

s2
0

0 0 0 0 0
√
ωv


,

(9.2.14)

that casts Hamiltonian (9.2.2) into its real normal form,

H2 = λq1p1 +
ωp
2

(q2
2 + p2

2) +
ωv
2

(q2
3 + p2

3). (9.2.15)

A short computation gives the linearized equations in the form

q̇1 = λq1, ṗ1 = −λp1,

q̇2 = ωpp2, ṗ2 = −ωpq2,

q̇3 = ωvp3, ṗ3 = −ωvq3. (9.2.16)

Solutions of the equations (9.2.16) can be conveniently written as

q1(t) = q0
1e
λt, p1(t) = p0

1e
−λt,

q2(t) + ip2(t) = (q0
2 + ip0

2)e−iωpt,

q3(t) + ip2(t) = (q0
3 + ip0

3)e−iωvt, (9.2.17)

where the constants q0
1 , p

0
1, q0

2 + ip0
2, and q0

3 + ip0
3 are the initial conditions.

These linearized equations admit integrals in addition to the Hamiltonian
function; namely, the functions q1p1, q2

2 +p2
2 and q2

3 +p2
3 are constant along

solutions.
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9.3 Invariant Manifold as Separatrix

The Linearized Phase Space. For positive h and c, the region R,
which is determined by

H2 = h, and |p1 − q1| ≤ c,

is homeomorphic to the product of a 4-sphere and an interval I, S4 × I;
namely, for each fixed value of p1 − q1 in the interval [−c, c], we see that
the equation H2 = h determines a 4-sphere

λ

4
(q1 + p1)2 +

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h+

λ

4
(p1 − q1)2.

The bounding 4-sphere of R for which p1 − q1 = −c will be called n1, and
that where p1 − q1 = c, n2 (see Figure 9.3.1).

saddle projection

A planar oscillations
      projection

vertical oscillations
       projection

AA

A

Figure 9.3.1. The flow in the equilibrium region has the form saddle × center × center.

On the left is shown the projection onto the (p1, q1)-plane (note, axes tilted 45◦). Shown

are the bounded orbits (black dot at the center), the asymptotic orbits (labeled A), two

transit orbits (T) and two non-transit orbits (NT).

Similar to Chapter 2, we call the set of points on each bounding 4-sphere
where q1+p1 = 0 the equator, and the sets where q1+p1 > 0 or q1+p1 < 0
will be called the north and south hemispheres, respectively.

The Linear Flow in R. To analyze the flow in R, one considers the
projections on the (q1, p1)-plane and (q2, p2) × (q3, p3)-space, respectively.
In the first case we see the standard picture of an unstable critical point,
and in the second, of a center consisting of two uncoupled harmonic oscil-
lators. Figure 9.3.1 schematically illustrates the flow. The coordinate axes
of the (q1, p1)-plane have been tilted by 45◦ and labeled (p1, q1) in order
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to correspond to the direction of the flow in later figures which adopt the
NASA convention that the larger primary is to the left of the smaller sec-
ondary. With regard to the first projection we see that R itself projects to
a set bounded on two sides by the hyperbola q1p1 = h/λ (corresponding
to q2

2 + p2
2 = q2

3 + p2
3 = 0, see (2.7.4)) and on two other sides by the line

segments p1 − q1 = ±c, which correspond to the bounding 4-spheres.
Since q1p1 is an integral of the equations in R, the projections of orbits

in the (q1, p1)-plane move on the branches of the corresponding hyperbolas
q1p1 = constant, except in the case q1p1 = 0, where q1 = 0 or p1 = 0. If
q1p1 > 0, the branches connect the bounding line segments p1 − q1 = ±c
and if q1p1 < 0, they have both end points on the same segment. A check
of equation (9.2.17) shows that the orbits move as indicated by the arrows
in Figure 9.3.1.

To interpret Figure 9.3.1 as a flow in R, notice that each point in the
(q1, p1)-plane projection corresponds to a 3-sphere S3 in R given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h− λq1p1.

Of course, for points on the bounding hyperbolic segments (q1p1 = h/λ),
the 3-sphere collapses to a point. Thus, the segments of the lines p1 −
q1 = ±c in the projection correspond to the 4-spheres bounding R. This is
because each corresponds to a 3-sphere crossed with an interval where the
two end 3-spheres are pinched to a point.

We distinguish nine classes of orbits grouped into the following four
categories:

1. The point q1 = p1 = 0 corresponds to an invariant 3-sphere S3
h of

bounded orbits (periodic and quasi-periodic) in R. This 3-sphere is
given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h, q1 = p1 = 0. (9.3.1)

It is an example of a normally hyperbolic invariant manifold
(NHIM) (see Wiggins [1994]). Roughly, this means that the stretching
and contraction rates under the linearized dynamics transverse to the
3-sphere dominate those tangent to the 3-sphere. This is clear for this
example since the dynamics normal to the 3-sphere are described
by the exponential contraction and expansion of the saddle point
dynamics. Here the 3-sphere acts as a “big saddle point”. See the
black dot at the center of the (q1, p1)-plane on the left side of Figure
9.3.1.

2. The four half open segments on the axes, q1p1 = 0, correspond to four
cylinders of orbits asymptotic to this invariant 3-sphere S3

h either as
time increases (p1 = 0) or as time decreases (q1 = 0). These are
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called asymptotic orbits and they form the stable and the unstable
manifolds of S3

h. The stable manifolds, W s
±(S3

h), are given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h, q1 = 0. (9.3.2)

W s
+(S3

h) (with p1 > 0) is the branch going from right to left and
W s
−(S3

h) (with p1 < 0) is the branch going from left to right. The
unstable manifolds, Wu

±(S3
h), are given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h, p1 = 0. (9.3.3)

Wu
+(S3

h) (with q1 > 0) is the branch going from right to left and
Wu
−(S3

h) (with q1 < 0) is the branch going from left to right. See the
four orbits labeled A of Figure 9.3.1.

3. The hyperbolic segments determined by q1p1 = constant > 0 corre-
spond to two cylinders of orbits which cross R from one bounding
4-sphere to the other, meeting both in the same hemisphere; the
northern hemisphere if they go from p1 − q1 = +c to p1 − q1 = −c,
and the southern hemisphere in the other case. Since these orbits
transit from one realm to another, we call them transit orbits. See
the two orbits labeled T of Figure 9.3.1.

4. Finally the hyperbolic segments determined by q1p1 = constant < 0
correspond to two cylinders of orbits in R each of which runs from
one hemisphere to the other hemisphere on the same bounding 4-
sphere. Thus if q1 > 0, the 4-sphere is n1 (p1 − q1 = −c) and orbits
run from the southern hemisphere (q1 + p1 < 0) to the northern
hemisphere (q1 + p1 > 0) while the converse holds if q1 < 0, where
the 4-sphere is n2. Since these orbits return to the same realm, we call
them non-transit orbits. See the two orbits labeled NT of Figure
9.3.1.

McGehee Representation. As noted above,R is a 5-dimensional man-
ifold that is homeomorphic to S4 × I. It can be represented by a spherical
annulus bounded by two 4-spheres n1, n2, as shown in Figure 9.3.2(b).

Figure 9.3.2(a) is a cross-section of R. Notice that this cross-section is
qualitatively the same as the illustration in Figure 9.3.1. The following
classifications of orbits correspond to the previous four categories:

1. There is an invariant 3-sphere S3
h of bounded orbits in the region

R corresponding to the black dot in the middle of Figure 9.3.2(a).
Notice that this 3-sphere is the equator of the central 4-sphere given
by p1 − q1 = 0.

2. Again let n1, n2 be the bounding 4-spheres of region R, and let n
denote either n1 or n2. We can divide n into two hemispheres: n+,
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(a) (b)

Figure 9.3.2. (a) The cross-section of the flow in the R region of the energy surface.

(b) The McGehee representation of the flow in the region R.

where the flow enters R, and n−, where the flow leaves R. There
are four cylinders of orbits asymptotic to the invariant 3-sphere S3

h.
They form the stable and unstable manifolds to the invariant 3-sphere
S3
h. Topologically, both invariant manifolds look like 4-dimensional

“tubes” (S3×R) inside a 5-dimensional energy manifold. The interior
of the stable manifolds W s

±(S3
h) and unstable manifolds W s

±(S3
h) can

be given as follows

int(W s
+(S3

h)) = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 > q1 > 0},

int(W s
−(S3

h)) = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 < q1 < 0},

int(Wu
+(S3

h)) = {(q1, p1, q2, p2, q3, p3) ∈ R | q1 > p1 > 0},

int(Wu
−(S3

h)) = {(q1, p1, q2, p2, q3, p3) ∈ R | q1 < p1 < 0}.

(9.3.4)

The exterior of these invariant manifolds can be given similarly from
studying Figure 9.3.2(a).

3. Let a+ and a− (where q1 = 0 and p1 = 0 respectively) be the in-
tersections of the stable and unstable manifolds with the bounding
sphere n. Then a+ appears as a 3-sphere in n+, and a− appears as
a 3-sphere in n−. Consider the two spherical caps on each bounding
4-sphere given by

d+
1 = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 − q1 = −c, p1 < q1 < 0},
d−1 = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 − q1 = −c, q1 > p1 > 0},
d+

2 = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 − q1 = +c, p1 > q1 > 0},
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d−2 = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 − q1 = +c, q1 < p1 < 0}.

Since d+
1 is the spherical cap in n+

1 bounded by a+
1 , then the transit

orbits entering R on d+
1 exit on d−2 of the other bounding sphere.

Similarly, since d−1 is the spherical cap in n−1 bounded by a−1 , the
transit orbits leaving on d−1 have come from d+

2 on the other bounding
sphere. Note that all spherical caps where the transit orbits pass
through are in the interior of stable and unstable manifold tubes.

4. Let b be the intersection b of n+ and n− (where q1 + p1 = 0). Then,
b is a 3-sphere of tangency points. Orbits tangent at this 3-sphere
“bounce off,” i.e., do not enter R locally. Moreover, if we let r+ be a
spherical zone which is bounded by a+ and b, then non-transit orbits
entering R on r+ exit on the same bounding 4-sphere through r−

which is bounded by a− and b. It is easy to show that all the spherical
zones where non-transit orbits bounce off are in the exterior of stable
and unstable manifold tubes.

Invariant Manifolds as Separatrices. The key observation here is
that the asymptotic orbits form 4-dimensional stable and unstable manifold
“tubes” (S3 × R) to the invariant 3-sphere S3

h in a 5-dimensional energy
surface and they separate two distinct types of motion: transit orbits and
non-transit orbits. The transit orbits, passing from one realm to another,
are those inside the 4-dimensional manifold tube. The non-transit orbits,
which bounce back to their realm of origin, are those outside the tube.

In fact, it can be shown that for a value of Jacobi constant just below that
of L1 (L2), the nonlinear dynamics in the equilibrium region R1 (R2) is
qualitatively the same as the linearized picture that we have shown above.

For example, the normally hyperbolic invariant manifold (NHIM) for
the nonlinear system which corresponds to the 3-sphere (9.3.1) for the
linearized system is given by

M3
h =

{
(q, p) |

ν

2

(
q22 + p22

)
+
ω

2

(
q23 + p23

)
+ f(q2, p2, q3, p3) = h, q1 = p1 = 0

}
(9.3.5)

where f is at least of third-order. Here, (q1, p1, q2, p2, q3, p3) are normal
form coordinates and are related to the linearized coordinates via a near-
identity transformation.

In a small neigborhood of the equilibrium point, since the nonlinear
terms are much smaller than the linear terms, the 3-sphere for the linear
problem becomes a deformed sphere for the nonlinear problem. Moreover,
since NHIMs persist under perturbation, this deformed sphereM3

h still has
stable and unstable manifolds which are given by

W s
±(M3

h) =
{

(q, p) |
ν

2

(
q22 + p22

)
+
ω

2

(
q23 + p23

)
+ f(q2, p2, q3, p3) = h, q1 = 0

}
Wu
±(M3

h) =
{

(q, p) |
ν

2

(
q22 + p22

)
+
ω

2

(
q23 + p23

)
+ f(q2, p2, q3, p3) = h, p1 = 0

}
.

Notice the similarity between the formulas above and those for the lin-
earized problem (9.3.2 and 9.3.3),
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See §9.6-9.8 at the end of this chapter as well as other references (Gómez
and Masdemont [2000]; Jorba and Masdemont [1999]; Hartman [1964];
Wiggins, Wiesenfeld, Jaffé, and Uzer [2001]) for details. This geometric in-
sight will be used below to guide our numerical explorations in constructing
orbits with prescribed itineraries.

9.4 Construction of Orbits with Prescribed
Itineraries in the Spatial Case

Recall the Construction in the Planar Case. In earlier chapters on
the planar case, a numerical demonstration is given of a heteroclinic con-
nection between pairs of equal Jacobi constant Lyapunov orbits, one around
L1, the other around L2. This heteroclinic connection augments the homo-
clinic orbits associated with the L1 and L2 Lyapunov orbits, which were
previously known (McGehee [1969]). Linking these heteroclinic connections
and homoclinic orbits leads to dynamical chains.

Stable

Unstable

Unstable

Stable

Stable

StableUnstable

Unstable

X

MJ J

Figure 9.4.1. Location of libration point orbit invariant manifold tubes in position

space. Stable manifolds are lightly shaded, unstable manifolds are darkly. The location

of the Poincaré sections (U1, U2, U3, and U4) are also shown.

The dynamics in the neighborhood of these chains gives rise to interesting
analytical results. We proved the existence of a large class of interesting
orbits near a chain which a spacecraft can follow in its rapid transition
between the inside and outside of a Jovian moon’s orbit via a moon en-
counter. The global collection of these orbits is called a dynamical channel.
We proved a theorem which gives the global orbit structure in the neigh-
borhood of a chain. In simplified form, the theorem essentially says:
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For any admissible bi-infinite sequence (. . . , u−1;u0, u1, u2, . . .) of sym-
bols {I,M,X} where I, M , and X stand for the interior, moon, and
exterior realms respectively, there corresponds an orbit near the chain
whose past and future whereabouts with respect to these three realms
match those of the given sequence.

For example, consider the Jupiter-Ganymede-spacecraft 3-body system.
Given the bi-infinite sequence (. . . , I;M,X,M, . . .), there exists an orbit
starting in the Ganymede realm which came from the interior realm and is
going to the exterior realm and returning to the Ganymede realm.

Moreover, we not only proved the existence of orbits with prescribed
itineraries, but developed a systematic procedure for their numerical con-
struction. We will illustrate below the numerical construction of orbits with
prescribed finite (but large enough) itineraries in the three-body planet-
moon-spacecraft problem. As our example, chosen for simplicity of exposi-
tion, we construct a spacecraft orbit with the central block (M,X;M, I,M).

Example Itinerary: (M,X;M, I,M). For the present numerical con-
struction, we adopt the following convention. The U1 and U4 Poincaré
sections will be (y = 0, x < 0, ẏ < 0) in the interior realm, and (y = 0, x <
−1, ẏ > 0) in the exterior realm, respectively. The U2 and U3 sections
will be (x = 1 − µ, y < 0, ẋ > 0) and (x = 1 − µ, y > 0, ẋ < 0) in the
moon realm, respectively. See Figure 9.4.1 for the location of the Poincaré
sections relative to the tubes.

A key observation for the planar case is a result which has shown that
the invariant manifold tubes separate two types of motion. See Figures
9.4.2(a) and 9.4.2(b). The orbits inside the tube transit from one realm to
another; those outside the tubes bounce back to their original realm.

Since the upper curve in Figure 9.4.2(b) is the Poincaré cut of the stable
manifold of the periodic orbit around L1 in the U3 plane, a point inside that
curve is an orbit that goes from the moon realm to the interior realm, so this
region can be described by the label (;M, I). Similarly, a point inside the
lower curve of Figure 9.4.2(b) came from the exterior realm into the moon
realm, and so has the label (X;M). A point inside the intersection ∆M of
both curves is an (X;M, I) orbit, so it makes a transition from the exterior
realm to the interior realm, passing through the moon realm. Similarly,
by choosing Poincaré sections in the interior and the exterior realm, i.e.,
in the U1 and U4 plane, we find the intersection region ∆I consisting of
(M ; I,M) orbits, and ∆X , which consists of (M ;X,M) orbits.

Flowing the intersection ∆X forward to the moon realm, it stretches into
the strips in Figure 9.4.2(c). These strips are the image of ∆X (i.e., P (∆X ))
under the Poincaré map P , and thus get the label (M,X;M). Similarly,
flowing the intersection ∆I backward to the moon realm, it stretches into
the strips P−1(∆I) in Figure 9.4.2(c), and thus have the label (;M, I,M).
The intersection of these two types of strips (i.e., ∆M∩P (∆X )∩P−1(∆I))
consist of the desired (M,X;M, I,M) orbits. If we take any point inside
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Figure 9.4.2. (a) The projection of invariant manifolds W s,M
L1,p.o.

and Wu,M
L2,p.o.

in the

realm M of the position space. (b) A close-up of the intersection realm between the

Poincaré cuts of the invariant manifolds on the U3 section (x = 1 − µ, y > 0). (c)

Intersection between image of ∆X and pre-image of ∆I labeled (M,X;M, I,M). (d)

Example orbit passing through (M,X;M, I,M) region of (c).

these intersections and integrate it forward and backward, we find the
desired orbits. See Figure 9.4.2(d).

Extension of Results to Spatial Model. Since the key step in the
planar case is to find the intersection region inside the two Poincaré cuts,
a key difficulty is to determine how to extend this technique to the spa-
tial case. Take as an example the construction of a transit orbit with the
itinerary (X;M, I) that goes from the exterior realm to the interior realm
of the Jupiter-moon system. Recall that in the spatial case, the unstable
manifold tube of the NHIM around L2 which separates the transit and non-
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as a thin strip), centered on (z′, ż′). This example is computed in the Jupiter-Europa

system for C = 3.0028.

0.0100.005 0.015

0.6

0.4

0.2

0

-0.2

-0.4

-0.6
00 -0.005 0.005

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

y z
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C+u21 and C+s11 . This example is computed in the Jupiter-Europa system for C = 3.0028.

transit orbits is topologically S3×R. For a transversal cut at x = 1− µ (a
hyperplane through the moon), the Poincaré cut is a topological 3-sphere
S3 (in R4). It is not obvious how to find the intersection region inside these
two Poincaré cuts (S3) since both its projections on the (y, ẏ)-plane and
the (z, ż)-plane are (2-dimensional) disks D2.

However, in constructing an orbit which transitions from the outside to
the inside of a moon’s orbit, suppose that we might also want it to have
other characteristics above and beyond this gross behavior. We may want to
have an orbit which has a particular z-amplitude when it is near the moon.
If we set z = c, ż = 0 where c is the desired z-amplitude, the problem of
finding the intersection region inside two Poincaré cuts suddenly becomes
tractable. Now, the projection of the Poincaré cut of the above unstable
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manifold tube on the (y, ẏ)-plane will be a closed curve and any point inside
this curve is a (X;M) orbit which has transited from the exterior realm
to the moon realm passing through the L2 equilibrium region. See Figure
9.4.3.

Similarly, we can apply the same techniques to the Poincaré cut of the
stable manifold tube to the NHIM around L1 and find all (M, I) orbits
inside a closed curve in the (y, ẏ)-plane. Hence, by using z and ż as the
additional parameters, we can apply the similar techniques that we have
developed for the planar case in constructing spatial trajectories with de-
sired itineraries. See Figures 9.4.4 and 9.4.5. What follows is a more detailed
description.

 

y
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corresponding to
itinerary (X;M,I)

Figure 9.4.5. On the (y, ẏ)-plane are shown the points that approximate

γ2
z′ż′ and γ1

z′ż′ , the boundaries of int(γ2
z′ż′ ) and int(γ1

z′ż′ ), respectively, where

(z′, ż′) = (0.0035, 0). Note the lemon shaped region of intersection, int(γ1
z′ż′ )∩int(γ2

z′ż′ ),

in which all orbits have the itinerary (X;M, I). The appearance is similar to Figure

9.4.2(b). The point shown within int(γ1
z′ż′ ) ∩ int(γ2

z′ż′ ) is the initial condition for the

orbit shown in Figure 9.4.6.

Finding the Poincaré Cuts. We begin with the 15th order normal
form expansion near L1 and L2. See the appendix of this paper and other
references (Gómez, Jorba, Masdemont, and Simó [2001a]; Gómez and Mas-
demont [2000]; Jorba and Masdemont [1999]). The behavior of orbits in the
coordinate system of that normal form, (q1, p1, q2, p2, q3, p3), are qualita-
tively similar to the behavior of orbits in the linear approximation. This
makes the procedure for choosing initial conditions in the L1 and L2 equi-
librium regions rather simple. In particular, based on our knowledge of the
structure for the linear system, we can pick initial conditions which produce
a close “shadow” of the stable and unstable manifold tubes (S3 ×R) asso-
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velocity surface.

ciated to the normally hyperbolic invariant manifold (NHIM), also called
central or neutrally stable manifold, in both the L1 and L2 equilibrium
regions. As we restrict to an energy surface with energy h, there is only
one NHIM per energy surface, denoted Mh(' S3).

The initial conditions in (q1, p1, q2, p2, q3, p3) are picked with the quali-
tative picture of the linear system in mind. The coordinates (q1, p1) cor-
respond to the saddle projection, (q2, p2) correspond to oscillations within
the (x, y) plane, and (q3, p3) correspond to oscillations within the z direc-
tion. Also note that q3 = p3 = 0 (z = ż = 0) corresponds to an invariant
manifold of the system, i.e., the planar system is an invariant manifold of
the three degree of freedom system.

The initial conditions to approximate the stable and unstable manifolds
(W s
±(Mh),Wu

±(Mh)) are picked via the following procedure. Note that we
can be assured that we are obtaining a roughly complete approximation of
points along a slice of W s

±(Mh) and Wu
±(Mh) since such a slice is compact,
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having the structure S3. Also, we know roughly the picture from the linear
case.

1. We fix q1 = p1 = ±ε, where ε is small. This ensures that almost
all of the initial conditions will be for orbits which are transit orbits
from one side of the equilibrium region to the other. Specifically +
corresponds to right-to-left transit orbits and − corresponds to left-
to-right transit orbits. We choose ε small so that the initial conditions
are near the NHIMMh (at q1 = p1 = 0) and will therefore integrate
forward and backward to be near the unstable and stable manifold of
Mh, respectively. We choose ε to not be too small, or the integrated
orbits will take too long to leave the vicinity of Mh.

2. Beginning with rv = 0, and increasing incrementally to some max-
imum rv = rmax

v , we look for initial conditions with q2
3 + p2

3 = r2
v,

i.e., along circles in the z oscillation canonical plane. It is reasonable
to look along circles centered on the origin (q3, p3) = (0, 0) on this
canonical plane since the motion is simple harmonic in the linear case
and the origin corresponds to an invariant manifold.

3. For each point along the circle, we look for the point on the energy
surface in the (q2, p2) plane, i.e., the (x, y) oscillation canonical plane.
Note, our procedure can tell us if such a point exists and clearly if no
point exists, it will not used as an initial condition.

After picking the initial conditions in (q1, p1, q2, p2, q3, p3) coordinates,
we transform to the conventional CR3BP coordinates (x, y, z, ẋ, ẏ, ż) and
integrate under the full equations of motion. The integration proceeds until
some Poincaré section stopping condition is reached, for example x = 1−µ.
We can then use further analysis on the Poincaré section, described below.

Example Itinerary: (X;M, I). As an example, suppose we want a tran-
sition orbit going from outside to inside the moon’s orbit in the Jupiter-
moon system. We therefore want right-to-left transit orbits in both the
L1 and L2 equilibrium regions. Consider the L2 side. The set of right-to-
left transit orbits has the structure D4 × R (where D4 is a 4-dimensional
disk), with boundary S3 × R. The boundary is made up of W s

+(M2
h) and

Wu
+(M2

h), where the + means right-to-left, M2
h is the NHIM around L2

with energy h, and 2 denotes L2. We pick the initial conditions to approx-
imate W s

+(M2
h) and Wu

+(M2
h) as outlined above and then integrate those

initial conditions forward in time until they intersect the Poincaré section
at x = 1− µ, a hyperplane passing through the center of the moon.

Since the Hamiltonian energy h (Jacobi constant) is fixed, the set of
all values C = {(y, ẏ, z, ż)} obtained at the Poincaré section, characterize
the branch of the manifold of all libration point orbits around the selected
equilibrium point for the particular section. Let us denote the set as C+uj

i ,
where + denotes the right-to-left branch of the s (stable) or u (unstable)
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manifold of the Lj , j = 1, 2 libration point orbits at the i-th intersection
with x = 1− µ. We will look at the first intersection, so we have C+u2

1 .
The object C+u2

1 is 3-dimensional (' S3) in the 4-dimensional (y, ẏ, z, ż)
space. For the Jupiter-Europa system, we show C+u2

1 for Jacobi constant
C = 3.0028 in Figure 9.4.3.

Thus, we suspect that if we pick almost any point (z′, ż′) in the zż pro-
jection, it corresponds to a closed loop γz′ż′ (' S1) in the yẏ projection
(see Figure 9.4.3). Any initial condition (y′, ẏ′, z′, ż′), where (y′, ẏ′) ∈ γz′ż′
will be on Wu

+(M2
h), and will wind onto a libration point orbit when inte-

grated backward in time. Thus, γz′ż′ defines the boundary of right-to-left
transit orbits with (z, ż) = (z′, ż′). If we choose (y′, ẏ′) ∈ int(γz′ż′) where
int(γz′ż′) is the region in the yẏ projection enclosed by γz′ż′ , then the ini-
tial condition (y′, ẏ′, z′, ż′) will correspond to a right-to-left transit orbit,
which will pass through the L2 equilibrium region, from the moon realm
to outside the moon’s orbit, when integrated backward in time.

Similarly, on the L1 side, we pick the initial conditions to approximate
W s

+(M1
h) and Wu

+(M1
h) as outlined above and then integrate those initial

conditions backward in time until they intersect the Poincaré section at
x = 1 − µ, obtaining C+s1

1 . We can do a similar construction regarding
transit orbits, etc. To distinguish closed loops γz′ż′ from L1 or L2, let us
call a loop γjz′ż′ if it is from Lj , j = 1, 2.

To find initial conditions for transition orbits which go from outside the
moon’s orbit to inside the moon’s orbit with respect to Jupiter, i.e., orbits
which are right-to-left transit orbits in both the L1 and L2 equilibrium
regions, we need to look at the intersections of the interiors of C+u2

1 and
C+s1

1 . See Figure 9.4.4.
To find such initial conditions we first look for intersections in the zż

projection. Consider the projection πzż : R4 → R2 given by (y, ẏ, z, ż) 7→
(z, ż). Consider a point (y′, ẏ′, z′, ż′) ∈ πzż(C+u2

1 ) ∩ πzż(C+s1
1 ) 6= ∅, i.e., a

point (y′, ẏ′, z′, ż′) where (z′, ż′) is in the intersection of the zż projections
of C+u2

1 and C+s1
1 . Transit orbits from outside to inside the moon’s orbit are

such that (y′, ẏ′, z′, ż′) ∈ int(γ1
z′ż′)∩ int(γ2

z′ż′). If int(γ1
z′ż′)∩ int(γ2

z′ż′) = ∅,
then no transition exists for that value of (z′, ż′). But numerically we find
that there are values of (z′, ż′) such that int(γ1

z′ż′) ∩ int(γ2
z′ż′) 6= ∅. See

Figures 9.4.4 and 9.4.5.
In essence we are doing a search for transit orbits by looking at a two

parameter set of intersections of the interiors of closed curves, γ1
zż and γ2

zż

in the yẏ projection, where our two parameters are given by (z, ż). We
can reduce this to a one parameter family of intersections by restricting
to ż = 0. This is a convenient choice since it implies that the orbit is at
a critical point (often a maximum or minimum in z when it reaches the
surface x = 1− µ.)

Technically, we are not able to look at curves γjzż belonging to points
(z, ż) in the zż projection. Since we are approximating the 3-dimensional
surface C by a scattering of points (about a million for the computations
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in this paper), we must look not at points (z, ż), but at small boxes (z ±
δz, ż ± δż) where δz and δż are small. Since our box in the zż projection
has a finite size, the points in the yẏ projection corresponding to the points
in the box will not all fall on a close curve, but along a slightly broadened
curve, a strip, as seen in Figure 9.4.5. For our purposes, we will still refer
to the collection of such points as γjzż.

9.5 From Ganymede to High Inclination
Europa Orbit

Petit Grand Tour. We now apply the techniques we have developed
to the construction of a fully three-dimensional Petit Grand Tour of the
Jovian moons, extending an earlier planar result (Koon, Lo, Marsden, and
Ross [1999, 2002]) We here outline how one systematically constructs a
spacecraft tour which begins beyond Ganymede in orbit around Jupiter,
makes a close flyby of Ganymede, and finally reaches a high inclination
orbit around Europa, consuming less fuel than is possible from standard
two-body methods.

Our approach involves the following three key ideas:

1. Treat the Jupiter-Ganymede-Europa-spacecraft four-body problem
as two coupled circular restricted 3-body problems. The first 3-body
system is the Jupiter-Ganymede-spacecraft system and the second is
the Jupiter-Europa-spacecraft system;

2. Use the stable and unstable manifolds of the NHIMs about the Jupiter-
Ganymede L1 and L2 to find an uncontrolled trajectory from a jovi-
centric orbit beyond Ganymede to a temporary capture orbit around
Ganymede; the spacecraft subsequently leaves Ganymede’s vicinity
onto a jovicentric orbit interior to Ganymede’s orbit;

3. Use the stable manifold of the NHIM around the Jupiter-Europa
L2 to find an uncontrolled trajectory from a jovicentric orbit be-
tween Ganymede and Europa to a temporary capture around Eu-
ropa. Once the spacecraft is temporarily captured around Europa, a
propulsion maneuver can be performed when its trajectory is close
to Europa (100 km altitude), taking it into a high inclination orbit
about the moon. Furthermore, a propulsion maneuver will be needed
when transferring from the Jupiter-Ganymede portion of the trajec-
tory to the Jupiter-Europa portion, since the respective transport
tubes exist at different energies.

Ganymede to Europa Transfer Mechanism. The construction be-
gins with the patch point, where we connect the Jupiter-Ganymede and
Jupiter-Europa portions, and works forward and backward in time toward
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each moon’s vicinity. The construction is done mainly in the Jupiter-Europa
rotating frame using a Poincaré section. After selecting appropriate energies
in each 3-body system, respectively, the stable and unstable manifolds of
each system’s NHIMs are computed. Let GanWu

+(M1) denote the unstable
manifold of Ganymede’s L1 NHIM and EurW s

+(M2) denote the stable man-
ifold for Europa’s L2 NHIM. We look at the intersection of GanWu

+(M1)
and EurW s

+(M2) with a common Poincaré section, the surface U1 in the
Jupiter-Europa rotating frame, defined earlier. See Figure 9.5.1.
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Figure 9.5.1. The curves Ganγ1zż and Eurγ2zż are shown, the intersections of
GanWu

+(M1) and EurW s
+(M2) with the Poincaré section U1 in the Jupiter-Europa rotat-

ing frame, respectively. Note the small region of intersection, int(Ganγ1zż)∩ int(Eurγ2zż),

where the patch point is labeled.

Note that we have the freedom to choose where the Poincaré section is
with respect to Ganymede, which determines the relative phases of Europa
and Ganymede at the patch point. For simplicity, we select the U1 surface
in the Jupiter-Ganymede rotating frame to coincide with the U1 surface in
the Jupiter-Europa rotating frame at the patch point. Figure 9.5.1 shows
the curves Ganγ1

zż and Eurγ2
zż on the (x, ẋ)-plane in the Jupiter-Europa

rotating frame for all orbits in the Poincaré section with points (z, ż) within
(0.0160 ± 0.0008,±0.0008). The size of this range is about 1000 km in z
position and 20 m/s in z velocity.

From Figure 9.5.1, an intersection region on the xẋ-projection is seen.
We pick a point within this intersection region, but with two differing y
velocities; one corresponding to GanWu

+(M1), the tube of transit orbits
coming from Ganymede, and the other corresponding to EurW s

+(M2), the
orbits heading toward Europa. The discrepancy between these two y ve-



9.6 Normal Form Computations 249

locities is the ∆V necessary for a propulsive maneuver to transfer between
the two tubes of transit orbits, which exist at different energies.

Four-Body System Approximated by Patched CR3BP. In order
to determine the transfer ∆V , we compute the transfer trajectory in the
full four-body system, taking into account the gravitational attraction of all
three massive bodies on the spacecraft. We use the dynamical channel in-
tersection region in the patched three-body model as an initial guess which
we adjust finely to obtain a true four-body bi-circular model trajectory (see
Koon, Lo, Marsden, and Ross [2002] for more details).

Figure 1.2.9 is the final end-to-end trajectory. A ∆V of 1214 m/s is
required at the location marked. We note that a traditional Hohmann
(patched two-body) transfer from Ganymede to Europa requires a ∆V
of 2822 m/s. Our value is only 43% of the Hohmann value, which is a sub-
stantial savings of on-board fuel. The transfer flight time is about 25 days,
well within conceivable mission constraints. This trajectory begins on a
jovicentric orbit beyond Ganymede, performs one loop around Ganymede,
achieving a close approach of 100 km above the moon’s surface. After the
transfer between the two moons, a final additional maneuver of 446 m/s is
necessary to enter a high inclination (48.6◦) circular orbit around Europa
at an altitude of 100 km. Thus, the total ∆V for the trajectory is 1660
m/s, still substantially lower than the Hohmann transfer value.

9.6 Normal Form Computations

For the convenience of reader, we have included in the next few sec-
tions a brief description of the theoretical basis and the practical steps for
developing the software used in the numerical explorations for this chapter.

Linear Behavior and Nonlinear Expansion. In section (9.2), it was
shown that the linearized CR3BP Hamiltonian around L1,2 has the local
behavior of the type saddle×center×center. So, using a real linear and
symplectic change of coordinates, it is easy to cast the second order part
of the Hamiltonian, H2 into its real normal form,

H2 = λq1p1 +
ωp
2

(q2
2 + p2

2) +
ωv
2

(q2
3 + p2

3). (9.6.1)

This quadratic normal form has been used in performing qualitative analy-
sis in §9.3 and will be used now as a first step of normal form computations
for the full Hamiltonian.

For the following normal form computations it is convenient to “diago-
nalize” the second-order terms. This is done by introducing the complex
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change of coordinates(
qk
pk

)
→ 1√

2

(
1 i
i 1

)(
qk
pk

)
, k = 2, 3, (9.6.2)

and keeping the same variable names for notational convenience. Then, the
second-order part of the Hamiltonian becomes

H2 = λq1p1 + iωpq2p2 + iωvq3p3. (9.6.3)

In order to have all possible orbits in the center manifold, let us expand
the initial Hamiltonian H using the coordinates that give us H2 as in
(9.6.3). Then the expanded Hamiltonian takes the form

H(q, p) = H2(q, p) +
∑
n≥3

Hn(q, p) = H2(q, p) +
∑
n≥3

hijq
i1
1 p

j1
1 q

i2
2 p

j2
2 q

i3
3 p

j3
3 ,

(9.6.4)
where H2 is given in (9.6.3) and Hn denotes an homogeneous polynomial
of degree n.

Brief Overview for the Reduction to the Center Manifold. The
process of reduction to the center manifold is similar to normal form com-
putations. The objective is to remove some monomials in the expansion
of the Hamiltonian, in order to have an invariant manifold tangent to the
center directions of H2. The techniques is through performing canonical
changes of variables which can be implemented by means of the Lie series
method that is similar to Deprit [1969].

For example, one scheme that has been implemented can eliminate all
the monomials with i1 6= j1 in (9.6.3), up to an arbitrary order. But in
practice, N = 15 should be good enough. Although this procedure is not
convergent, it produces a very good approximation to the dynamics. Calling
I = q1p1, and using the inverse of the transformation (9.6.2), the final real
Hamiltonian looks like

H = H2(I, q2, p2, q3, p3) +

N∑
n=3

Hn(I, q2, p2, q3, p3) +RN+1(q, p).

If we skip the reminder RN+1 which is very small near L1,2, the truncated
Hamiltonian H̄N , which is a polynomial of degree N , has I as a first inte-
gral. Setting I = 0, we skip the hyperbolic part and reduce the Hamiltonian
to the center manifold. This reduction will allow us to compute the center
manifold and its stable and unstable manifold in an efficient way.

In the next sections, we will introduce a number of concepts and results
in Hamiltonian dynamical systems theory that are indispensable for an
understanding of the reduction to the center manifold procedures.
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Canonical Transformations. As mentioned earlier, canonical transfor-
mations are very useful since they allow one to work on a single function,
the Hamiltonian, instead of a system of 2n differential equations.

However, to produce a canonical changes of variables is not an easy
matter, since it is very difficult to impose the condition that the differen-
tial of the change is a symplectic matrix. Fortunately, there exists several
techniques to produce such transformations. The one that works for the
reduction to the center manifold is based on the following properties of the
Hamiltonian flows:

1. Let Ψt(q, p) be the time t flow of a Hamiltonian system. Then (q̄, p̄) =
Ψt(q, p) is a canonical transformation.

2. Let G(q, p) be a Hamiltonian system with n degrees of freedom, and
let Φt be the flow of G. Then the time evolution of a function under
the Hamiltonian flow is given by,

d

dt
(f ◦ Φt) = {f,G} ◦ Φt (9.6.5)

for any smooth function f .

The bracket {·, ·} is called Poisson bracket and is defined for any two
smooth functions, F (q, p) and G(q, p), as follow:

{F,G} =

3∑
i=0

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
.

For notational convenience, {F,G} can also be written as adG(F ).

Lie Series Method. Now, it is not difficult to prove that to transform
a Hamiltonian H by means of the time one flow map of a Hamiltonian G,
one can apply the formula

Ĥ ≡ H + {H,G}+
1

2!
{{H,G}, G}+

1

3!
{{{H,G}, G}, G}+ · · · , (9.6.6)

where Ĥ denotes the transformed Hamiltonian. This kind of canonical
transformations are often referred to as Lie transform or Lie series method.
The Hamiltonian G is usually called the generating function of the transfor-
mation (9.6.6). See Giorgilli, Delshams, Fontich, Galgani, and Simó [1989]
and references therein for more theoretical details.

Let F (t) = H ◦ Φt where Φt is the flow of G. Taylor expanding F (t)
about t = 0 gives

F (t) = F (0) + F ′(0)t+
1

2!
F ′′(0)t2 + · · ·+ 1

n!
F (n)tn + · · · . (9.6.7)
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Now we want to determine the Taylor coefficients. From the formula (9.6.5),
we have,

F ′(t) =
d

dt
(H ◦ Φt) = {H,G} ◦ Φt = adG(H) ◦ Φt.

Differentiate this expression repeatedly, we find

F ′′(t) = ad2
G(H) ◦ Φt

F ′′′(t) = ad3
G(H) ◦ Φt

...

F (n)(t) = adnG(H) ◦ Φt
...

Substitute these expressions with t = 0 into (9.6.7), and recall that Φ0 is
an identity map, we obtain the following formula at t = 1

F (1) = H ◦ Φ1 = H + adG(H) +
1

2!
ad2
G(H) + · · ·+ 1

n!
adnG(H) + · · · .

which proves the result (9.6.6) as claimed.
This expression is very suitable for effective computations, since it can

be implemented in a computer. Note that all the operations involved are
very simple if we are working with some kind of expansions such as power
series expansions, Fourier expansions, etc. One can argue that the problem
for this kind of transformation from a practical point of view is that it
is defined by an infinite series. This is not a difficulty since we usually
work with a finite truncation of these series which produces a high order
approximation to the desired results that, in many cases, are good enough
for practical purposes. On the other hand, it is possible to derive rigorous
estimates on the size of the reminder so one can obtain bounds on the error
of the results obtained with the truncated series. See Giorgilli, Delshams,
Fontich, Galgani, and Simó [1989] and Simó [1989] for more information.

Elimination of Third-Order Terms. Note that if P and Q are two
homogeneous polynomials of degree r and s respectively, then {P,Q} is an
homogeneous polynomial of degree r + s − 2. This means that if G3 is an
homogeneous polynomial of degree 3 used as a generating function, then
the homogeneous polynomials of degree n, Ĥn, such that Ĥ =

∑
n≥2 Ĥn

are given by,

Ĥ2 = H2,

Ĥ3 = H3 + {H2, G3},

Ĥ4 = H4 + {H3, G3}+
1

2!
{{H2, G3}, G3},

. . . . . . . . .
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If we are interested in removing all the terms of order three in the new
Hamiltonian, i.e., to have Ĥ3 = 0, we must choose G3 such that it solves
the homological equation {H2, G3} = −H3.

For notation convenience, we will use the following notation below. If
x = (x1, . . . , xm) is a vector of complex numbers and k = (k1, . . . , km) is
an integer vector, we denote by xk the term xk11 · · ·xkmn (in this context we
define 00 as 1). Moreover, we define |k| as

∑
j |kj |.

Let us denote

H3(q, p) =
∑

|kq|+|kp|=3

hkq,kpq
kqpkp , G3(q, p) =

∑
|kq|+|kp|=3

gkq,kpq
kqpkp ,

and H2(q, p) =
∑3
j=1 ωjqjpj , where ω1 = λ, ω2 = iωp and ω3 = iωv.

As

{H2, G3} =
∑

|kq|+|kp|=3

〈kp − kq, ω〉gkq,kpqkqpkp , ω = (ω1, ω2, ω3),

it is immediate to obtain

G3(q, p) =
∑

|kq|+|kp|=3

−hkq,kp
〈kp − kq, ω〉

qkqpkp ,

that is well defined because the condition |kq| + |kp| = 3 implies that
〈kp − kq, ω〉 is different from zero. Note that G3 is so easily obtained be-
cause of the “diagonal” form of H2 given in (9.6.3).

This procedure can be used recurrently trying to find an homogeneous
polynomial of degree four, G4, to remove terms of order four of the new
Hamiltonian, Ĥ, and so on. Nevertheless, we must point out that some
resonant terms, even of order four, cannot be canceled. Anyway, this process
is used to compute what is known as the Birkhoff normal form of the
Hamiltonian which has the minimum number of monomials up to some
degree.

9.7 Reduction to the Center Manifold

Although the reduction to the center manifold is based on this scheme, we
only need to remove the instability associated with hyperbolic character of
the Hamiltonian H. Note that the second-order part of the Hamiltonian H2

yields the linear part of the Hamiltonian equations, and so, the instability
is associated with the term λq1p1. For this linear approximation of the
Hamiltonian equations, the center part can be obtained by setting q1 =
p1 = 0. If we want the trajectory remains tangent to this space (i.e., having
q1(t) = p1(t) = 0 for all t > 0) when adding the nonlinear terms, we need
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to have q̇1(0) = ṗ1(0) = 0 once we have set q1(0) = p1(0) = 0. Then,
because of the autonomous character of the Hamiltonian system, we will
obtain q1(t) = p1(t) = 0 for all t ≥ 0.

Recalling that the Hamiltonian equations associated with a Hamiltonian
H(q, p) are given by,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

In particular,

q̇1 =
∂H

∂p1
= λq1 +

∑
n≥3

hijq
i1
1 p

j1−1
1 qi22 p

j2
2 q

i3
3 p

j3
3

ṗ1 = −∂H
∂q1

= −λp1 −
∑
n≥3

hijq
i1−1
1 pj11 q

i2
2 p

j2
2 q

i3
3 p

j3
3 .

One can get the required condition, q̇1(0) = ṗ1(0) = 0 when q1(0) = p1(0) =
0, if in the series expansion of the Hamiltonian H, all the monomials,
hijq

ipj , with i1 + j1 = 1, have hij = 0. This happens if there are no
monomials with i1 + j1 = 1. Since this minimalist expansion needs to
cancel least monomials in (9.6.4), in principle, it may be better behaved
both in terms of convergence and from a numerical point of view. Of course
other expansions could give us the same required tangency, such as the one
which eliminates all the monomials with i1 6= j1.

Both expansions have been implemented by symbolic manipulators that
can carry out the procedure up to an arbitrary order. For practical pur-
poses, and in order to have an acceptable balance precision and time com-
puting requirements, the reduction to the center manifold scheme has been
carried out up to order N = 15.

Approximate First Integral. In order to produce an approximate first
integral having the center manifold as a level surface, it is enough to elim-
inate the monomials where i1 6= j1.

This implies that the generating function G3 is

G3(q, p) =
∑
n=3

−hij
(j1 − i1)λ+ (j2 − i2)iωp + (j3 − i3)iωv

qi11 p
j1
1 q

i2
2 p

j2
2 q

i3
3 p

j3
3 ,

(9.7.1)
where i1 6= j1. This follows immediately from

〈kp − kq, ω〉 = (j1 − i1)ω1 + (j2 − i1)ω2 + (j3 − i3)ω3

= (j1 − i1)λ+ (j2 − i1)iωp + (j3 − i3)iωv,

Then, the transformed Hamiltonian Ĥ takes the form

Ĥ(q, p) = H2(q, p) + Ĥ3(q, p) + Ĥ4(q, p) + · · · , (9.7.2)
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where Ĥ3(q, p) ≡ Ĥ3(q1p1, q2, p2, q3, p3), Note that Ĥ3 depends on the prod-
uct q1p1, not on each variable separately.

This process can be carried out up to any finite order n and the gener-
ating function used to remove monomials of degree n will be of the form

Gn(q, p) =
∑

|i|+|j|=n

−hij
(j1 − i1)λ+ (j2 − i2)iωp + (j3 − i3)iωv

qi11 p
j1
1 q

i2
2 p

j2
2 q

i3
3 p

j3
3 ,

(9.7.3)
where i1 6= j1.

It is interesting to note the absence of small divisors during the en-
tire process. Since we only want to eliminate all monomials with i1 6= j1,
the real part of the the denominators are non-zero. So, the denominators
that appear in the generating functions (9.7.3) are never zero and can be
bounded from below

|(j1 − i1)λ+ (j2 − i2)iωp + (j3 − i3)iωv| ≥ |λ|.

For this reason, the divergence of this process is very mild and has been
observed when this process is stopped at some degree N . Hence, the re-
mainder is very small in quite a big neighborhood of the equilibrium point.

After this process has been carried out, up to a finite order N , we obtain
a Hamiltonian of the form

H̄(q, p) = H̄N (q, p) +RN (q, p),

where HN (q, p) ≡ HN (q1p1, q2, p2, q3, p3) is a polynomial of degree N and
RN is a remainder of order greater then N . Note that HN depends on the
product q1p1 while the remainder depends on the two variables q1 and p1

separately.
Now, neglect the remainder and apply the canonical change given by

I = q1p1, we obtain the Hamiltonian H̄N (I, q2, p2, q3, p3) that has I1 as
a first integral. Finally, use the inverse change of variables of (9.6.2), the
truncated Hamiltonian H̄N can be expanded in real form

H̄N (q, p) = H2(q, p) +

N∑
n=3

Hn(q, p),

where explicitly,

H2(q, p) = H2(q1, p1, q2, p2, q3, p3) = λq1p2 +
ωp
2

(
q2
2 + p2

2

)
+
ωv
2

(
q2
3 + p2

3

)
.

For convenience, the variables are called again q, p.

Explicit Formula for Change of Variables. An explicit expression
for the change of variables that goes from the coordinates of the reduction
to the center manifold to the coordinates corresponding to Hamiltonian
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(9.6.4) can be obtained in the following way: once the generating function
G3 has been obtained, we can compute

q̃j = qj + {qj , G3}+
1

2!
{{qj , G3}, G3}+

1

3!
{{{qj , G3}, G3}, G3}

+ · · · , (9.7.4)

p̃j = pj + {pj , G3}+
1

2!
{{pj , G3}, G3}+

1

3!
{{{pj , G3}, G3}, G3}

+ · · · , (9.7.5)

that produces the transformation that sends the coordinates of (9.6.4),
given by the variables (q̃, p̃) into the coordinates of (9.7.2), represented by
the variables (q, p). In the next step, the generating function G4 is applied
to the right-hand side of equations (9.7.4) and (9.7.5), to obtain the change
corresponding to fourth order, and so on. Finally, these expansions are put
into real form in the same way as the Hamiltonian.

From now on, and to simplify notation, the final variables will still be
called q and p.

After all these changes of variables, the initial complexified Hamiltonian
around the collinear libration points has been expanded in the following
form

H(q, p) = H̄N (q, p) +RN (q, p),

where H̄N (q, p) is a polynomial of degree N without terms of i1 + j1 = 1 in
the minimalist case, or without terms of i1 6= j1 in the first integral case.
RN (q, p) is a remainder of order N + 1 which is very small near L1,2 and
will be skipped in further computations.

9.8 NHIM and its Stable and Unstable
Manifolds

Then, setting I1 = 0 (this is to skip the hyperbolic behavior) we obtain a
two degrees of freedom Hamiltonian, H̄N (0, q̄, p̄), q̄ = (q2, q3), p̄ = (p2, p3),
that represents (up to some finite order N) the dynamics inside the center
manifold. Finally, the Hamiltonian is put into its real form by using the
inverse of (9.6.2).

As discussed previously, in the case that all the monomial in Hn with
i1 6= j1 has been eliminated, the truncated Hamiltonian H̄N has a first
integral, I = q1p1. This is because H̄N is given by

H̄N = H2(I, q2, p2, q3, p3) +

N∑
n=3

Hn(I, q2, p2, q3, p3).
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Let f be a function of the center manifold variables (q2, p2, q3, p3) defined
as follow

f(q2, p2, q3, p3) =

N∑
n=3

Hn(0, q2, p2, q3, p3).

Then, f is at least of third order. Notice that the invariant manifold M3
h

defined by

M3
h ={
(q, p) | ν

2

(
q2
2 + p2

2

)
+
ω

2

(
q2
3 + p2

3

)
+ f(q2, p2, q3, p3) = h, q1 = p1 = 0

}
is the normally hyperbolic invariant manifold (NHIM) for the nonlinear
system which corresponds to the 3-sphere (9.3.1) for the linearized sys-
tem. In a small neigborhood of the equilibrium point, since the nonlinear
terms are much smaller than the linear terms, the 3-sphere for the linear
problem becomes a deformed sphere for the nonlinear problem. Moreover,
since NHIMs persist under perturbation, this deformed sphereM3

h still has
stable and unstable manifolds which are given by

W s
±(M3

h) ={
(q, p) | ν

2

(
q2
2 + p2

2

)
+
ω

2

(
q2
3 + p2

3

)
+ f(q2, p2, q3, p3) = h, q1 = 0

}
Wu
±(M3

h) ={
(q, p) | ν

2

(
q2
2 + p2

2

)
+
ω

2

(
q2
3 + p2

3

)
+ f(q2, p2, q3, p3) = h, p1 = 0

}
.

Notice the similarity between the formulas above and those for the lin-
earized problem (9.3.2 and 9.3.3), especially given the fact that these two
coordinate systems are linked by a near-identity transformation.
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10
Multi-Moon Orbiters and Low Thrust
Trajectories

In this chapter we discuss some of the latest research topics related to the
subtleties of the 3- and N -body problems as related to mission trajectory
design. Some of the ideas are only outlined in general terms, and details
are left in the references.

In the first part of the chapter (§10.1-10.5) we discuss multi-moon or-
biters, an extension of the work in Chapters 5 and 9 to a class of low
energy missions in which a single spacecraft orbits multiple moons of a
planet. This concept achieves fuel savings by exploiting not only tube dy-
namics, but also lobe dynamics to increase fuel savings tremendously. Far
from being simply a curiousity, the multi-moon orbiter (MMO) is one of
the possible orbit structures for missions to explore the moon systems of
the outer solar system, such as a tour of Jupiter’s icy moons.

In the second part of the chapter (§10.6) we discuss low thrust trajec-
tories, another area of emerging interest. For low thrust trajectories the
propulsion delivers a low level of continuous thrust, acting effectively as a
small perturbation on the natural dynamics. Using this small continuous
control efficiently will have important implications for multi-moon orbiter
and other missions in the future which intend to use low thrust technology.
Low thrust trajectories, unlike the high thrust trajectories we have dis-
cussed in previous chapters, are trajectories which, while the thrust is on,
continuously change the spacecraft’s three-body energy, eq. (2.3.13). One
thus can imagine a picture where the Hill’s region changes in time, moving
between the cases depicted in Figure 2.4.2.
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Open problems regarding both MMOs and low thrust trajectory design
are mentioned.

10.1 Introduction to Multi-Moon Orbiter
Design

Mission to Icy Moons of Jupiter is Likely. There has been much
recent interest in sending a spacecraft to perform extended observations of
several of Jupiter’s moons. Europa is thought to be a place hospitable to life
because of the vast, liquid oceans that may exist under its icy crust. Two
other Jupiter moons, Ganymede and Callisto, are now also thought to have
liquid water beneath their surfaces. A proposed mission to Europa, and
perhaps also Ganymede and Callisto, would attempt to map these regions
of liquid water for follow-on missions. The recent discovery of life in the ice
of Lake Vostok, a lake deep beneath the Antarctic ice cap, lends impetus to
an icy moon mission with the suggestion that life may be possible on such
worlds (Karl, Bird, Bjorkman, Houlihan, Shackelford, and Tupas [1999]).
A mission to tour the moons of Jupiter may likely be undertaken in the
near future.

Multi-Moon Orbiter: Orbiting Several Moons with One Space-
craft. In response to the scientific interest in Jupiter’s moons, the MMO
tour concept was introduced, wherein a single sophisticated spacecraft is
capable of jumping from an orbit around one jovian moon to an orbit
around another (Ross, Koon, Lo, and Marsden [2003]). This would allow
long duration observations of each moon, compared to brief flybys. The
MMO embodies a radical departure from the past four decades of plan-
etary exploration. Such a capability allows close, detailed, and long-lerm
studies to be made of many of the members of Jupiter’s retinue of 40 (or
more) moons. Furthermore, the ∆V requirements for such a mission can
be very low if the technique of low energy inter-moon transfer via reso-
nant gravity assists is used. In the phase space, the resonant gravity assists
(GAs) can be understood in the framework of lobe dynamics, described in
the following sections.

As an example, by using small impulsive thrusts totaling only 22 m/s,
a spacecraft initially injected into a jovian orbit can be directed into an
inclined, elliptical capture orbit around Europa. Enroute, the spacecraft
orbits both Callisto and Ganymede for long duration using the ballistic
capture and escape methodology described in previous chapters. This ex-
ample tour is shown in Figure 1.2.10 in Chapter 1.

The MMO, constructed using the patched three-body approach (P3BA)
discussed in Chapters 5 and 9 augmented by resonant gravity assists, should
enhance existing trajectory design capabilities. The techniques used to de-
sign a MMO are very general. The same techniques may be applied to a



10.1 Introduction to Multi-Moon Orbiter Design 261

broad range of multi-body missions from the Earth’s Neighborhood to other
regions of the solar system, e.g., a tour of the moons of Uranus (Topputo,
Massimiliano, and Finzi [2004]).

An Extension of the Petit Grand Tour. The MMO tour grew out of
the method introduced in in §9.5 for the Petit Grand Tour. In the first part
of this chapter, the previous method is extended significantly, introducing
the use of multiple resonant GAs. This method was inspired by the work
of Sweetser and others at JPL who designed the first nominal trajectory
for a Europa orbiter mission (Sweetser, Maddock, Johannesen, Bell, Penzo,
Wolf, Williams, Matousek, and Weinstein [1997]). But the current method
is an improvement upon previous trajectories in that the ∆V requirements
are greatly reduced by including special sequences of GAs with the jovian
moons. One can find tours with a deterministic ∆V as low as ∼20 m/s as
compared with ∼1500 m/s using previous methods (Ludwinski, Guman,
Johannesen, Mitchell, and Staehle [1998]). In fact, a ∆V of ∼20 m/s is on
the order of statistical navigation errors, and is therefore exceptionally low.

The resonant GAs with the moons can be viewed as follows. By per-
forming small maneuvers to achieve a particular moon/spacecraft geome-
try at close approach, the spacecraft can jump between mean motion res-
onances with the moon. The “jumping” provides an effective “∆V kick”,
and thereby the deterministic propulsive ∆V required for the MMO trajec-
tory is very low. The problem of finding the “jumping” trajectories can be
reduced to a problem of finding points on a Poincaré section which move
between “resonance regions.”

Generating a Family of Trajectories. Our basic goal in the first part
of the chapter is not to construct flight-ready end-to-end MMO trajectories,
but rather to introduce the building blocks of the method. Our motivating
application will be the construction of a family of inter-moon transfers
between moons of Jupiter. As each transfer requires a particular ∆V and
time of flight (TOF), the family can be represented as a set of points in the
(TOF, ∆V ) plane. Therefore, the construction of such a family illustrates
the trade-off between fuel consumption and TOF, which has been observed
for low energy MMO trajectories (Ross, Koon, Lo, and Marsden [2004]).
The dramatically low ∆V needed for the tour shown in Figure 1.2.10 is
achieved at the expense of time—it has a TOF of about four years, mostly
spent in the inter-moon transfer phase. Although this is likely too long to be
acceptable for an actual mission, an exploration of the ∆V vs. TOF trade-
off for inter-moon transfers, as done in §10.4, reveals how time savings can
be achieved for low cost in additional fuel fuel. In fact, we find a roughly
linear relationship between ∆V vs. TOF, and conclude that a reasonable
TOF for a MMO can be achieved using a feasible ∆V .

The Building Blocks for MMO Trajectory Generation. Following
the point of view taken in this book, we use simple models which provide



262 10. Multi-Moon Orbiters and Low Thrust Trajectories

dynamical insight for MMO trajectory generation and are computation-
ally tractable. The forward-backward method in the restricted three-body
problem phase space is used (Schroer and Ott [1997]; Koon, Lo, Marsden,
and Ross [1999]). The influence of only one moon at a time is considered.
Criteria are established for determining when the switch from one moon’s
influence to another occurs.

The P3BA discussed in Chapter 9 considers the motion of a particle (or
spacecraft, if controls are permitted) in the field of n bodies, considered
two at a time, e.g., Jupiter and its ith moon, Mi. When the trajectory
of a spacecraft comes close to the orbit of Mi, the perturbation of the
spacecraft’s motion away from purely Keplerian motion about Jupiter is
dominated by Mi. In this situation, we say that the spacecraft’s motion
is well modeled by the Jupiter-Mi-spacecraft restricted three-body prob-
lem. Within the three-body problem, we can take advantage of phase space
structures such as tubes of capture and escape, as well as lobes associated
with movement between orbital resonances. Both tubes and lobes, specif-
ically the dynamics associated with them, are important for the design of
a MMO trajectory.

The design of a MMO of the jovian system is guided by four main ideas:

1. The multi-moon transfer problem can be broken down into sequen-
tial transfers between two moons only. For sake of discussion let us
consider the moons Ganymede and Europa.

2. The motion of the spacecraft in the gravitational field of the three
bodies Jupiter, Ganymede, and Europa is approximated by two seg-
ments of purely three body motion in the circular, restricted three-
body model. The trajectory segment in the first three body system,
Jupiter-Ganymede-spacecraft, is appropriately patched to the seg-
ment in the Jupiter-Europa-spacecraft three-body system.

3. For each segment of purely three body motion, the invariant man-
ifolds tubes of L1 and L2 bound orbits (including periodic orbits)
leading toward or away from temporary capture around a moon are
used to construct an orbit with the desired behaviors. Portions of
these tubes are “carried” by the lobes mediating movement between
orbital resonances. Directed movement between orbital resonances is
what allows a spacecraft to achieve large changes in its orbit. When
the spacecraft’s motion, as modeled in one three-body system, reaches
an orbit whereby it can switch to another three-body system, we
switch or “patch” the three-body model to the new system.

4. This initial guess solution is then refined to obtain a trajectory in a
more accurate four-body model. Evidence suggests that these initial
guesses are very good, even in the full N -body model and considering
the orbital eccentricity of the moons (Yamato and Spencer [2003])
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Inter-Moon Transfer and the Switching Orbit. During the inter-
moon transfer—where one wants to leave a moon and transfer to another
moon, closer in to Jupiter—we consider the transfer in two portions, shown
schematically in Figure 10.1.1, with M1 as the outer moon and M2 as

E

A
J

E

P
J

(a) (b)

Figure 10.1.1. Inter-moon transfer via resonant gravity assists. (a) The or-

bits of two Jovian moons are shown as circles. Upon exiting the outer moon’s (M1’s)

sphere-of-influence, the spacecraft proceeds under third body effects onto an elliptical

orbit about Jupiter. The spacecraft gets a gravity assist from the outer moon when it

passes through apojove (denoted A). The several close encounters with M1 occur at

roughly the same Jupiter-moon-spacecraft angle. Once the spacecraft orbit comes close

to grazing the orbit of the inner moon, M2 (in fact, grazing the orbit of M2’s L2 point),

the inner moon becomes the dominant perturber. The spacecraft orbit where this oc-

curs is denoted E. (b) The spacecraft now receives gravity assists from M2 at perijove

(P ), where the near-resonance condition also applies. The spacecraft is then ballistically

captured by M2.

the inner moon. In the first portion, the transfer determination problem
becomes one of finding an appropriate solution of the Jupiter-M1-spacecraft
problem which jumps between orbital resonances with M1, i.e., performing
resonant GAs to decrease the perijove. M1’s perturbation is only significant
over a small portion of the spacecraft trajectory near apojove (A in Figure
10.1.1(a)). The effect of M1 is to impart an impulse to the spacecraft,
effectively imparting a ∆V .

The perijove is decreased by repeated GAs by M1 (of the appropriate
geometry) until it has a value close to M2’s orbit, or more correctly, close to
the orbit of M2’s L2. We can then assume that a GA can be achieved with
M2 with an appropriate geometry such that M2 becomes the dominant
perturber and all subsequent GAs will be with M2 only. The problem of
finding GAs of the “appropriate geometry” can be solved with the help of
lobe dynamics, discussed in §10.3.
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The arc of the spacecraft’s trajectory at which the spacecraft’s pertur-
bation switches from being dominated by moon M1 to being dominated
by M2 is called the switching orbit. A rocket burn maneuver need not be
necessary to effect this switch. The set of possible switching orbits is the
switching region of the P3BA. It is the analogue of the “sphere of influence”
concept used in the patched conic approximation, which guides a mission
designer regarding when to switch the central body for the model of the
spacecraft’s Keplerian motion.

The spacecraft orbit where M2 takes over as the perturbing moon is
denoted E in Figures 10.1.1(a) and 10.1.1(b). The spacecraft now gets GA’s
from the inner moon at perijove (P ). One can then search for solutions of
the Jupiter-M2-spacecraft problem which cause the apojove to decrease at
every close encounter with M2, causing the spacecraft’s orbit to get more
and more circular, as in Figure 10.1.1(b). When a particular resonance is
reached (see, e.g., Figure 2.3.3), the spacecraft can then be ballistically
captured by the inner moon at M2. We note that a similar phenomenon
has been observed in studies of Earth to lunar transfer trajectories (Schroer
and Ott [1997]; Schoenmaekers, Horas, and Pulido [2001]), and in studies
of natural minor body motion in the solar system (Ross [2003, 2004]; Ćuk
and Burns [2004]).

10.2 Inter-Moon Transfer Via the Resonant
Structure of Phase Space

Solutions to the four-body problem which lead to the behavior shown
schematically in Figure 10.1.1 have been found numerically and the phe-
nomena can be partially explained in terms of the P3BA (Ross, Koon, Lo,
and Marsden [2003, 2004]). To switch between neighboring pairs of moons,
a spacecraft must traverse several subregions of the three-body problem
phase space. Looking at the four-body problem as two three-body prob-
lems, the subregions are understood as resonance regions, where the res-
onance is between the spacecraft orbital period and the dominant moon’s
orbit period around Jupiter, respectively. Such a resonance is referred to
as a mean motion resonance.

We can visualize the resonances on a Poincaré section. For example,
in the m1-m2-spacecraft system, we might choose a section in the exterior
realm as shown in Figure 10.2.1(a). Such a procedure reveals a phase space,
as in Figure 10.2.1(b), consisting of overlapping resonance regions (Malho-
tra [1996]; Schroer and Ott [1997]). This means that movement amongst
resonances is possible.

The points in Figure 10.2.1(b) were computed on a Poincaré section
which is area preserving. Following the convention of Malhotra [1996] and
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Figure 10.2.1. A Poincaré section showing the resonances. (a) The location of

the four Poincaré sections introduced in Chapter 3 are shown—U1, U2, U3, and U4. (b)

The resonant structure on the U4 section is shown. The resonance regions are the roughly

horizontal bands, one of which is highlighted. Where the resonance region pinches to

a point there is a saddle point associated with the resonance, corresponding to an un-

stable resonant orbit in the full phase space. Stable mean motion resonances inside the

resonance regions appear as target patterns.

Koon, Lo, Marsden, and Ross [2000], the points were transformed into
quasi-action angle coordinates which give physical insight and allow ease
of visualization, but are not area preserving. The x-axis is an angular co-
ordinate and thus the right and left sides are to be identified. The y-axis
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is the semimajor axis. The coordinate system is related to the Delaunay
variables described in the Supplement below.

From Figure 10.2.1(b), a wealth of information can be gained. The phase
space is ‘unpeeled’ to reveal the resonance structure which governs trans-
port in the semimajor axis direction, i.e., from one Keplerian orbit to an-
other. To go from, say, a large to a small semimajor axis (i.e., the top to the
bottom of Figure 10.2.1(b)), several resonance regions must be traversed.
We can see the locations and widths of the stable resonance libration zones
(the target patterns) which are bounded by chaotic layers. Furthermore,
the transport around the stable resonance zones is determined by addi-
tional structure within the chaotic layers, not seen here. The additional
structure is related to saddle points in the chaotic layers and the transport
is explained using lobe dynamics below.

Lobe Dynamics Reveals Fastest Resonance Traversing Trajecto-
ries. Lobe dynamics (Vetells us the most important spacecraft trajecto-
ries, i.e., the uncontrolled trajectories which traverse the resonance regions
in the shortest time. Consequently, it proves useful for designing low en-
ergy spacecraft trajectories, such as shown in Figure 10.2.2(a). We show
an initial condition in the upper right hand side of this Poincaré section
which emerges from a tube. This is a trajectory which may have come from
the realm around a moon like Ganymede. The spacecraft moves through
the phase space as revealed in the Poincaré section, jumping between reso-
nance regions under the natural dynamics of the three-body problem, i.e.,
at zero fuel cost. The spacecraft arrives at the tube for a destination moon
like Europa in the lower left hand side. Figure 10.2.2(b) shows a schematic
of the corresponding trajectory in inertial space. This provides us with the
pieces for switching from one moon to another as shown in Figure 10.1.1.

Supplement: Delaunay Variables

Delaunay Variables: Inertial Frame. The PCR3BP is a perturba-
tion of the two-body Keplerian problem. We can re-write the Hamiltonian
(2.3.11) in the inertial frame as

H = H0 + µH1, (10.2.1)

where H0 is the Keplerian part and µH1 the perturbing part. H0 = − 1
2a

with a the instantaneous semimajor axis of the particle’s orbit around the
m1-m2 center of mass (Wisdom [1980]). In terms of the Delaunay vari-
ables or Delaunay canonical elements (see, e.g., Delaunay [1860]; Szebehely
[1967]; Chang and Marsden [2003]), H0 = − 1

2L2 and H1 = −R, where

R =

∞∑
i=0

∞∑
j=−∞

K(i,j) cosN (i,j), (10.2.2)
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Figure 10.2.2. Jumping between resonance regions leads to large orbit

changes at zero cost. (a) As shown in this Poincaré section, a spacecraft emerges

from a tube coming from moon 1 in an orbit with semimajor axis of a1 around Jupiter.

The spacecraft moves through the phase space as shown, jumping between resonance

regions until it reaches a smaller semimajor axis, a2, where it enters the tube going to

another moon. In (b), a schematic of the corresponding trajectory of the spacecraft P

in inertial space is shown along with Jupiter (J) and the destination moon (M2).

and

N (i,j) = il + j(t− g). (10.2.3)
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Notice that this Hamiltonian is time dependent.
In terms of the traditional osculating elliptic elements, the canonical

momenta are L =
√
a and G = L

√
1− e2, where a is the semimajor axis

and e is the eccentricity. K(i,j) in the above expression is a function of L
and G (see Wisdom [1980]). We note that G is the angular momentum
of the particle’s orbit around the m1-m2 center of mass. The coordinates
conjugate to L and G are the mean anomaly l and the angle of periapse
g, respectively. The mean anomaly l has geometric significance; it is the
ratio of the area swept out by the ray from the m1-m2 center of mass to the
particle starting from its periapse to the total area in an inertial frame. The
angle of periapse is also referred to as the argument of periapse. For more
detail, see Szebehely [1967], Abraham and Marsden [2008], and Meyer and
Hall [1992].

Delaunay Variables: Rotating Frame. As Figure 10.2.3 shows, g =
ḡ + t is the angle of periapse measured from the inertial axis xiner, while
ḡ is the angle of periapse measured from the rotating axis xrot. We prefer
to use ḡ instead of g as this gives rise to a time independent Hamiltonian
function,

H = − 1

2L2
− µR−G. (10.2.4)

In what follows, we will describe the transformation from rotating cartesian
coordinates and velocities (x, y, ẋ, ẏ) to the Delaunay canonical elements
(l, ḡ, L,G).
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Figure 10.2.3. Geometry of the Delaunay variables. Elliptical orbits in the fixed (in-

ertial) and rotating frames.
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Transformation from Polar Coordinates to Delaunay Variables.
We first transform from rotating cartesian coordinates and velocities (x, y, ẋ, ẏ)
to rotating polar coordinates and velocities (r, θ, ṙ, θ̇),

r =
√
x2 + y2,

θ = arctan
(y
x

)
,

ṙ = ẋ
(x
r

)
+ ẏ

(y
r

)
,

θ̇ = −ẋ
( y
r2

)
+ ẏ

( x
r2

)
.

(10.2.5)

The transformation (r, θ, ṙ, θ̇)→ (l, ḡ, L,G) is given by

G = r2(1 + θ̇),

L =
1√

−
(
G2

r2

)
+
(

2
r

)
− ṙ2

,

l = arccos

(
1− r

a

e

)
−
(
rṙ

L

)
,

ḡ = θ − arccos

(
G2

r − 1

e

)
(10.2.6)

10.3 Lobe Dynamics and Resonant Gravity
Assists

Lobe dynamics provides a general theoretical framework for discover-
ing, describing and quantifying the transport “alleyways” connecting reso-
nances (Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross,
and Thiere [2005]). A resonance region and the lobes of phase space asso-
ciated with movement around it are shown in Figure 10.3.1 on a Poincaré
section in the same quasi-action-angle coordinates as Figures 10.2.1 and
10.2.2 and revealing the otherwise ‘invisible’ structure of the chaotic sea.
The lobes are defined using the stable and unstable manifolds associated to
unstable resonant orbits. Starting in one of the lobes above the resonance,
an initial condition can get transported to below the resonance, and vice
versa. This corresponds decrease or increase in the spacecraft’s semima-
jor axis for zero fuel cost. Supposing our spacecraft is on the U4 Poincaré
section, lobe dynamics reveals those parts of the phase space which lead
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Figure 10.3.1. Movement across an orbital resonance using lobe dynamics.

An unstable resonant orbit appears as a hyperbolic fixed point (the half-filled circles,

identified as the same point) on this Poincaré section. The orbit’s stable and unstable

manifolds define both the resonance region (the central region with the target pattern)

and “lobes” which transport phase points from above the resonance to below, and vice

versa. An enlargement of the boxed region is shown at right.

to semimajor axis decreases or increases. As shown in Figure 10.3.2, those
parts are sometimes close to each other.

In the language of astrodynamics, this corresponds to a gravity assists by
the smaller primary. It is a special kind of gravity assist, however, because
the resonant nature of the pre- and post-GA trajectory can lead to a series
of such GAs, each one further decreasing or increasing the spacecraft’s
semimajor axis as the trajectory designer wishes.

Lobe Dynamics: Transport Between Regions. The determination
of initial conditions which lead to desired GA sequences can be translated
into the task of computing the transport between regions in phase space.
More precisely, we consider a volume- and orientation-preserving map f :
Σ → Σ (e.g., the Poincaré map in the PCR3BP as described in previous
chapters) on some compact set Σ ⊂ R2 with volume–measure σ and ask for
a suitable (i.e. depending on the application in mind) partition of Σ into
compact regions of interest Ri, i = 1, . . . , NR, such that

Σ =

NR⋃
i=1

Ri and σ(Ri ∩Rj) = 0 for i 6= j. (10.3.1)

Following Rom-Kedar and Wiggins [1990], lobe dynamics theory states
that the two-dimensional phase space Σ of the Poincaré map f can be di-
vided as outlined above (see Eq. (10.3.1)), as illustrated in Figure 10.3.3(a).
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Figure 10.3.2. Lobe dynamics reveals those parts of the phase space which

lead to decreases or increases of semimajor axis. We schematically show two ini-

tially neighboring spacecraft (S/C) trajectories which illustrate this effect in the presence

of Jupiter (J) and one of its moons (M). The two trajectories, each with semimajor axis

a0, are initially on the U4 Poincaré section and are in between two resonance regions.

The solid trajectory is initially in a lobe which moves across the “lower” orbital res-

onance of semimajor axis a− < a0 and thus after the close approach to M the S/C

has a lower semimajor axis. The change is approximately the width of the resonance

region, ∆a−. The dotted trajectory is initially in a lobe which moves across the “upper”

resonance and thus has a positive change of approximately the width of that resonance

region, ∆a+. The energy regime shown is case 3, so there are bottlenecks around L1 and

L2, through which orbits passing between realms must pass. But before passing between

realms, the trajectory must cross a sequence of resonances first.

A region, Rj , is a connected subset of Σ with boundaries consisting of parts
of the boundary of Σ (which may be at infinity) and/or segments of stable
and unstable manifolds of hyperbolic fixed points, pi, i = 1, ..., N.Moreover,
the transport between regions of phase space can be completely described
by the dynamical evolution of small regions of phase space, “lobes” enclosed
by segments of the stable and unstable manifolds, as shown schematically
in Figure 10.3.3(b), and defined below.

Boundaries, Regions, Pips, Lobes, and Turnstiles Defined. To
define a boundary between regions, one first defines a primary intersec-
tion point, or pip. Looking at Figure 10.3.3(a), a point qk is called a pip if
S[pi, qk] intersects U [pj , qk] only at the point qk, where U [pj , qk] is a seg-
ment of the unstable manifold Wu(pj) joining the unstable fixed point pj
to qk and similarly S[pi, qk] is a segment of the stable manifold W s(pi) of
the unstable fixed point pi joining pi to qk. The union of segments of the
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(a)

f -1(q0)

(b)

Figure 10.3.3. Transport between regions of the phase space Σ of a Poincaré

map f . (a) The segment S[p1, q2] of the stable manifold W s(p1) from p1 to q2 and

the segment U [p2, q2] of the unstable manifold Wu(p2) from p2 to q2 intersect in the

pip q2. Therefore, the boundary B12 can be defined as B12 = U [p2, q2]
⋃
S[p1, q2]. The

region on one side of the boundary may be labeled R1 and the other side labeled R2.

(b) q1 is the only pip between the two pips q0 and f−1(q0) in Wu(pi)
⋂
W s(pj), thus

S[f−1(q0), q0]
⋃
U [f−1(q0), q0] forms the boundary of precisely two lobes; one in R1,

labeled L1,2(1), and the other in R2, labeled L2,1(1). Under one iteration of f , the only

points that can move from R1 into R2 by crossing the boundary B are those in L1,2(1).

Similarly, under one iteration of f the only points that can move from R2 into R1 by

crossing B are those in L2,1(1).

unstable and stable manifolds naturally form partial barriers, or bound-
aries U [pj , qk] ∪ S[pi, qk], between the regions of interest Ri, i = 1, ..., NR,
in Σ = ∪Ri. In Figure 10.3.3(a) several pips are shown as well as the
boundary B12. Note that we could have pi = pj .

Consider Figure 10.3.3(b). Let q0, q1 ∈Wu(pi)∩W s(pj) be two adjacent
pips, i.e., there are no other pips on U [q0, q1] and S[q0, q1], the segments
of Wu(pi) and W s(pj) connecting q0 and q1. We refer to the region inte-
rior to U [q0, q1] ∪ S[q0, q1] as a lobe. Then S[f−1(q0), q0] ∪ U [f−1(q0), q0]
forms the boundary of precisely two lobes; one in R1, defined by L1,2(1) ≡
int(U [q0, q1] ∪ S[q0, q1]), where int denotes the interior operation on sets,
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and the other in R2, L2,1(1) ≡ int(U [f−1(q0), q1] ∪ S[f−1(q0), q1]). Un-
der one iteration of f , the only points that can move from R1 into R2 by
crossing B12 are those in L1,2(1). Similarly, under one iteration of f the
only points that can move from R2 into R1 by crossing B12 are those in
L2,1(1). The two lobes L1,2(1) and L2,1(1) are together called a turnstile.
It is important to note that f−n(L1,2(1)), n ≥ 2, need not be contained
entirely in R1, i.e., the lobes can leave and re-enter regions with strong
implications for the dynamics. The movement of points among regions, of
which resonance regions are a kind, can be expressed compactly in terms
of intersection areas of images or pre-images of turnstile lobes.

Transport Between Resonance Regions. In the application in the
present chapter, the phase space Σ is known to possess resonance regions
whose boundaries have lobe structures, which can lead to complicated
transport properties (cf. MacKay, Meiss, and Percival [1984, 1987]; Meiss
[1992]; Schroer and Ott [1997]; Koon, Lo, Marsden, and Ross [2000]).

The Poincaré section shown in Figure 10.2.1(b) of the resonance regions
in the exterior realm is a good example. Suppose we consider a single res-
onance in the exterior realm, and we want to consider the phenomena of
crossing a resonance and capture into the resonance using lobe dynamics.
We can define the resonance region as outlined above, and then obtain a
distribution of times for particles to cross from one side of the resonance
to the other and residence times within the resonance region. The mani-
folds shown in Figure 10.3.1, as well as the associated pips, form the lobes
that will determine the transport between three regions: R2, the resonance
region; R1 and R3, the regions below and above the resonance region, re-
spectively. In Figure 10.3.4, the lobes for the upper and lower boundaries
are shown. These boundaries each show a sequence of four lobes. Using the
lobe dynamics framework, the movement of points between these regions
can be computed systematically.

In fact, we can extend this methodology to two or more resonances. This
is important for space missions, as fuel savings goes up significantly when
multiple resonances are crossed using the natural dynamics. For exam-
ple, consider the tour shown in Figure 1.2.10, particularly the outermost
portion where Callisto is repeatedly encountered. The several Callisto fly-
bys which constitute this portion of the tour exhibit roughly the same
spacecraft-Callisto-Jupiter geometry. This portion of the trajectory takes
several Callisto orbital periods. It culminates in a ballistic capture of the
spacecraft by Callisto.

Merging the Theories of Lobe Dynamics and Tube Dynamics
The work of Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer [2002] is the first
step toward an exact global theory of the transport. Such a picture requires
the merging of tube dynamics with lobe dynamics: the transport between
the interior, capture, and exterior realms is controlled by the tube dynam-
ics; but the dynamics within the interior and exterior realms is dominated
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Figure 10.3.4. Transport across a resonance. The lobes formed by both the up-

per and lower boundaries of a resonance region R2 are shown. Using the lobe dynamics

framework, the transport of points between these regions can be computed systemati-

cally. An enlargement of the boxed region is shown at right.

by the lobe dynamics. Many interesting dynamical astronomy problems ex-
hibit both kinds of dynamics, e.g., the exchange of impact ejecta between
terrestrial planets (Gladman, Burns, Duncan, Lee, and Levison [1996]),
and the evolution of scattered Kuiper belt objects into short period comets
(Torbett and Smoluchowski [1990]; Malhotra, Duncan, and Levison [2000]).

For our purposes, we use tube dynamics along with lobe dynamics to find
uncontrolled trajectories which quickly traverse the space between moons
during the inter-moon transfer phase. Essentially, the lobes act as tem-
plates, guiding pieces of the tube across resonance regions. We can nu-
merically determine the fastest trajectory from an initial region of phase
space (e.g., orbits which have just escaped from moon M2) to a target re-
gion (e.g., orbits which will soon be captured by a neighboring moon M2).
This yields the ∆V vs. TOF trade-off for the inter-moon transfer between
Ganymede and Europa.

Remarks. Methods other than lobe dynamics which have been used by
the dynamical astronomy community in studying problems related to trans-
port between resonances can be broadly characterized as follows.

• Large Scale Numerical Simulations. In principle, the computation of
rates of mass transport can be accomplished by numerical simulations
in which the orbits of vast numbers of test particles are propagated in
time including as many gravitational interactions as desirable. Many
investigators have used this approach successfully (cf. Levison and
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Duncan [1993]). However, such calculations are computationally de-
manding and it may be difficult to extract from them information
about key dynamical mechanisms since the outcomes may depend
sensitively on the initial conditions used for the simulation. In order
to obtain general features of planetary system evolution and morphol-
ogy, which is a major goal of dynamical astronomy, other approaches
may be necessary.

• Single Resonance Theory and Resonance Overlap Criterion. One ap-
proach is to develop simple analytical models which provide answers
to basic phase space transport questions. Much progress has been
made in this area, but most of the work has focused on the study of
the local dynamics around a single resonance, using a one-degree-of-
freedom pendulum-like Hamiltonian with slowly varying parameters.
Transport questions regarding capture into, and passage through res-
onance, have been addressed this way (see Henrard [1982], Neishtadt
[1996], and Neishtadt, Sidorenko, and Treschev [1997])

An important result regarding the interaction between resonances
was obtained by Wisdom [1980]. In this paper, the method of Chirikov
[1979] was applied to the PCR3BP in order to determine a resonance
overlap criterion for the onset of chaotic behavior for small mass
parameter, µ.

These analytical methods are still used today (see Murray and Hol-
man [2001] and references therein).

Using the nominal dynamics near a resonance in concert with efficient
control to move phase points has been looked at in other applications as
well, including the dynamics of charged particles in electromagnetic fields
and mixing in fluids. See Vainchtein and Mezić [2004] for more information.

10.4 Trade-Off: ∆V vs. Time of Flight

Method Description. Returning to the generation of inter-moon trans-
fer, let us consider a transfer between orbits around Ganymede and Europa.
We can initially consider an impulsive transfer from a Ganymede L1 orbit
(denoted GaL1) to a Europa L2 orbit (EuL2). If we find such a transfer,
we know that a transfer between orbits around Ganymede and Europa
is nearby in phase space (Koon, Lo, Marsden, and Ross [2000]). We can
consider the transfer in two pieces.

1. In the first piece, we consider the transfer along the unstable manifold
tube of a GaL1, which we denote U(GaL1). The object U(GaL1) has
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two branches, but we consider the one, as shown in Figure 10.4.1(a),
heading initially in the direction of Europa’s orbit.

G

EL2

J

(a)

     Initial condition for orbit
which switches to Europa control

Perijove = radius of Europa’s L2

1

2
3

4

(b)

Figure 10.4.1. Numerical construction of natural trajectory arcs which will

switch control from Ganymede to Europa. Suppose we want to find trajectories

which begin near Ganymede (G in the figure) and escape toward Europa, finally getting

naturally captured by Europa. The first step is to numerically construct the Ganymede

L1 tube heading toward Europa, or U(GaL1) in the terminology of the text. We take

a Poincaré section, Σ, at the position shown in (a). We show only two crossings of Σ,

but there are an infinite number. We also show the radial distance of Europa’s L2,

labeled EL2, and the forbidden region at this energy. In (b), we show a schematic of

the initial cross-section of the tube on Σ, labeled 1. The successive crossings are labeled

2, 3, . . .. In this schematic, we also show the dotted line corresponding to a perijove

equal to the radial distance of Europa’s L2. The first three crossings are entirely within

the zone of perijoves greater than the radial distance of Europa’s L2. Any spacecraft

trajectory in the Jupiter-Ganymede-spacecraft system which crosses this line can be

assumed to “switch” control to Europa, meaning the Jupiter-Europa-spacecraft system

becomes a good approximation from then on. The coordinates represented here are not

quasi-action-angle coordinates as in Figures 10.3.1 and 10.2.2(a), but are related to

cartesian coordinates, which are easier to handle numerically.
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The set of all GaL1’s is parameterized by the energy EGa, one of our
tunable parameters. For each EGa, one can compute the GaL1 and
U(GaL1). By taking a Poincaré section such as Σ in the figure, one
can determine the trajectory within U(GaL1) which takes the least
time to transfer to a perijove distance rp, equal to the approximate
radial distance from Jupiter of Europa’s L2 point, labeled EL2 in the
figure. The perijove distance line, the dotted line in the figure, can
be computed as follows. Each point (x, ẋ) ∈ Σ corresponds to an os-
culating conic orbit about Jupiter with an instantaneous semimajor
axis a and eccentricity e. The dotted line in this figure is the locus of
points satisfying rp = a(1− e) for a perijove rp equal to the approx-
imate radial distance from Jupiter of Europa’s L2 point. Any point
in Σ on this line is an orbit which can come close to Europa’s L2.

The computation of the trajectory which reaches this line in min-
imum time is performed numerically by determining the minimum
tube crossing number on Σ which crosses the aforementioned perijove
distance, the dotted line shown in Figure 10.4.1(b). Thus we find the
natural trajectory arc which will switch “control” from Ganymede
to Europa as the main perturber from jovicentric motion. The time
of flight of this portion of the inter-moon transfer trajectory, TGa, is
seen numerically to be a function of EGa.

2. For the second piece, we consider the transfer along the branch of the
stable manifold tube of a EuL2, denoted S(EuL2), heading initially
in the direction of Ganymede’s orbit. The set of all EuL2’s is parame-
terized by the energy EEu, another tunable parameter. For each EEu,
one can compute the EuL2 and S(EuL2). One can determine the tra-
jectory within S(EuL2) which takes the least time to transfer to an
apojove distance ra, equal to the approximate radial distance from
Jupiter of Ganymede’s L1 point. The time of flight of this trajectory,
TEu, is found numerically to be a function of EEu.

The sum, TOF = TGa +TEu, is an approximate inter-moon transfer time.
The total fuel expenditure, ∆Vtot, needed to perform the transfer can be
estimated as follows. We assume only two impulsive maneuvers, ∆VGa and
∆VEu.

∆VGa = the ∆V to escape from the scientific orbit around Ganymede,
which can be estimated using the energies of the transfer away from
Ganymede, EGa, and of the scientific orbit at Ganymede, EGaO.

∆VEu = the ∆V to enter the scientific orbit around Europa, which can be
estimated using energies of the transfer toward Europa, EEu, and of
the scientific orbit at Europa, EEuO.

The total fuel expenditure is the sum, ∆Vtot = ∆VGa + ∆VEu. We sup-
pose that EGaO and EEuO are given. We can then perform this procedure
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for a range of tunable parameters (EGa and EEu), to determine the fuel
consumption (∆Vtot) versus time of flight (TOF) trade-off.

Computing the ∆V ’s. We assume that portions of each tube quickly
reach a periapse of 100 km altitude above each moon, and that the solutions
which do this are close in phase space to the transfer solutions found,
assumptions justified by earlier work (Koon, Lo, Marsden, and Ross [2000];
Gómez, Koon, Lo, Marsden, Masdemont, and Ross [2001]). Given these
assumptions, we can estimate ∆VGa and ∆VEu as follows. In the rotating
frame of a Jupiter-moon-spacecraft three-body system, a spacecraft with a
velocity magnitude v has a three-body energy

E =
1

2
v2 + Ū , (10.4.1)

where the effective potential, a function of position, is

Ū = −1

2
r2 − 1− µ

rJ
− µ

rM
− 1

2
µ(1− µ), (10.4.2)

where µ is the mass ratio mM

mJ+mM
, rJ is the spacecraft’s distance from

Jupiter’s center, rM the spacecraft’s distance from the moon’s center, and
r the spacecraft’s distance from the Jupiter-moon center of mass, which is
very close to Jupiter. At a distance of 100 km altitude above the moon, we
are very close to the moon. Therefore, using the standard non-dimensional
units, r ≈ rJ ≈ 1, and we can approximate (10.4.2) as

Ū ≈ −1

2
(1)2 − 1− µ

1
− µ

rM
,

≈ −1

2
− 1− µ

rM
,

≈ −3

2
− µ

rM
. (10.4.3)

Using (10.4.1), the velocity can then be approximated as

v ≈

√
2

(
µ

rM
+

3

2
+ E

)
. (10.4.4)

Therefore, the approximate ∆V to go between energies Ea and Eb while
at the same distance rM � 1

∆V ≈

∣∣∣∣∣
√

2

(
µ

rM
+

3

2
+ Ea

)
−

√
2

(
µ

rM
+

3

2
+ Eb

)∣∣∣∣∣ . (10.4.5)

We can use the above equation to compute ∆VGa given Ea = EGa and
Eb = EGaO. For this study, we take EGaO to be the energy of L1 in the
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Jupiter-Ganymede-spacecraft system. This corresponds to a bound ellipti-
cal orbit around Ganymede which is at the energy threshold of escape, and
therefore cannot escape the Hill region around Ganymede. We can perform
similar calculations for ∆VEu.

The result of tabulating ∆Vtot = ∆VGa+∆VEu for each TOF = TGa+TEu

is given in Figure 10.4.2(a).
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Figure 10.4.2. Fuel consumption versus flight time trade-off for the inter–

moon transfer phase of a multi-moon orbiter mission. (a) The ∆V vs. time of

flight plot for several transfer trajectories from Ganymede to Europa are shown. For the

several cases run, we find a near linear relationship between ∆V and time of flight. For

this study we looked at a range of energies in both three-body systems. The highest

energy (and lowest TOF) transfer we computed is shown in (b) in inertial coordinates,

where G labels Ganymede’s orbit and E labels Europa’s. This transfer has a TOF of

227 days and a ∆V of 211 m/s. Beyond this lower TOF limit to the computations, we

speculate that the linearity will continue for a while, indicated by the dashed line.
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In dimensional units, we find a near linear relationship between ∆Vtot

and TOF, given roughly by

∆Vtot = 340− 0.60× TOF, (10.4.6)

where ∆Vtot is given in m/s and TOF is given in days.
For this study we looked at a range of energies in both three-body sys-

tems. The highest energy (and lowest TOF) transfer we computed is shown
in Figure 10.4.2(b) in inertial coordinates, where G labels Ganymede’s or-
bit and E labels Europa’s. This transfer has a TOF of 227 days and a ∆V
of 211 m/s. Beyond this lower TOF limit to our computations, we spec-
ulate that the linearity will continue for a while, indicated by the dashed
line. Further computations are needed to settle this matter.

Transfers between Low Altitude, Circular Orbits. In the above,
we have computed only the minimum ∆V necessary to go between bound
orbits around each moon. It is instructive to note the additional ∆V which
would be necessary to effect a transfer between low altitude circular orbits
of zero inclination. According to Villac and Scheeres [2001] who used the
Hill three-body problem for their model, the minimal ∆V to escape a low
altitude (around 100 km) Ganymede would be at most 669.5 m/s, and to
inject into a low altitude (around 100 km) Europa orbit would be at most
451.2 m/s. Therefore, an additional ∆Vcirc = 1120.7 m/s can be added
to each point in the curve of Figure 10.4.2(a) in order to approximate a
transfer between zero inclination, low altitude circular orbits. For example,
the transfer with a 227 day TOF requires a total ∆V of about 1332 m/s
to transfer between circular orbits.

Some Remarks. As demonstrated, minimum time, two-impulse trans-
fers from Ganymede to Europa in the framework of the patched three-body
approximation can be investigated as a function of the three-body energy.
The transfers are between orbits bound each moon, respectively. Tube dy-
namics have been used along with lobe dynamics to find uncontrolled (nat-
ural) trajectories which quickly traverse the space between the moons. The
lobes act as templates, guiding pieces of the tube across resonance regions.
The tubes have the numerically observed property that the larger the en-
ergy, the further the tube travels from its associated libration point in a
fixed amount of time. This property has been exploited to find the time
of flight between Ganymede and Europa as a function of the energy in
their respective three-body systems. The energies have been used to cal-
culate the ∆V of escape, or get captured, from each moon, respectively.
Our results show that in the range of energies studied, the ∆V vs. time of
flight relationship is nearly linear and that a reasonable inter-moon time of
flight for a multi-moon orbiter can be achieved using a feasible ∆V . The
determination of this relationship for a larger range of energies would be
helpful. As discussed below, a linear relationship between ∆V and flight
time is by no means generic for low energy trajectories.
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The ∆V vs. TOF Curve for an Earth-to-Moon Trajectory. The
importance of the ∆V vs. TOF curve is not limited to MMOs. A case of
a non-linear trend is shown below for a set of Earth-to-Moon trajectories.
Consider a family of trajectories from an fixed Earth orbit to a fixed lunar
orbit. Bollt and Meiss [1995] considered the transfer from a circular Earth
orbit of radius 59669 km to a quasi-periodically precessing ellipse around
the moon, with a perilune of 13970 km. Their method takes advantage
of the fact that long trajectories in a compact phase space are recurrent.
Starting with a long unperturbed chaotic trajectory that eventually reaches
the target, the use small well chosen ∆V ’s to cur recurrent loops from the
trajectory, shortening it whenever possible. They find a transfer (see Figure
10.4.3(a))

(a)

Earth
Moon

TOF = 65 days
      = 860 m/s
1 Day Tick Marks

(b)

Figure 10.4.3. Earth-to-Moon trajectory: much lower TOF achieved using

only slightly more fuel. (a) The transfer from a circular earth orbit of radius 59669

km to precessing lunar orbit of perilune 13970 km found by Bollt and Meiss [1995]

is shown in the rotating frame. The ∆V is 749.6 m/s and the TOF is 748 days. (b) A

transfer between the same initial and final orbits, using a ∆V of 860.1 m/s, but requiring

a TOF of only 65 days.
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that achieves ballistic capture requiring 749.6 m/s, 38% less total velocity
boost than a comparable Hohmann transfer, but requiring a transfer time
of 748 days. Later, Schroer and Ott [1997] considered this problem with the
same initial and final orbits, but found a transfer requiring about half the
flight time, 377.5 days, but using roughly the same total ∆V , 748.9 m/s,
suggesting that this is near the minimum required for a transfer between
these two orbits.

Using the methods outlined earlier in this section, we can construct a
family of transfer trajectories that provide a compromise between time
and fuel optimization. We find a transfer, shown in Figure 10.4.3(b), with
a flight time of 65 days which uses a total ∆V of 860.1 m/s. Thus the
trajectory takes one-tenth of the time as the trajectory found in Bollt
and Meiss [1995] and uses only about 100 m/s more fuel. The previously
described trajectories are shown in Figure 10.4.4 compared with the family
of trajectories produced using the method outlined here. The lower bound
in ∆V , near 750 m/s, comes from the three-body energy difference between
the initial and final orbits. Given a boost of that minimum amount while on
the initial orbit, the resulting higher energy trajectory will wander through
phase space, coming close to the final lunar orbit if one waits a sufficiently
long amount of time. By using the phase space structures as done here, one
can design trajectories that circumvent the extraneous wandering.

10.5 Some Open Problems for Multi-Moon
Orbiters

A partial list of open areas of research regarding MMOs are the following.

• Transferring between large inclination orbits about moons: Future
studies addressing the important compromise between time and fuel
costs for a MMO mission will need to address the three-dimensionality
of the problem. A likely requirement for a MMO may be the neces-
sity to go from an inclined orbit about one moon to an inclined orbit
about another, such as shown in Figure 1.2.10(b). We speculate that
this may lead a nearby curve, possibly linear, in the ∆V vs. TOF
plot.

• The use of low thrust continuous propulsion and optimal control: Low
thrust trajectory control, described in the next section, is of great
interest to current mission design. The current work on MMOs as
discussed above considers several small impulsive burns. But an ac-
tual mission may want to save on spacecraft weight by using low
thrust propulsion. How could the methods outlined here be modi-
fied to incorporate low thrust? Theoretically, one of the most favored
approaches is to use optimal control in generating low thrust trajecto-
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Figure 10.4.4. Trade-off between fuel and time optimization for an Earth–

to-Moon trajectory. The ∆V vs. time of flight plot for several transfer trajectories to

the moon which use nonlinear third-body effects, compared with the Hohmann transfer.

A trajectory of one-fifth to one-tenth of the flight-time of some previous fuel optimized

trajectories can be achieved using only about 100 m/s more ∆V .

ries. We have found that a good first guess is often vital for numerical
optimization algorithms, especially for an N -body problem, which is
numerically very sensitive. Dynamical systems theory can provide ge-
ometrical insight into the structure of the problem and even good ap-
proximate solutions, as found in Serban, Koon, Lo, Marsden, Petzold,
Ross, and Wilson [2002]. There is evidence that optimal trajectories
using multiple low thrust burns are “geometrically similar” to impul-
sive solutions (Schoenmaekers, Horas, and Pulido [2001]; Zondervan,
Wood, and Caughy [1984]). Thus, multiple burn impulsive trajecto-
ries that we construct for the MMO can be good first guesses for an
optimization scheme which uses low thrust propulsion to produce a
fuel efficient mission.

• Radiation effects: The current model does not include radiation ef-
fects. It is desirable to keep the spacecraft outside of a 12 RJ from
Jupiter, in which the radiation may destroy sensitive electronics on
board the spacecraft. The orbit of Europa is located at 10 RJ , so
the transfer between Ganymede and Europa must minimize the time
spent near its perijove for the final resonant gravity assists that lead
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to a capture by Europa. One needs to determine what is the best way
to minimize radiation effects and still achieve a low energy, low thrust
transfer. On the other hand, the strong magnetic field of Jupiter may
make the use of tethers a viable propulsion or power generation op-
tion.

• More control over operational orbits for scientific observation: For
a mission to Europa and the other moons, some control strategy is
necessary to maximize desirable scientific observation and avoid col-
lisions with the moon surface or escape from the moon’s vicinity.
Exotic strategies might be considered. For instance, what is the opti-
mal thrusting strategy during the ballistic capture approach in order
to achieve an operational orbit which maximizes observation time
over an interesting portion of a moon’s surface? Also, what is the op-
timal station-keeping strategy for elliptical operational orbits? In the
short term, it may be desirable to target particular stable operational
orbits, but still save fuel using third body effects (Gómez, Koon, Lo,
Marsden, Masdemont, and Ross [2001]; Scheeres, Guman, and Villac
[2001]).

• Autonomous on-board navigation and control: A trajectory using bal-
listic capture/escape and resonant GAs is sensitive to ∆V errors and
modeling errors. A spacecraft executing such a trajectory will need to
have the capability of autonomous on-board navigation and control.
The first step toward this which one can look at is the trajectory
correction maneuver problem as considered in Chapter 8, in which
errors are modeled and a control algorithm corrects for those errors.

10.6 Low Thrust Trajectories

The maturity of current ion engine technology has brought low thrust con-
trols into the practical world of mission design in industry and in NASA
(cf. the Deep Space 1 mission). Similar work is being done at the European
Space Agency (cf. the SMART-1 lunar mission).

The design of spacecraft trajectories characterized by continuous thrust
levels that are very low compared to the vehicle weight represent a challeng-
ing class of optimization problems. Low thrust trajectories are demanding
because realistic forces due to oblateness, and third-body perturbations of-
ten dominate the thrust. Furthermore, because the thrust level is so low,
significant changes to the orbits require very long duration trajectories.
Using the small continuous control thrust efficiently will have important
implications for multi-moon orbiter and other missions in the future which
intend to use low thrust technology.
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The low thrust regime is defined by the maximum acceleration fmax of
the spacecraft, the ratio of the maximum thrust (Fmax) to mass (m),

fmax =
Fmax
m

. (10.6.1)

If this ratio is at or below approximately 10−2g, where g = 9.7803267 m/s2

is the acceleration due to gravity on the Earth’s equator, then the thrust
level is deemed “low thrust” (Chobotov [1996]).

Low thrust trajectories, unlike the high thrust trajectories we have dis-
cussed previously, are trajectories which, while the thrust is on, continu-
ously change the spacecraft’s three-body energy, eq. (2.3.13). One thus can
imagine a picture where the Hill’s region changes in time. The most effi-
cient low thrust trajectories will be those which go from, say, the exterior
realm to a close orbit around a moon in the capture realm using the least
fuel, as in Figure 10.6.1.

Europa

S/C

Jupiter

Europa

S/C

Figure 10.6.1. Changing three-body energy via low thrust control. Suppose

that we begin in the exterior region of the Jupiter-Europa-spacecraft three-body system.

If our goal is to spiral in on a Jupiter-centered orbit until a capture at Europa is effected,

we turn on the thrust with the thrust vector anti-parallel to the velocity. We monitor

the three-body energy E of the spacecraft (S/C), which is changing continuously as we

thrust. This energy, which is constant for the motion of the S/C in the field of Jupiter

and Europa in the case of no-thrust (coasting), can easily be computed via eq. (2.3.13).

For most of the spiral-in, the L2 neck through which the S/C will reach Europa is closed

(left figure). The neck opens up above the energy of L2, E2 (right figure). We illustrate

this in the Jupiter-Europa rotating frame.

In other words, one wants to use low thrust so that a spacecraft will
go through the neck when it is narrowest. It makes sense to begin an
extension of the dynamical systems methods we have discussed thus far
to this situation where the energy, and thus the tube and lobes, are now
changing.
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Naive Approach: Heliocentric to Callisto Example. Based on this
simplified picture of continuously changing energy surfaces, one can con-
struct low thrust spacecraft (S/C) trajectories using control laws which
are simple to implement. Consider the problem of obtaining a scientific
orbit about Callisto from a near-Earth but heliocentric orbit. One would
start with an arrival time and desired S/C orbit about Callisto, obtained
from mission requirements. One numerically integrates in reverse time ap-
plying the maximum thrust, i.e., ||F|| = Fmax, anti-parallel to the orbit
velocity vector ẋ. In reverse time the orbit will “spiral out,” increasing the
semi-major axis, three-body energy, and apoapse (see Kluever [1998]). The
desired orbit about Callisto has no constraints, i.e., the method is valid for
all desired orbits, such as polar orbits which are useful for scientific investi-
gation of a body. As the three-body energy increases (in reverse time) and
the orbit apoapse nears the Hill radius, the necks about L1 and L2 open.
When these necks open, reverse time escape from Callisto to an orbit about
Jupiter is permitted, as shown in Figure 10.6.2(a). We will refer to this or-
bit about Jupiter as the pre-capture orbit, since it leads to a capture into
an orbit about Callisto in forward time.

If a pre-capture orbit about Jupiter with a Jupiter-centered semi-major
axis larger than Callisto’s semi-major axis is desired, then the reverse time
trajectory should proceed through the L2 neck, which is the case for Figure
10.6.2(a), with the pre-capture orbit shown in Figure 10.6.2(b). If a pre-
capture orbit with a semi-major axis less than Callisto’s is desired, then
the reverse time trajectory should proceed through the L1 neck. An L1

or L2 neck escape can be obtained by finely tuning the duration of the
thrusting portion during the Callisto-centered reverse time escape before
a coast period begins (in which no thrust is applied, F = 0) in reverse
time. The sensitivity of the orbital dynamics of the S/C when it reaches
the Hill radius makes escape toward either the L1 or L2 neck possible. The
appropriate thrust duration can be found by a simple scanning procedure
in which one adjusts the duration and records whether an L1 or L2 neck
escape occurred.

By integrating backward from a Callisto orbit and forward from an Earth
orbit to a common intersection state, we are able to construct an end-to-end
low-thrust Earth to Callisto trajectory. Such a phase would be necessary
for any trajectory to sequentially orbit Jupiter’s icy moons. By adjusting
a small number of parameters using an optimizer, one is able to reach a
common intersection state.

This naive approach can also be used for computing the transition be-
tween moons. For example, one computes a Ganymede capture trajectory
in much the same way as the escape trajectory from Callisto (except for
time reversal). This would guarantee a capture onto a desirable Ganymede
scientific orbit from a desirable Callisto scientific orbit. When the capture
trajectory (going backward in time) reaches a Jupiter-centered orbit head-
ing toward Callisto in a Jupiter-centered inertial reference frame, we label
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Figure 10.6.2. A low-thrust trajectory from Earth to a Callisto polar orbit

obtained using the naive approach. (a) The spacecraft (S/C) trajectory is shown in a

Callisto-centered inertial frame. The arrows along the S/C trajectory indicate the thrust

direction. Coasting arcs are given by the absence of arrows. The outer most portion of

the Callisto capture spiral is shown. The trajectory will spiral into a desired orbit at the

desired arrival time. The S/C capture trajectory was obtained by reverse time integration

from the desired orbit at the desired epoch. In reverse time, the S/C “escapes” to an

orbit around Jupiter in the Jupiter realm through the L2 neck. In forward time, it is

captured by Callisto from a pre-capture orbit around Jupiter, which is shown in (b). (b)

The same S/C trajectory is shown in a Jupiter-centered inertial frame, and extending

further back in time to where the S/C entered the Jupiter realm from the Sun realm.

This pre-capture orbit originated at Earth and has a very low inclination with respect to

Jupiter. The arrows along the S/C trajectory indicate the thrust direction. The orbits

of the four Galilean moons of Jupiter are shown. The spiral is approaching Callisto’s

orbit and will enter the realm around Callisto through the L2 neck.



288 10. Multi-Moon Orbiters and Low Thrust Trajectories

this time and state (xT ,vT , tT ), where the subscript “T” stands for tar-
get. For the Jupiter-centered transition portion between the two moons,
we would use a control law to target (xT ,vT , tT ), as in a rendezvous prob-
lem. The motion of the S/C in the Jupiter-centered transition portion is
essentially a Kepler problem (the S/C in the field of Jupiter) with the
moons as minor perturbations. There are known techniques for solving the
rendezvous problem, as touched on in §8.3 and these could be implemented.

Furthermore, solving the rendezvous problem would also shed light on
the trajectory correction problem to correct for control or modeling errors
(e.g., re-design of nominal trajectory portions vs. returning to nominal
trajectory portions).

A natural next step is to consider guidance, navigation, and control issues
for a candidate low thrust MMO trajectory such as the one presented
here. Toward this end, one can follow the methodology presented in Desai,
Bhaskaran, Bollman, Halsell, Riedel, and Synnott [1997] and incorporate
the appropriate algorithms into an overall software package.

Other Approaches, Open Problems, and Remarks.

• Lyapunov-based transfer between orbits in the restricted three-body
problem. The naive approach can be improved upon if more infor-
mation regarding the phase space structure is incorporated into the
control law design. One area of possible study is to extend the two-
body work of Chang, Chichka, and Marsden [2002] to a three-body
context and consider the transfer of satellites between orbits of the
restricted three-body problem using Lyapunov stability theory spe-
cific to this problem. The goal is to find a Lyapunov function, which
gives a feedback controller such that the target orbit becomes a lo-
cally asymptotically stable periodic orbit in the closed-loop dynamics.
One could start first in the Hill problem for simplicity.

• Systematic study of transfers related to distant retrograde orbits. Dis-
tant retrograde orbits (DROs) are three-body orbits that encompass
the secondary body and lie entirely outside the libration points L1

and L2. Whiffen [2003] studied the process of alternate capture and
escape trajectories in the context of a low thrust MMO of the Galilean
moons and identified the dynamics near unstable DROs as partic-
ularly suitable for capture and escape. He found this to be espe-
cially true if a low retrograde orbit about a moon is an ultimate tar-
get. While Whiffen’s observations are intriguing, a systematic study
of the dynamics associated with DROs to further exploit this phe-
nomenon has yet to be performed, e.g., their invariant manifolds and
how they connect with realms around the moons and resonances be-
tween moons. They may have an important role similar to the role of
periodic orbits and NHIMs related to libration points which we have
discussed in previous chapters.
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• Trajectory correction maneuvers for low thrust trajectories in a three-
body context. As low thrust trajectories in a multi-body environment
can be unstable to perturbations, one needs to consider model uncer-
tainty, unmodeled dynamics, and noise. Moreover, one wants to an-
swer the following question: when errors occur, should one re-target
the original (nominal) trajectory or re-generate a new “nominal” tra-
jectory?

• Merging optimal control with dynamical systems theory. The con-
struction of exotic spacecraft orbits using tube and lobe dynamics
requires optimal thruster controls to navigate dynamically sensitive
regions of phase space. Using optimal, fuel minimizing impulsive and
continuous thrust, is the most efficient and natural way to take ad-
vantage of the delicate dynamics.

Lawden [1963] developed Primer Vector Theory, the first successful
application of optimal control theory to minimize fuel consumption
for trajectories with impulsive thrusts in the two-body problem. The
extension of Primer Vector Theory to continuous low-thrust control
for the restricted three-body problem is a current area of active re-
search. Our work on this problem indicates that developing opti-
mal control theory within the dynamical systems framework shows
promise for producing a numerical solution in the three-body context.

In our ongoing effort to use the methods of optimal controls to study
the orbit transfer problem for certain JPL space missions, we are ex-
ploring the “direct” method for solving the optimal control problem.
In the direct method, the optimal control problem can be first ap-
proximated by a discrete optimization problem using a collocation
or multiple shooting discretization scheme. Then the resulting opti-
mization problem is solved numerically with a sophisticated sequen-
tial quadratic programming (SQP) technique. While the numerical
algorithm of the direct method is quite robust for certain types of
two-body problems, we do not expect that application to the three-
body regime will be completely straightforward. It would also be in-
teresting to explore the ways in which optimal control in the presence
of mechanics (as in, for example, Koon and Marsden [2000]) is useful
in this problem.

As usual, for any numerical algorithm, a good initial guess is vital,
especially if the problem is very sensitive numerically. Dynamical sys-
tems theory can provide geometrical insight into the structure of the
problem and even good approximate solutions. Clearly, this theoreti-
cal insight and its derivative numerical tools can aid in the construc-
tion of superior initial guesses that lead to a convergent solution.

A deeper understanding of the dynamical structure of the restricted
three-body problem, including the ideas we have contributed in this
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book, may suggest alternative formulations of the optimizing scheme
which are based more on the geometry of the phase space. Instead
of “numerically groping in the dark,” algorithms could be developed
with the natural dynamics built in, thereby yielding better conver-
gence properties.

• Discrete mechanics and optimal control. A new approach to the so-
lution of optimal control problems for aerospace and mechanical sys-
tems shows great promise for low thrust missions. Known as dis-
crete mechanics and optimal control (DMOC), it is based on a di-
rect discretization of the Lagrange-d’Alembert principle of the sys-
tem instead of the associated forced Euler–Lagrange equations. The
resulting forced discrete Euler–Lagrange equations then serve as con-
straints for the optimization of a given cost functional.

Several benefits of using this approach are expected. For instance, in
variational integrators, one respects the energy of forced and damped
systems much better than with standard algorithms. Correspond-
ingly, the energy budget of a control system is expected to be more
accurately computed using DMOC, and this will be especially so for
long duration simulations, such as long low-thrust missions. In ad-
dition, one expects DMOC methods to be more robust to modeling
errors.



Appendix A
Related Literature

A.1 How This Book Fits into the Larger
Body of Literature

The work covered in this book is connected to a larger picture which we take
a few pages to cover here to direct the interested reader to the appropriate
references for additional information.

Of course there are many specific references to journal articles on dy-
namical systems theory and mission design throughout the book. Of works
in book form, we especially direct the reader to the four volume set Dy-
namics and Mission Design Near Libration Points by Gómez, Jorba, Llibre,
Mart́ınez, Masdemont, and Simó [2001] and Capture Dynamics and Chaotic
Motions in Celestial Mechanics by Belbruno [2004] which both complement
the present work.

In the remainder of this section, the focus is on topics and relevant
literature whose scope just touches the subject presented in this book.

Multiscale Dynamics and Phase Space Transport. The subject
of dynamical systems has experienced considerable theoretical growth as
well as having made significant applications, mainly motivated by recent
progress in the development of numerical techniques for dynamical prob-
lems and the availability of more powerful computational facilities. How-
ever, many interesting and challenging problems remain. One area of par-
ticular interest is phase space transport , a unified mathematical description
of dynamical processes which can be applied to a wide range of physical
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phenomena across many scales, such as atomic physics (Jaffé, Farrelly, and
Uzer [1999]), physical chemistry (Davis and Gray [1986]; De Leon and Ling
[1994]; Martens, Davis, and Ezra [1987]; Vela-Arevalo [2002]; Burbanks,
Waalkens, and Wiggins [2004]; Gabern, Koon, Marsden, and Ross [2005]),
fluid mixing (Haller and Mezic [1998]; Poje and Haller [1999]; Haller and
Yuan [2000]; Haller [2001]; Lekien [2003]), climate models (Pierrehumbert
[1991a,b]), asteroid and comet evolution (Koon, Lo, Marsden, and Ross
[2000, 2001a]; Ross [2003, 2004]; Koon, Marsden, Ross, Lo, and Scheeres
[2004]; Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross,
and Thiere [2005]; Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, and
Thiere [2005]), stellar motion (Hénon and Heiles [1964]; Fordy [1991]), and
cosmological models of large scale mass distribution in the universe (De
Oliveira and Damião Soares [1998]; De Oliveira, Sauto, Damião Soares,
and Tonini [2001]).

These physical systems can be modeled initially as non-integrable dy-
namical systems, and many are Hamiltonian with n ≥ 2 degrees of freedom
(n dof). Simulation and theoretical understanding of this rich class of prob-
lems is important to many areas of science and engineering. The restricted
three-body problem is just one problem in this large class of systems which
have a global mixed phase space structure of stable and chaotic zones: KAM
tori and chaotic sea (cf. MacKay, Meiss, and Percival [1984, 1987]; Meiss
and Ott [1986]; Malhotra [1996]; Malhotra, Duncan, and Levison [2000]).

To realistically model some problems requires n ≥ 3 dof (Koon, Marsden,
Ross, Lo, and Scheeres [2004]; Wiesenfeld, Faure, and Johann [2003]), i.e., a
phase space of six dimensions or more. This high dimensionality has made
the systematic study of such systems difficult.

However, recent work by the authors and others on Hamiltonian systems
of 3 dof (Gómez, Koon, Lo, Marsden, Masdemont, and Ross [2004]; Gabern,
Koon, Marsden, and Ross [2005]) has led to some progress using a variety
of important semi-analytical and numerical tools. Moreover, there are some
indications that this class of problems contains the essential elements of n
dof, n ≥ 4, systems. For example, in 3 dof the KAM tori no longer have the
dimensionality to bound volumes of phase space, and evidence suggests the
co-dimension one manifolds associated to bound invariant objects provide
the important barriers to transport—partial barriers. There are at least two
fundamental kinds of partial barriers, associated with two spatio-temporal
dynamical scales, related to tube and lobe dynamics, respectively that we
discuss in what follows.

This book fits in as one component of an overall research effort to develop
new analytical and computational tools to treat phase space transport qual-
itatively and quantitatively, for Hamiltonian systems with three or more
degrees of freedom. Some of the important techniques are as follows.
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Invariant Manifolds, Tube and Lobe Dynamics. For many systems,
the Hamiltonian is of the form kinetic plus effective potential. The shape
of the potential provides information about unstable and stable equilibria
as well as the geometry of realms surrounding equilibria, which partition
the energy manifold on the coarsest level. The energy value determines the
connectivity of the realms. For a rank one saddle, the transport between
realms is mediated by phase space tubes bounded by the stable and unstable
manifolds associated to normally hyperbolic invariant manifolds around
unstable equilibria. The theory of tube dynamics developed in this book
(building from Koon, Lo, Marsden, and Ross [2000] and numerous later
papers) can be used as a basis of a statistical theory for the computation
of transport rates between realms. An illustration of tube dynamics for a
three degree of freedom system is shown in Figure A.1.1(a). For further
details, see the theory of Gómez, Koon, Lo, Marsden, Masdemont, and
Ross [2004].

Earth Realm Moon Realm

x

y

174

Figure G.7: Section (γ = 0) of the four dimensional phase space structure for ν = 0 and

associated sliced separatrix

G.3.2 Lobe Dynamics and Decay Rates

Fig. G.7 and G.8 show two different three-dimensional sections of the manifolds in the

4-dimensional space. Associated with each of these section is a sliced separatrix, that may

be continuous or discontinuous.

G.3.3 Results

In order to give a clear representation of the method used to define the separatrix we chose

a point that should obviously be inside, so we can associate each intersection point with

an angular position α (Fig. G.9).

The use of α is interesting because, as soon as we are only interested in intersec-

tion points, it reduces the two-dimensional (r, pr)-subspace to a one-dimensional α-space.

When two intersection points are mixing, their α value must be the same. The reverse

proposition is however not true due to the presence of secondary intersection points at the

(a) (b)

Figure A.1.1. Tube dynamics and lobes dynamics describe the global trans-

port in phase space in a multi-scale way. (a) Tubes connecting realms, the largest

pieces of phase space, as seen in the phase space of a Hamiltonian system with three

degrees of freedom. For visualization, three of the phase space dimensions have been sup-

pressed (adapted from Topper [1997]). (b) A 3-dimensional section of the 4-dimensional

lobe structure from work by Lekien [2003].

To study the transport between subsets within a particular realm, lobe
dynamics is also needed. It provides a geometric framework for discussing,
describing, and quantifying organized structures relevant to transport within
a realm. Tube dynamics has been applied in conjunction with lobe dynam-
ics to give a full picture of the global phase space transport for systems with
2 dof (Koon, Marsden, Ross, Lo, and Scheeres [2004]). This success encour-
ages researchers to extend the combination of the techniques to n ≥ 2 dof,
which preliminary studies have suggested is possible (see Figure A.1.1(b)
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and Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, and
Thiere [2005]; Lekien [2003]).

Merging Tube Dynamics and Lobe Dynamics Into a Single Ge-
ometric Theory of Transport. The recent work of Dellnitz, Junge,
Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, and Thiere [2005] is
a first step toward an exact global theory of transport. Such a picture
requires the merging of tube dynamics with lobe dynamics. The main the-
orem of Koon, Lo, Marsden, and Ross [2000] strongly suggests that tube
dynamics and lobe dynamics are linked, and numerical experiments verify
this (Koon, Lo, Marsden, and Ross [2001a]; Ross, Koon, Lo, and Marsden
[2003, 2004]). Such a unification is strongly needed. Chemists have used
variants of both tube dynamics (Topper [1997]; De Leon, Mehta, and Top-
per [1991a,b]; Ozorio de Almeida, De Leon, Mehta, and Marston [1990])
and lobe dynamics (Davis and Gray [1986]; Davis [1985]) to study molecu-
lar dynamics, but these two pictures, which have remained distinct, should
come together.

Techniques of Almost Invariant Sets. Almost invariant set meth-
ods, which use tree structured box elimination and graph partitioning algo-
rithms, have proven to be powerful tools. Developed by the German groups
in Paderborn and Berlin (Dellnitz, Froyland, and Junge [2001]; Dellnitz and
Hohmann [1997]; Dellnitz, Hohmann, Junge, and Rumpf [1997]; Dellnitz
and Junge [1999, 2002]; Dellnitz and Preis [2002]) they have been used to
determine, for instance, different molecular conformations and the compu-
tation of transition rates between them. The combining of almost invariant
set techniques with invariant manifold and lobe dynamics techniques for
systems with 2 dof has had a good start. For example, dynamical systems
techniques have been used to identify regions in which box refinements
are needed and this speeds up the computation considerably. Furthermore,
the transport rates using both the box subdivision algorithm and fast and
efficient lobe dynamics techniques have been shown to be in excellent agree-
ment (see Figure A.1.2 and Dellnitz, Junge, Koon, Lekien, Lo, Marsden,
Padberg, Preis, Ross, and Thiere [2005]). This agreement supports the
contention that almost invariant set methods will be a powerful tool for
studying phase space transport in higher dimensions.

Variational Integration for Accurate Long Term Simulation. For
future problems, it will be important to incorporate variational integrators
with set oriented methods for the computation of the geometric structures
mediating phase space transport in n dof Hamiltonian systems and the
associated quantities. Variational integrators improve the accuracy of sim-
ulations by making use of algorithms based directly on the discretization
of variational principles. They provide a systematic and powerful extension
of symplectic integrators that have a proven track record in celestial me-
chanics for long-term integrations (Duncan, Quinn, and Tremaine [1989];
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Figure A.1.2. Almost invariant sets and dynamical systems techniques make

computation of phase space transport quantities efficient. (a) A decomposition

of a part of a 2-dimensional Poincaré map into seven almost invariant sets. (b) Suppose

we are interested in transport between just two regions. Dynamical systems techniques

have been used to identify regions in which box refinements are needed, i.e., where the

lobes are located, and this speeds up the computation considerably.

Wisdom and Holman [1991]; Saha and Tremaine [1992]).

Many recent references develop and document the success of this method-
ology (Marsden, Patrick, and Shkoller [1998]; Kane, Marsden, Ortiz, and
West [2000]; Marsden and West [2001]). The exact preservation of con-
served quantities, such as energy, is a natural consequence of the discrete
variational principle. In addition, many statistical quantities, such as tem-
perature and the structure of chaotic invariant sets, are accurately captured
by variational integrators (Lew, Marsden, Ortiz, and West [2003]; Rowley
and Marsden [2002]; Lew, Marsden, Ortiz, and West [2004]).

GAIO and MANGEN. Before concluding this section, we give a very
brief discussion of the software packages GAIO (Global Analysis of Invari-
ant Objects) and MANGEN (Manifold Generation), which have been used
for transport calculations.

GAIO (see http://www-math.uni-paderborn.de/~agdellnitz/gaio/

and Dellnitz and Junge [2002]) is a set oriented software based on subdivi-
sion methods with a searchable tree structured architecture, designed for
computing invariant or almost invariant sets in dynamical systems. It also
computes transport rates, optimization and related tasks. MANGEN (see
Lekien [2003]; Lekien and Coulliette [2003]; Lekien, Coulliette, and Mars-
den [2003]) is complementary software that computes invariant manifolds,
lobe dynamics and related tasks for dynamical systems. It was designed for
computing fluid transport properties, such as pollution mixing rates and
barriers to transport in time dependent fluid flows. It is quite remarkable
that MANGEN and GAIO work together in complementary ways and that
MANGEN is also useful in an astrodynamical and dynamical astronomy

http://www-math.uni-paderborn.de/~agdellnitz/gaio/
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context (see Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis,
Ross, and Thiere [2005]).

Software packages like GAIO and MANGEN will be indispensable tools
for computational science in the years to come. An important goal of future
work is to continue the merging and extension of this software as well as
incorporating variational integration techniques.
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333. Birkhäuer, Basel.

Doedel, E. J., R. C. Paffenroth, H. B. Keller, D. J. Dichmann, J. Galan, and
A. Vanderbauwhede [2003], Continuation of periodic solutions in conser-
vative systems with application to the 3-body problem, International
Journal of Bifurcation and Chaos, 13, 1353–1381.



Bibliography 301

Duncan, M., T. Quinn, and S. Tremaine [1989], The long-term evolution
of orbits in the solar system - A mapping approach, Icarus, 82, 402–418.

Dunn, G. L. [1962], A high-speed data link for farside lunar communica-
tions, General Electric Co. Report 62 SPC-5, March 1962.

Euler, L. [1767], De motu rectilineo trium corporum se mutuo attrahen-
tium, Novi commentarii academiae scientarum Petropolitanae, 11, 144–
151. In Oeuvres, Seria Secunda tome XXV Commentationes Astronom-
icae (page 286).

Farquhar, R. W. [1966], Station-keeping in the vicinity of collinear libration
points with an application to a Lunar communications problem, in Space
Flight Mechanics, Science and Technology Series, volume 11, pages 519–
535. American Astronautical Society, New York.

Farquhar, R. W. [1969], Future missions for Libration-point satellites, As-
tronautics and Aeronautics, 7, 52–56.

Farquhar, R. W. [1972], A halo-orbit Lunar station, Astronautics and Aero-
nautics, 10, 59–63.

Farquhar, R. W. [2001], The flight of ISEE-3/ICE: origins, mission history,
and a legacy, The Journal of the Astronautical Sciences, 49, 23–73.

Farquhar, R. W. and D. W. Dunham [1981], A new trajectory concept for
exploring the Earth’s geomagnetic tail, Journal of Guidance and Control
4, 192–196.

Farquhar, R. W. and A. A. Kamel [1973], Quasi-Periodic orbits about the
translunar libration point, Celestial Mechanics, 7, 458–473.

Farquhar, R. W., D. P. Muhonen, C. Newman, and H. Heuberger [1979],
The first libration point satellite, mission overview and flight history. In
AAS/AIAA Astrodynamics Specialist Conference, Provincetown, Mas-
sachussetts.

Farquhar, R. W., D. P. Muhonen, C. Newman, and H. Heuberger [1980],
Trajectories and orbital maneuvers for the first libration-point satellite,
Journal of Guidance and Control, 3, 549–554.

Farquhar, R. W., D. P. Muhonen, and D. L. Richardson [1977], Mission
design for a halo orbiter of the Earth, Journal of Spacecraft and Rockets
14, 170–177.

Farquhar, R. [1968], The control and use of libration-point satellites, PhD
thesis, Stanford University.
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Gómez, G., K. Howell, J. Masdemont, and C. Simó [1998], Station keeping
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Poincaré, H. [1890], Sur la problème des trois corps et les équations de la
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