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Lagrangian Coherent Structures (LCS)

� We begin the lecture by describing a tool from compu-
tational dynamical systems applied to fluid mechanics.
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Lagrangian Coherent Structures (LCS)

� We begin the lecture by describing a tool from compu-
tational dynamical systems applied to fluid mechanics.

� Ideas behind LCS have a complex history, but the main
input for my group comes from the work of George
Haller (MIT).1

� Lets first have a look at an example of what the LCS
tool can reveal in a particular fluid system.

1Amongst the many publications, see, for example, G. Haller, [2001], Distinguished material

surfaces and coherent structures in 3d fluid flows . Physica D, 149, 248–277, G. Haller [2002],

Lagrangian coherent structures from approximate velocity data. Phys. Fluids A, 14,

1851–1861 and G. Haller [2004], Exact theory of unsteady separation for two-dimensional

flows. J. Fluid Mech., 512, 257–311.
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LCS for a GLAS-II Airfoil
How this is computed:

◦ 1. Get hold of the velocity fielda

◦ 2. Compute the LCS (below)b

◦ 3. Place particles on either side
of the computed LCS

◦ 4. Let things flow

◦ Take Home: LCS divides
particles with different dy-
namical behavior—like a sep-
aratrix

◦ Not so easy to do “by hand” for
unsteady flows

aIn this case a CFD computation that was pro-

vided by Jeff Eldredge, UCLA
bThe computation was done by Shawn Shadden
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FTLE Field
� Fluid particles satisfy (say in Rn, n = 2, 3),

ẋ = v(x, t)
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ẋ = v(x, t)

� Deformation Gradient: F = derivative of the so-
lution x wrt initial conditions (start time t0, end time
t = t0 + T ); F is an n× n matrix.

4



FTLE Field
� Fluid particles satisfy (say in Rn, n = 2, 3),

ẋ = v(x, t)

� Deformation Gradient: F = derivative of the so-
lution x wrt initial conditions (start time t0, end time
t = t0 + T ); F is an n× n matrix.

� Cauchy Green tensor: the matrix C = FTF ; mea-
sures how the flow deforms the inner product.

4



FTLE Field
� Fluid particles satisfy (say in Rn, n = 2, 3),

ẋ = v(x, t)

� Deformation Gradient: F = derivative of the so-
lution x wrt initial conditions (start time t0, end time
t = t0 + T ); F is an n× n matrix.

� Cauchy Green tensor: the matrix C = FTF ; mea-
sures how the flow deforms the inner product.

� FTLE (Finite Time Liapunov Exponent) is

σ =
1

|T |
log

√
λmax(C) .
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Definition of LCS
� An LCS (Lagrangian Coherent Structure) is

a ridge in the FTLE field. LCS are time dependent
curves in 2d flows and surfaces in 3d flows .
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Definition of LCS
� An LCS (Lagrangian Coherent Structure) is

a ridge in the FTLE field. LCS are time dependent
curves in 2d flows and surfaces in 3d flows .

� Ridge: roughly (for flows in the plane), a curve such
that transverse to the curve, the FTLE field
is falling off the fastest— like a mountain ridge.

� An LCS depends on the variable starting time; choose
the run time T long enough so the computations
resolve.

� For T > 0 one gets a repelling LCS (like a stable
manifold), while for T < 0, one gets an attracting
LCS (like an unstable manifold).
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LCS in Monterey Bay
Hard to tell what the LCS is
from the velocity field alone

◦ 1. Get hold of the velocity fielda

◦ 2. Compute the LCS

◦ 3. Place particles on either side
of the computed LCS

◦ 4. Let things flow

◦Take Home: LCS divides the
particles with different dynamical
behaviors, like a separatrix

◦ LCS still works for rather complex
multiscale flows

aData obtained from radar (Jeff Paduan) or from

HOPS (Harvard Ocean Prediction System)
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Compare w/ Experiment
◦ Can compare the movement of

real drifters placed in the Bay
with the evolution of the LCS

◦ LCS also help to navigate
efficiently—such as invariant
manifolds in the solar systems
(later)

◦ LCS also correlate with inter-
esting ocean features, such as
biological fronts
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LCS Computation
� Step 1: seed the domain with a grid of tracers
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LCS Computation
� Step 2: advect groups of particles on the grid
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LCS Computation
� Step 2: advect groups of particles on the grid

� Step 3: Compute F approximately using, for exam-
ple, central differences.
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LCS Computation
� Step 2: advect groups of particles on the grid

� Step 3: Compute F approximately using, for exam-
ple, central differences.

� Step 4: Plug into the definition of the FTLE field,
color code the values of the FTLE field, and compute
the ridges to get the LCS.
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Software
� Software—MANGEN (MANIFOLD GENERATOR)

that is able to compute, reasonably automatically, LCS
structures as well as other things of interest, such as
transport rates.2

2Mangen was written by Chad Coulliette and Francois Lekien with recent improvements by Shawn

Shadden; see Lekien, F. [2003], Time-Dependent Dynamical Systems and Geophysical

Flows , Thesis, California Institute of Technology.
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Software
� Software—MANGEN (MANIFOLD GENERATOR)

that is able to compute, reasonably automatically, LCS
structures as well as other things of interest, such as
transport rates.2

� It handles velocity fields that are explicitly given, given
from models and assimilated data (such as HOPS) or
generated by computational models.

� One must be able to compute lots of particle trajec-
tories, and systematically analyze them (compute
FTLE fields and then ridges in these fields).

2Mangen was written by Chad Coulliette and Francois Lekien with recent improvements by Shawn

Shadden; see Lekien, F. [2003], Time-Dependent Dynamical Systems and Geophysical

Flows , Thesis, California Institute of Technology.
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LCS as Lagrangian Barriers

� The main theoretical result3 of our work is an estimate
on the flux across an LCS , which in turn is a
measure of how much of a barrier that LCS is.

3Shadden, S. C., F. Lekien, and J. E. Marsden [2005], Definition and Properties of La-

grangian Coherent Structures: Mixing and Transport in Two-Dimensional Aperi-

odic Flows , Physica D (submitted); see http://www.lekien.com/~francois/papers/qlcs/.
11
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LCS as Lagrangian Barriers

� The main theoretical result3 of our work is an estimate
on the flux across an LCS , which in turn is a
measure of how much of a barrier that LCS is.

� The main result says that if the FTLE ridge is
reasonably sharp and if the run time T is
reasonably large, then the LCS is indeed a
Lagrangian barrier .

� Numerical tests show that in practice, the flux is indeed
small.

3Shadden, S. C., F. Lekien, and J. E. Marsden [2005], Definition and Properties of La-

grangian Coherent Structures: Mixing and Transport in Two-Dimensional Aperi-

odic Flows , Physica D (submitted); see http://www.lekien.com/~francois/papers/qlcs/.
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Pollution Studies
LCS can be used for studying
pollution release

◦ 1. Get hold of the velocity fielda

◦ 2. Compute the LCS

◦ 3. Release pollutants on either
side of the LCS

◦ 4. Let things flow

◦Take Home: LCS can give in-
sight into what happens to the re-
lease of pollutants.

aData obtained from radar off the coast of Florida;

F. Lekien, C. Coulliette, A.J. Mariano, E.H. Ryan,

L.K. Shay, G. Haller, J.E. Marsden Pollution re-

lease tied to invariant manifolds: A case

study for the coast of Florida, Physica D, (in

press), 2005
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Vortex Rings
Vortex rings are ubiqui-
tous

◦ Naturally occur in biology; eg,
jellyfish, squida

◦ Useful for certain highly
manouverable underwater
vehicles (Helmholtz cavities)

◦ Create vortex rings in the labb

aJohn Dabiri et al., J. of Experimental

Biology , 209 (2005)
bJohn Dabiri and Mory Gharib, J. of

Fluid Mechanics 511 (2004)
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LCS and Vortex Boundaries

� LCS can detect the boundaries of vortex rings.4

4Shadden, S. C., J. O. Dabiri, and J. E. Marsden [2005], Lagrangian analysis of entrained

and detrained fluid in vortex rings , J. Fluid Mech. (submitted).
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LCS and Vortex Boundaries

� LCS can detect the boundaries of vortex rings.4

� Computation uses experimental data (PIV).

� Can you guess what the boundary is?

4Shadden, S. C., J. O. Dabiri, and J. E. Marsden [2005], Lagrangian analysis of entrained

and detrained fluid in vortex rings , J. Fluid Mech. (submitted).
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LCS and Vortex Boundaries
� How correct were you?

� How do we know that LCS really is the boundary?

15



Vortex Ring Entraining
LCS gives detail about how
entraining occurs

◦ First movie shows that LCS really
is a good boundary

◦ Second shows what looks like
“heteroclinic lobes” and how they
are responsible for entraining and
detraining

16



Extension to 3D
� Progress on extending these types of calculations to 3D

using GAIO—Global Analysis of (Almost) In-
variant Objects5

5More on GAIO shortly; this calculation was done by Kathrin Padberg, Paderborn.
17



Future LCS Computations
� Cardiovascular studies (Charley Taylor, Mory Gharib,

John Dabiri)
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Future LCS Computations
� Cardiovascular studies (Charley Taylor, Mory Gharib,

John Dabiri)

� Atmospheric studies such as the polar vortex and the
South Pole ozone hole break up (following Jones and
Winkler, Paul Newton, Shane Ross, Tapio Schneider)

� Microfluidics (Igor Mezic, Sandra Troian)
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More CDS Tools—GAIO
� Context: Dynamics and transport problems in fluid

mechanics, astrodynamics, celestial mechanics, mission
design, chemical reaction rates.
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More CDS Tools—GAIO
� Context: Dynamics and transport problems in fluid

mechanics, astrodynamics, celestial mechanics, mission
design, chemical reaction rates.

� Two Key Concepts. Almost invariant sets
(& associated transport rates between them)
and Conley-McGehee tubes.

� Example Transport in the solar system and applica-
tion to Mars crossers6

6M. Dellnitz, O. Junge, W. S. Koon, F. Lekien, M. W. Lo, J. E. Marsden, K. Padberg, R. Preis, S. Ross,

and B. Thiere [2005], Transport in dynamical astronomy and multibody problems , Intern.

J. of Bifurcation and Chaos 15, 699–727; Dellnitz, M., O. Junge, M. W. Lo, J. E. Marsden, K. Padberg,

R. Preis, S. Ross, and B. Thiere [2005], Transport of Mars-crossers from the quasi-Hilda

region , Physical Review Letters (231102) 94, 1–4.
19



Mars-Crossers
◦ GAIO uses transfer operators associated with box subdivision
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Mars-Crossers
◦ GAIO uses transfer operators associated with box subdivision

◦ Many applications to molecular and other systems7

7See, eg, Junge, O., J. E. Marsden, and I. Mezic [2004], Uncertainty in the dynamics of

conservative maps , Proc CDC 43, 2225–2230.
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Mars-Crossers
◦ GAIO uses transfer operators associated with box subdivision

◦ Many applications to molecular and other systems7

◦ Almost invariant sets and planetary crosser lines in the three-body
system: Sun-Jupiter-third body .
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7See, eg, Junge, O., J. E. Marsden, and I. Mezic [2004], Uncertainty in the dynamics of

conservative maps , Proc CDC 43, 2225–2230.
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Tubes on Molecular and Galactic Scales

◦ Invariant manifold tubes play an important role in mission design, from
the Genesis Discovery Mission, to cheap missions to the moon, to the
Lunar gateway, to multi-moon orbiters,...8

8Koon, W. S., M. Lo, J. E. Marsden, and S. Ross [2000], Heteroclinic connections between

periodic orbits and resonance transitions in celestial mechanics , Chaos 10, 427–469.
21



Molecular Tubes
◦ Tubes mediate transport between realms & are present in molecular

systems—connecting, e.g., reactants and products .
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Molecular Tubes
◦ Tubes mediate transport between realms & are present in molecular

systems—connecting, e.g., reactants and products .

◦ CDS tools enable reaction rate computation for 3+ dof systems.9

9Dellnitz, M., K. Grubits, J. E. Marsden, K. Padberg, and B. Thiere [2005], Set-oriented com-

putation of transport rates in 3-degree of freedom systems: the Rydberg atom in

crossed fields , Regular and Chaotic Dynamics 10, 173–192; Gabern, F., W.S. Koon, J.E. Marsden,

and S.D. Ross [2005], Theory and computation of non-RRKM lifetime distributions and

rates in chemical systems with three or more degrees of freedom , (submitted).
22



Galactic Sized Tubes
◦ From Shane Ross. Tubes are known to govern structure and motion

even over galactic scales. The huge tails emanating out of some star
clusters in orbit about our galaxy are due to stars slipping into tubes
connecting the star cluster with the space outside.

x

Cluster

Galactic Center

❇

Star

R

y

Stars Leaking

out of Star Cluster

through Lagrange bottlenecks

(from large N-body simulation)

x

y

Simple Model
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Galactic Sized Tubes
◦ The figure shows a million body simulation by Combes, Leon, and

Meylan [1999]. It is believed that this process can eventually lead to
the ‘evaporation’ of some star clusters over tens of billions of years.
The estimation of this evaporation time scale is possible using a very
simple model, in principle similar to the three-body model.

24



Galactic Sized Tubes
◦ The figure shows a million body simulation by Combes, Leon, and

Meylan [1999]. It is believed that this process can eventually lead to
the ‘evaporation’ of some star clusters over tens of billions of years.
The estimation of this evaporation time scale is possible using a very
simple model, in principle similar to the three-body model.

◦ Also shown schematically is the star cluster is modelled as a smooth
potential (due to the cluster stars) plus the steady tidal field of the
galaxy. Stars which are above the energy of the Lagrange points escape
via tubes. From the tubes themselves, the half-life, or evaporation time
scale can be determined semi-analytically.
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Galactic Sized Tubes

Tadpole Galaxy and its 280 thousand light-year long tail. Presumably
a passing smaller galaxy pulled off the stars in the tail.

Photo credit: NASA ACS Science & Engineering Team.
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Back to LCS: Optimization
� Monterey Bay studies done in the context of a big

AOSN-II experiment done in summer 03 (MBARI) and
continuing as ASAP in 06 (Naomi Leonard at Prince-
ton, Steve Ramp at NPS).

26



Back to LCS: Optimization
� Optimal strategies for gliders—to optimally gather data

or to optimize trajectories. Done with NTG.10

LCS and Optimization

10T. Inanc, S.C. Shadden and J.E. Marsden, [2005], Optimal trajectory generation in ocean

flows , Proceedings of the 2005 American Control Conference, 674–679.
27



More Optimization: ESA Darwin study

◦ Group of spacecraft in a halo orbit about L2 for the Earth-Sun-spacecraft
3-body system.
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More Optimization: ESA Darwin study

◦ Group of spacecraft in a halo orbit about L2 for the Earth-Sun-spacecraft
3-body system.

◦Goal: Optimally reconfigure the group to achieve a hexagonal config-
uration, including collision avoidance, e.g., pointing to an interesting
distant solar system.11

11Provided courtesy of Sina Ober-Blöbaum and Oliver Junge.
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More Optimization: ESA Darwin study

◦ Group of spacecraft in a halo orbit about L2 for the Earth-Sun-spacecraft
3-body system.

◦Goal: Optimally reconfigure the group to achieve a hexagonal config-
uration, including collision avoidance, e.g., pointing to an interesting
distant solar system.11

◦ DMOC: N = 10 time intervals, SQP-method: E04UEF (NAG).
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More Optimization: ESA Darwin study

Darwin Movie
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DMOC: Discrete Mechanics and Optimal Control

� Use discrete mechanics to discretize the equations.
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DMOC: Discrete Mechanics and Optimal Control

� Use discrete mechanics to discretize the equations.

� Optimize a given cost function (such as the control
effort) using this with standard SQP methods using
the discrete equations of mechanics as constraints.

� Similar examples using, e.g., orbit transfer of Earth-
bound satellites using low thrust.
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Discrete Mechanics: Example
◦ Particle in R2 moving in the field of a radially symmetric polynomial

potential (left); with small dissipation (right).12

12Kane, C., J.E. Marsden, M. Ortiz, M. West [2000], Variational integrators & the Newmark

alg. for conserv. and dissip. mech. systems , Int. J. Num. Meth. Eng. 49, 1295–1325.
31
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◦Good energy behavior in both the conservative and dis-
sipative/controlled cases ; the integrator, in the absence of dissi-
pation is symplectic and angular momentum preserving.

12Kane, C., J.E. Marsden, M. Ortiz, M. West [2000], Variational integrators & the Newmark

alg. for conserv. and dissip. mech. systems , Int. J. Num. Meth. Eng. 49, 1295–1325.
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Discrete Mechanics: Example
◦ Gets key coarse variables right: statistical computations.13

13Lew, A., J. E. Marsden, M. Ortiz, and M. West [2004], Variational time integration for

mechanical systems , Intern. J. Num. Meth. in Engin. 60, 153–212.
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Discrete Mechanics: Example
◦ Gets key coarse variables right: statistical computations.13
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Excellent performance in the computation of the “temperature” (time

average of the kinetic energy) of a system of interacting particles.

13Lew, A., J. E. Marsden, M. Ortiz, and M. West [2004], Variational time integration for

mechanical systems , Intern. J. Num. Meth. in Engin. 60, 153–212.
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Why Variational?
◦ The flexibility of the variational

view allows for a natural extension
to PDEs, asynchronous computa-
tions, etc.

◦ The framework is not symplectic
maps or geometry, but multi-
symplectic geometrya

aGotay, M., J. Isenberg, J. E. Marsden and

R. Montgomery [1997], Momentum Maps and

the Hamiltonian Structure of Classical

Relativistic Field Theories , http://www.cds.

caltech.edu/~marsden/; Marsden, J. E., G. W.

Patrick, and S. Shkoller [1998], Multisymplectic

geometry, variational integrators and non-

linear PDEs , Comm. Math.Phys. 199, 351–

395; Lew, A., J. E. Marsden, M. Ortiz, and M. West

[2003], Asynchronous variational integrators ,

Archive for Rat. Mech. An. 167, 85–146.
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Theory Highlights
•Basis: discrete mechanics & Hamilton’s Principle
(roots: discrete optimal control from the 1960’s).
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Theory Highlights
•Basis: discrete mechanics & Hamilton’s Principle
(roots: discrete optimal control from the 1960’s).

•Performance: works very well for both conservative
and dissipative or forced mechanical systems

•Design: of higher-order integrators; easier than find-
ing approximate solutions to the HJ equation (Channell-
Scovel). E.g. naturally gives SPARK methods.

•Flexible and Broad: includes explicit or implicit
algorithms, extends naturally to include multisym-
plectic schemes for PDE.

• Structure Preserving: symplectic and momentum
conserving (for the non-forced case)

•Discrete Reduction: Discrete analogs of symplectic
and Poisson reduction theory.
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Discrete Mechanics

� Key Idea:14 Approximate the action integral with a
quadrature rule—gives a discrete Lagrangian :

Ld(q0, q1, h) ≈
∫ h

0

L
(
q(t), q̇(t)

)
dt

where q(t) is the exact solution of the Euler–Lagrange
equations for L joining q0 to q1 over the time step
interval 0 ≤ t ≤ h.

14See Marsden, J.E. and M. West [2001], Discrete variational mechanics and variational

integrators , Acta Numerica 10, 357–514 for a survey of the theory.
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Discrete Mechanics

� Key Idea:14 Approximate the action integral with a
quadrature rule—gives a discrete Lagrangian :

Ld(q0, q1, h) ≈
∫ h

0

L
(
q(t), q̇(t)

)
dt

where q(t) is the exact solution of the Euler–Lagrange
equations for L joining q0 to q1 over the time step
interval 0 ≤ t ≤ h.

� Using the exact value and not an approximation would
lead to a solution to the Hamilton-Jacobi equa-
tion (Jacobi, 1840)

14See Marsden, J.E. and M. West [2001], Discrete variational mechanics and variational

integrators , Acta Numerica 10, 357–514 for a survey of the theory.
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Discrete Hamilton’s Principle
� Given a discrete Lagrangian, form the action sum:

Sd =

N−1∑
k=0

Ld (qk, qk+1, hk)
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Discrete Hamilton’s Principle
� Given a discrete Lagrangian, form the action sum:

Sd =

N−1∑
k=0

Ld (qk, qk+1, hk)

� Discrete variational (Hamilton) principle: Ex-
tremize Sd with fixed end points, q0 and qN

qi

qN

δqi

Q

qi varied point

Discrete variational principle
36



Discrete Hamilton’s Principle
� vary the point qi; the only terms in the sum that are af-

fected are Ld (qi−1, qi, hi−1)+Ld (qi, qi+1, hi); this gives
the DEL, that is, the Discrete Euler–Lagrange
equations:

D2Ld (qi−1, qi, hi−1) + D1Ld (qi, qi+1, hi) = 0
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Discrete Hamilton’s Principle
� vary the point qi; the only terms in the sum that are af-

fected are Ld (qi−1, qi, hi−1)+Ld (qi, qi+1, hi); this gives
the DEL, that is, the Discrete Euler–Lagrange
equations:

D2Ld (qi−1, qi, hi−1) + D1Ld (qi, qi+1, hi) = 0

� This defines the DEL algorithm :

(qi−1, qi) 7→ (qi, qi+1)
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Simple Example
◦ Let M be a positive definite symmetric n×n matrix and V : Rn → R

be a given potential. Lagrangian: L(q, q̇) = 1
2q̇

TMq̇ − V (q).
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◦ Let M be a positive definite symmetric n×n matrix and V : Rn → R

be a given potential. Lagrangian: L(q, q̇) = 1
2q̇

TMq̇ − V (q).

◦ Choose the discrete Lagrangian to be

Ld(q0, q1, h) = h

[
1

2

(
q1 − q0

h

)T

M

(
q1 − q0

h

)
− V (q0)

]
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Simple Example
◦ Let M be a positive definite symmetric n×n matrix and V : Rn → R

be a given potential. Lagrangian: L(q, q̇) = 1
2q̇

TMq̇ − V (q).

◦ Choose the discrete Lagrangian to be

Ld(q0, q1, h) = h

[
1

2

(
q1 − q0

h

)T

M

(
q1 − q0

h

)
− V (q0)

]
◦ Use the “rectangle rule” on the action integral and the approximation

q̇ ≈ (q1 − q0)/h.
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Simple Example
◦ Let M be a positive definite symmetric n×n matrix and V : Rn → R

be a given potential. Lagrangian: L(q, q̇) = 1
2q̇

TMq̇ − V (q).

◦ Choose the discrete Lagrangian to be

Ld(q0, q1, h) = h

[
1

2

(
q1 − q0

h

)T

M

(
q1 − q0

h

)
− V (q0)

]
◦ Use the “rectangle rule” on the action integral and the approximation

q̇ ≈ (q1 − q0)/h.

◦ DEL equations are a discretization of Newton’s equations:

M

(
qk+1 − 2qk + qk−1

h2

)
= −∇V (qk)
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Simple Example
◦ Let M be a positive definite symmetric n×n matrix and V : Rn → R

be a given potential. Lagrangian: L(q, q̇) = 1
2q̇

TMq̇ − V (q).

◦ Choose the discrete Lagrangian to be

Ld(q0, q1, h) = h

[
1

2

(
q1 − q0

h

)T

M

(
q1 − q0

h

)
− V (q0)

]
◦ Use the “rectangle rule” on the action integral and the approximation

q̇ ≈ (q1 − q0)/h.

◦ DEL equations are a discretization of Newton’s equations:

M

(
qk+1 − 2qk + qk−1

h2

)
= −∇V (qk)

◦Many Other Examples: Midpoint rule, Newmark algorithms,
symplectic partitioned Runge-Kutta algorithms, Verlet, etc etc.
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Forced or Controlled Case
� Dealing with external forces is important for us as we

will be doing optimal control.
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Forced or Controlled Case
� Dealing with external forces is important for us as we

will be doing optimal control.

� For this (and the dissipative case) one discretizes the
Lagrange-d’Alembert principle:

δ

∫
L(q, q̇) dt +

∫
f · δq dt = 0
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Forced or Controlled Case
� Dealing with external forces is important for us as we

will be doing optimal control.

� For this (and the dissipative case) one discretizes the
Lagrange-d’Alembert principle:

δ

∫
L(q, q̇) dt +

∫
f · δq dt = 0

� In addition to approximating the action with the dis-
crete Lagrangian, we approximate the virtual work:

f−k · δqk + f+
k · δqk+1 ≈

∫ (k+1)h

kh

f (t) · δq(t) dt,

where f−k , f+
k ∈ T ∗Q are the left and right discrete

forces.
39



Optimization
� Idea: merge discrete mechanics and optimal control
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� Idea: merge discrete mechanics and optimal control

� Room for lots of new ideas too; eg, use discrete multi-
symplectic mechanics, pattern search ideas, SMF (sur-
rogate management framework; John Dennis), etc.
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Optimization
� Idea: merge discrete mechanics and optimal control

� Room for lots of new ideas too; eg, use discrete multi-
symplectic mechanics, pattern search ideas, SMF (sur-
rogate management framework; John Dennis), etc.

� Many existing methodologies : NTG (Milam and
Murray)—the one we used for optimization in a dy-
namic ocean environment and COOP (Petzold) that
was applied to optimal orbit insertion for Genesis15

15Serban, R., W. S. Koon, M. Lo, J. E. Marsden, L. R. Petzold, S. D. Ross and R. S. Wilson [2002],

Halo orbit mission correction maneuvers using optimal control, Automatica 38, 571–583.
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Optimization
� Idea: merge discrete mechanics and optimal control

� Room for lots of new ideas too; eg, use discrete multi-
symplectic mechanics, pattern search ideas, SMF (sur-
rogate management framework; John Dennis), etc.

� Many existing methodologies : NTG (Milam and
Murray)—the one we used for optimization in a dy-
namic ocean environment and COOP (Petzold) that
was applied to optimal orbit insertion for Genesis15

� DMOC respects the energy budget well and needs
remarkably few division points . That is, can
take large time steps, ∆t.

15Serban, R., W. S. Koon, M. Lo, J. E. Marsden, L. R. Petzold, S. D. Ross and R. S. Wilson [2002],

Halo orbit mission correction maneuvers using optimal control, Automatica 38, 571–583.
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The Lagrange Problem
� Minimize a cost function

J(x, u) =

∫ tf

t0

C(x(t), u(t)) dt

subject to dynamical (plus other) constraints:

ẋ(t) = f (x(t), u(t))

subject to initial contitions x(t0) = x0 and final condi-
tions x(tf) = xf .
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subject to dynamical (plus other) constraints:

ẋ(t) = f (x(t), u(t))

subject to initial contitions x(t0) = x0 and final condi-
tions x(tf) = xf .

� Theory. Centered on Pontryagin maximum principle,
receding horizon control,....
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The Lagrange Problem
� Minimize a cost function

J(x, u) =

∫ tf

t0

C(x(t), u(t)) dt

subject to dynamical (plus other) constraints:

ẋ(t) = f (x(t), u(t))

subject to initial contitions x(t0) = x0 and final condi-
tions x(tf) = xf .

� Theory. Centered on Pontryagin maximum principle,
receding horizon control,....

� Practice. Brute force optimization software.
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MOC: Mechanical Optimal Control

� Mechanical systems: x is a point in the velocity
phase space of the system; x = (q, q̇) ∈ TQ, where Q
is the configuration manifold.
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MOC: Mechanical Optimal Control

� Mechanical systems: x is a point in the velocity
phase space of the system; x = (q, q̇) ∈ TQ, where Q
is the configuration manifold.

� Most current software packages use SQP (sequen-
tial quadratic programing) to do the basic opti-
mization.
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MOC: Mechanical Optimal Control

� Mechanical systems: x is a point in the velocity
phase space of the system; x = (q, q̇) ∈ TQ, where Q
is the configuration manifold.

� Most current software packages use SQP (sequen-
tial quadratic programing) to do the basic opti-
mization.

� For the Lagrange problem, one has to also deal with the
constraints of the equations of motion. How these are
handled is one of the key differences between software
packages.

42



MOC: Mechanical Optimal Control

�Mechanical Case: Equations are of Euler–Lagrange
type with control forces, which are determined from the
“variational” principle of Lagrange-d’Alembert type:

δ

∫ tf

t0

L(q(t), q̇(t)) dt +

∫ tf

t0

u(t)δq(t) dt = 0

for a given Lagrangian L : TQ → R.
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MOC: Mechanical Optimal Control

�Mechanical Case: Equations are of Euler–Lagrange
type with control forces, which are determined from the
“variational” principle of Lagrange-d’Alembert type:

δ

∫ tf

t0

L(q(t), q̇(t)) dt +

∫ tf

t0

u(t)δq(t) dt = 0

for a given Lagrangian L : TQ → R.

� Our strategy16: make use of direct SQP methods for
dealing with optimization—but replace the equa-
tions of motion by their discrete variational
counterpart.

16Junge, O., J. E. Marsden, and S. Ober-Blöbaum [2005], Discrete mechanics and optimal

control , 2005 IFAC Proceedings.
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DMOC Summary
� Procedure.

◦ Choose a discrete Ld using a chosen quadrature method
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◦ Discretize the virtual work term in the Lagrange-d’Alembert prin-
ciple, giving left and right discrete forces u− and u+

◦ Result: purely algebraic constraints

D1Ld(qk, qk+1)+D2(qk−1, qk)+u−(uk, uk+1)+u+(uk−1, uk) = 0
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� Procedure.

◦ Choose a discrete Ld using a chosen quadrature method

◦ Discretize the virtual work term in the Lagrange-d’Alembert prin-
ciple, giving left and right discrete forces u− and u+

◦ Result: purely algebraic constraints

D1Ld(qk, qk+1)+D2(qk−1, qk)+u−(uk, uk+1)+u+(uk−1, uk) = 0

◦ Discretize the cost functional

Jd(qd, ud) =

N−1∑
k=0

Cd(qk, qk+1, uk, uk+1)
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DMOC Summary
� Procedure.

◦ Choose a discrete Ld using a chosen quadrature method

◦ Discretize the virtual work term in the Lagrange-d’Alembert prin-
ciple, giving left and right discrete forces u− and u+

◦ Result: purely algebraic constraints

D1Ld(qk, qk+1)+D2(qk−1, qk)+u−(uk, uk+1)+u+(uk−1, uk) = 0

◦ Discretize the cost functional

Jd(qd, ud) =

N−1∑
k=0

Cd(qk, qk+1, uk, uk+1)

◦ Hand this off to standard and powerful SQP packages, enforcing the
initial and final conditions and any other constraints.

44



Hovercraft Example
� A group of hovercraft are asked to move from a given

starting position to a hexagonal final formation shown
in an optimal way. (The hovercraft themselves need to
decide who goes where).
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� Model: mechanical systems with 3 degrees of freedom
(position (x, y), heading angle θ), so Q = R2 × S1
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Hovercraft Example
� A group of hovercraft are asked to move from a given

starting position to a hexagonal final formation shown
in an optimal way. (The hovercraft themselves need to
decide who goes where).

� Model: mechanical systems with 3 degrees of freedom
(position (x, y), heading angle θ), so Q = R2 × S1

� Two actuation forces—one along the axis of the
hovercraft (forward acceleration), and a perpendicular
force towards the rear of the hovercraft. not through
the center of mass of the hovercraft (sideways slip and
steering).
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Hovercraft Example
� The system is underactuated . The Lagrangian for

the system is the standard kinetic energy of the hov-
ercraft and the equations of motion are the standard
Euler–Lagrange equations with forcing.

r

x

y

θ

f1

f2
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Hovercraft Example
� System is underactuated , but is configuration

controllable—each point in Q can be reached by ap-
plying suitably chosen forces f1(t) and f2(t).
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Hovercraft Example
� System is underactuated , but is configuration

controllable—each point in Q can be reached by ap-
plying suitably chosen forces f1(t) and f2(t).

� The Lagrangian = kinetic energy:

L(q, q̇) =
1

2
(mẋ2 + mẏ2 + Jθ̇2),

where q = (x, y, θ), m is the mass of the hovercraft
and J its moment of inertia. The forces acting in x-,
y- and θ- direction resulting from f1 and f2 are

f (t) =

 cos θ(t)f1(t)− sin θ(t)f2(t)
sin θ(t)f1(t) + cos θ(t)f2(t)

−rf2(t)

 .
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Hovercraft Example
� Forced discrete Euler-Lagrange equations

1

h
M (−qk−1 + 2qk − qk+1) +

h

2

(
fk−1 + fk

2
+

fk + fk+1

2

)
= 0,

k = 1, ..., N − 1, where M =

m 0 0
0 m 0
0 0 J

.

� Let qi = (xi, yi, θi) the configuration of the i-th hover-
craft and by fi = (fi1, fi2) the corresponding forces.
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Hovercraft Example
� Goal: minimize the control effort needed to attain the

final formation.

49



Hovercraft Example
� Goal: minimize the control effort needed to attain the

final formation.

� Sample Cost Function: Add the costs for each
hovercraft

J(qi, fi) =

∫ 1

0

f 2
i1(t) + f 2

i2(t) dt,
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Hovercraft Example

� Left: Optimal rearrangement of a group of three hovercraft

from an initial configuration along a line into a triangle

Right: Optimal rearrangement of a group of six hovercraft

from a random initial configuration into a hexagon.
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Hovercraft Example

Hovercraft
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Locomotion Optimization

� Articulated bodies in fluids17

17Kanso, E., J. E. Marsden, C. W. Rowley, and J. Melli-Huber [2004], Locomotion of articulated

bodies in a perfect fluid , J. Nonlinear Science (to appear). We owe a lot to Scott Kelly and Jim

Radford !
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� Articulated bodies in fluids17

� Coupled rigid bodies (simulating and elastic swimming
fish) interacting dynamically with potential flow.

17Kanso, E., J. E. Marsden, C. W. Rowley, and J. Melli-Huber [2004], Locomotion of articulated

bodies in a perfect fluid , J. Nonlinear Science (to appear). We owe a lot to Scott Kelly and Jim

Radford !
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Locomotion Optimization

� Articulated bodies in fluids17

� Coupled rigid bodies (simulating and elastic swimming
fish) interacting dynamically with potential flow.

� Symplectic reduction theory from geometric mechanics
(cotangent bundle reduction theorem) proves useful;
one uses this to get rid of the fluid particle relabeling
symmetry (which gives Kelvin’s theorem).

17Kanso, E., J. E. Marsden, C. W. Rowley, and J. Melli-Huber [2004], Locomotion of articulated

bodies in a perfect fluid , J. Nonlinear Science (to appear). We owe a lot to Scott Kelly and Jim

Radford !
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Locomotion Optimization
◦ Attractive feature of DMOC:

not hard to implement

◦ This problem: find optimal
controls that achieve
a given forward move-
ment with the least
amount of expended en-
ergy . (The underlying the-
ory is related to the falling cat
theorem).a

aKanso, E. and J. E. Marsden [2005], Opti-

mal motion of an articulated body in

a perfect fluid , Proc. CDC (submitted).

The optimal flapper is due to Shane Ross.
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More Future Directions
� Use GAIO, Perron Frobenius eigenfunctions, and coarse-

fine techniques to separate local from global minima.
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fine techniques to separate local from global minima.

� Extend DMOC to the AVI context and use hierarchical
and network optimization (primal-dual ideas).
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More Future Directions
� Use GAIO, Perron Frobenius eigenfunctions, and coarse-

fine techniques to separate local from global minima.

� Extend DMOC to the AVI context and use hierarchical
and network optimization (primal-dual ideas).

� Further work on optimization and collision avoidance
using collision potentials, gyroscopic controls, and self
organized patterns.18

18Chang, D., S. Shadden, J. E. Marsden, and R. Olfati-Saber [2003], Collision avoidance for

multiple agent systems , Proc. CDC 42, 539–543.
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More Future Directions
� Use GAIO, Perron Frobenius eigenfunctions, and coarse-

fine techniques to separate local from global minima.

� Extend DMOC to the AVI context and use hierarchical
and network optimization (primal-dual ideas).

� Further work on optimization and collision avoidance
using collision potentials, gyroscopic controls, and self
organized patterns.18

� Discrete geometry (Whitney forms) for fluids and solid
mechanics

18Chang, D., S. Shadden, J. E. Marsden, and R. Olfati-Saber [2003], Collision avoidance for

multiple agent systems , Proc. CDC 42, 539–543.
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The End
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