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Lagrangian Coherent Structures (LCS)
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tational dynamical systems applied to fluid mechanics.
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Lagrangian Coherent Structures (LCS)

We begin the lecture by descril
tational dynamical systems ap

bing a tool from compu-
blied to fluid mechanics.

Ideas behind LCS have a comp!

ex history, but the main

input for my group comes from the work of

(MIT).!

Lets first have a look at an example of what the LCS

tool can reveal in a particular

' Amongst the many publications, see, for example, G.

1851-1861 and G. Haller [2004],
J. Flutd Mech., 512, 257-311.

fuid system.

Haller, [2001],
. Physica D, 149, 248-277, G. Haller [2002],
Phys. Fluids A, 14,



LCS for a GLAS-II Airfoll

How this is computed:
Get hold of the velocity field*
Compute the LCS (below)®

Place particles on either side
of the computed LCS

Let things flow

—Ilike a sep-
aratrix

Not so easy to do “by hand” for
flows

“In this case a CFD computation that was pro-
vided by Jeff Eldredge, UCLA
"The computation was done by Shawn Shadden
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Fluid particles satisfy (say in R"”, n = 2, 3),
X = v(X,1)
. F' = derivative of the so-

lution x wrt initial conditions (start time t;, end time
t=1ty+T); Fisann X n matrix.

. the matrix C' = F'F: mea-
sures how the flow deforms the inner product.
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Definition of LCS

An IS
a, in the FTLE field. LCS are time dependent
and

roughly (for flows in the plane), a curve such
that
— like a mountain ridge.

An LCS depends on the variable starting time; choose

the T" long enough so the computations
resolve.
For T > 0 one gets a (like a stable

manifold), while for T" < 0, one gets an
(like an unstable manifold).



LCS in Monterey Bay

Hard to tell what the LCS is
from the velocity field alone

Get hold of the velocity field?
Compute the LCS

Place particles on either side
of the computed LCS

Let things flow

LCS divides the
particles with different dynamical
behaviors, like a separatrix

LCS still works for rather complex
multiscale flows

“Data obtained from radar (Jeff Paduan) or from
HOPS (Harvard Ocean Prediction System)



Compare w/ Experiment

Can compare the movement of
real drifters placed in the Bay
with the evolution of the LCS

LCS also help to navigate
eficiently—such as invariant
manifolds in the solar systems
(later)

LCS also correlate with inter-
esting ocean features, such as
biological fronts



LCS Computation

. seed the domain with a grid of tracers
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LCS Computation

. advect groups of particles on the grid
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LCS Computation

. advect groups of particles on the grid

i,

. Compute F' approximately using, for exam-
ple, central differences.

. Plug into the definition of the FTLE field,
color code the values of the F'TLE field, and compute
the ridges to get the LCS.



Software

Software— (MANIFOLD GENERATOR)

that is able to compute, reasonably automatically, LCS
structures as well as other things of interest, such as
transport rates.’

2Mangen was written by Chad Coulliette and Francois Lekien with recent improvements by Shawn
Shadden; see Lekien, F. [2003],
. Thests, California Institute of Technology.
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Software— (MANIFOLD GENERATOR)

that is able to compute, reasonably automatically, LCS
structures as well as other things of interest, such as
transport rates.’

It handles velocity fields that are explicitly given, given
from models and assimilated data (such as HOPS) or
generated by computational models.

One must be able to compute lots of particle trajec-
tories, and analyze them (compute

FTLE fields and then ridges in these fields).

2Mangen was written by Chad Coulliette and Francois Lekien with recent improvements by Shawn
Shadden; see Lekien, F. [2003],
., Thesis, California Institute of Technology.



LCS as Lagrangian Barriers

The main theoretical result® of our work is an estimate
on the . which 1n turn is a
measure of how much of a barrier that LCS is.

SShadden, S. C., F. Lekien, and J. E. Marsden [2005],

, Physica D (submitted); see


http://www.lekien.com/~francois/papers/qlcs/
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LCS as Lagrangian Barriers

The main theoretical result® of our work is an estimate
on the . which 1n turn is a

measure of how much of a barrier that LCS is.

The main result says that

Numerical tests show that in practice, the flux is indeed
small.

3Shadden, S. C., F. Lekien, and J. E. Marsden [2005],

, Physica D (submitted); see


http://www.lekien.com/~francois/papers/qlcs/

Pollution Studies

LCS can be used for studying
pollution release

Get hold of the velocity field?
Compute the LCS

Release pollutants on either
side of the LCS

Let things flow

LCS can give in-
sight into what happens to the re-
lease of pollutants.

“Data obtained from radar off the coast of Florida;
F. Lekien, C. Coulliette, A.J. Mariano, E.H. Ryan,
L.K. Shay, G. Haller, J.E. Marsden

Physica D, (in
press), 2005



Vortex rings are ubiqui-
tous

Naturally occur in biology:; eg,
jellyfish, squid®

Usetul for certain highly
manouverable underwater
vehicles (Helmholtz cavities)

Create vortex rings in the lab?

“John Dabiri et al.,
, 209 (2005)
John Dabiri and Mory Gharib,
511 (2004)



LCS and Vortex Boundaries

LCS can detect the boundaries of vortex rings.*

4Shadden, S. C., J. O. Dabiri, and J. E. Marsden [2005],
, J. Fluid Mech. (submitted).
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LCS and Vortex Boundaries

LCS can detect the boundaries of vortex rings.*
Computation uses experimental data (PIV).

Can you guess what the boundary is?”

33333

B —

1Shadden, S. C., J. O. Dabiri, and J. E. Marsden [2005],
. J. Fluid Mech. (submitted).
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How do we know that LCS really is the boundary?”



Vortex Ring Entraining

LCS gives detail about how
entraining occurs

First movie shows that LCS really
18 a good boundary

Second shows what looks like
“heteroclinic lobes” and how they
are responsible for entraining and
detraining



Extension to 3D

Progress on extending these types of calculations to 3D
using

"More on GAIO shortly; this calculation was done by Kathrin Padberg, Paderborn.
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Future LCS Computations

Cardiovascular studies (Charley Taylor, Mory Gharib,
John Dabiri)

Atmospheric studies such as the polar vortex and the
South Pole ozone hole break up (following Jones and
Winkler, Paul Newton, Shane Ross, Tapio Schneider)

Microfluidics (Igor Mezic, Sandra Troian)
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More CDS Tools—GAIQO

Dynamics and transport problems in fluid
mechanics, astrodynamics, celestial mechanics, mission
design, chemical reaction rates.

Transport in the solar system and applica-
tion to Mars crossers’

OM. Dellnitz, O. Junge, W. S. Koon, F. Lekien, M. W. Lo, J. E. Marsden, K. Padberg, R. Preis, S. Ross,
and B. Thiere [2005], , Intern.
J. of Bifurcation and Chaos 15, 699-727; Dellnitz, M., O. Junge, M. W. Lo, J. E. Marsden, K. Padberg,
R. Preis, S. Ross, and B. Thiere [2005],

, Physical Review Letters (231102) 94, 1-4.
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GAIO uses associated with box subdivision

Many applications to molecular and other systems7

"See, eg, Junge, O., J. E. Marsden, and I. Mezic [2004],
, Proc CDC 43, 2225-2230.



Mars-Crossers

GAIO uses associated with box subdivision

Many applications to molecular and other systems7

Almost invariant sets and planetary crosser lines in the three-body
system:

25

Crosser line belonging to...

Mercury
Venus

15F

05k- T il A H‘HH HHH

dx/dt
o

- L L L L L L I J
-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

"See, eg, Junge, O., J. E. Marsden, and 1. Mezic [2004],
. Proc CDC' 43, 2225-2230.



Tubes on Molecular and Galactic Scales

Invariant manifold tubes play an important role in mission design, from
the Genesis Discovery Mission, to cheap missions to the moon, to the
Lunar gateway, to multi-moon orbiters,...%

EARTHL,
HALO ORBIT Ny

LUNARL,
HALO ORBIT
“GATEWAY"

LUNARL,
HALO ORBIT

®Koon, W. S., M. Lo, J. E. Marsden, and S. Ross [2000],
. Chaos 10, 427-469.
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Tubes mediate transport between realms & are present in molecular
systems—connecting, e.g., and



Molecular Tubes

Tubes mediate transport between realms & are present in molecular
systems—connecting, e.g., and

CDS tools enable reaction rate computation for 3+ dot systems.

9

dx/dt

“Dellnitz, M., K. Grubits, J. E. Marsden, K. Padberg, and B. Thiere [2005],

. Regular and Chaotic Dynamics 10, 173-192; Gabern, F., W.S. Koon, J.E. Marsden,

and S.D. Ross [2005],
, (submitted).



Galactic Sized Tubes

From Tubes are known to govern structure and motion
even over galactic scales. The huge tails emanating out of some star
clusters in orbit about our galaxy are due to stars slipping into tubes
connecting the star cluster with the space outside.

Simple Model

Star X
%

Cluster

) Galactic Center
Stars Leaking

out of Star Cluster
through Lagrange bottlenecks

(from large N-body simulation)

X



Galactic Sized Tubes

The figure shows a mallion body simulation by Combes, Leon, and
Meylan [1999]. It is believed that this process can eventually lead to
the ‘evaporation’ of some star clusters over tens of billions of years.
The estimation of this evaporation time scale is possible using a very
simple model, in principle similar to the three-body model.



Galactic Sized Tubes

The figure shows a mallion body simulation by Combes, Leon, and
Meylan [1999]. It is believed that this process can eventually lead to
the ‘evaporation’ of some star clusters over tens of billions of years.
The estimation of this evaporation time scale is possible using a very
simple model, in principle similar to the three-body model.

Also shown schematically is the star cluster is modelled as a smooth
potential (due to the cluster stars) plus the steady tidal field of the
galaxy. Stars which are above the energy of the Lagrange points escape
via tubes. From the tubes themselves, the half-life, or evaporation time
scale can be determined semi-analytically.



Galactic Sized Tubes

Tadpole Galaxy and its 280 thousand light-year long tail. Presumably
a passing smaller galaxy pulled off the stars in the tail.

NASA ACS Science & Engineering Team.



Back to LCS: Optimization

Monterey Bay studies done in the context of a big
AOSN-IT experiment done in summer 03 (MBARI) and
continuing as ASAP in 06 (Naomi Leonard at Prince-

ton, Steve Ramp at NPS).




Back to LCS: Optimization

Optimal strategies for gliders—to optimally gather data
or to optimize trajectories. Done with NTG.!"Y

LCS and Optimization

0T Inanc, S.C. Shadden and J.E. Marsden, [2005],
. Proceedings of the 2005 American Control Conference, 674-679.



More Optimization: ESA Darwin study

Group of spacecraft in a halo orbit about L9 for the Earth-Sun-spacecraft
3-body system.
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Group of spacecraft in a halo orbit about L9 for the Earth-Sun-spacecraft
3-body system.

Optimally reconfigure the group to achieve a hexagonal config-
uration, including collision avoidance, e.g., pointing to an interesting
distant solar system.!!

UProvided courtesy of Sina Ober-Blobaum and Oliver Junge.



More Optimization: ESA Darwin study

Group of spacecraft in a halo orbit about L9 for the Earth-Sun-spacecratt
3-body system.

Optimally reconfigure the group to achieve a hexagonal config-
uration, including collision avoidance, e.g., pointing to an interesting
distant solar system.!!

DMOC: N = 10 time intervals, SQP-method: EO4UEF (NAG).

Halo orbit about the Earth-Sun L2 point

L2

EEEEE

UProvided courtesy of Sina Ober-Blobaum and Oliver Junge.



More Optimization: ESA Darwin study

Darwin Movie
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DMOC: Discrete Mechanics and Optimal Control

Use discrete mechanics to discretize the equations.

Optimize a given cost function (such as the control
effort) using this with standard SQP methods using
the discrete equations of mechanics as constraints.

Similar examples using, e.g., orbit transfer of Earth-
bound satellites using low thrust.



Discrete Mechanics: Example

Particle in R? moving in the field of a radially symmetric polynomial
potential (left); with small dissipation (right).?

2Kane, C., J.E. Marsden, M. Ortiz, M. West [2000],
, Int. J. Num. Meth. Eng. 49, 1295-1325.



Discrete Mechanics: Example

Particle in R? moving in the field of a radially symmetric polynomial
potential (left); with small dissipation (right).?
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2Kane, C., J.E. Marsden, M. Ortiz, M. West [2000],
, Int. J. Num. Meth. Eng. 49, 1295-1325.



Discrete Mechanics: Example

Particle in R? moving in the field of a radially symmetric polynomial
potential (left); with small dissipation (right).?
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- the integrator, in the absence of dissi-
pation is symplectic and angular momentum preserving.

2Kane, C., J.E. Marsden, M. Ortiz, M. West [2000],
, Int. J. Num. Meth. Eng. 49, 1295-1325.



Discrete Mechanics: Example

Gets key coarse variables right: statistical computations.?

Blew, A., J. E. Marsden, M. Ortiz, and M. West [2004],
., Intern. J. Num. Meth. in Engin. 60, 153-212.



Discrete Mechanics: Example

Gets key coarse variables right: statistical computations.?
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10 10 10 10 10 10
Time

Excellent performance in the computation of the (time

average of the kinetic energy) of a system of interacting particles.

BLew, A., J. E. Marsden, M. Ortiz, and M. West [2004],
, Intern. J. Num. Meth. in Engin. 60, 153-212.



Why Variational?

The flexibility of the variational
view allows for a natural extension
to PDESs, asynchronous computa-
tions, etc.

The framework is not symplectic

maps or geometry, but
a

“‘Gotay, M., J. Isenberg, J. E. Marsden and
R. Montgomery [1997],

. Marsden, J. E., G. W.
Patrick, and S. Shkoller [199§],

. Comm. Math.Phys. 199, 351-
395; Lew, A., J. E. Marsden, M. Ortiz, and M. West
2003], :
Archive for Rat. Mech. An. 167, 85-146.


http://www.cds.caltech.edu/~marsden/
http://www.cds.caltech.edu/~marsden/
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Theory Highlights

(roots: discrete optimal control from the 1960’s).

works very well for both
mechanical systems

of integrators; easier than find-

ing approximate solutions to the HJ equation (Channe
Scovel). E.g. naturally gives SPARK methods.

includes
algorithms, extends naturally to include multisym-
plectic schemes for PDE.

conserving (for the non-forced case)

Discrete analogs of symplectic
and Poisson reduction theory.




Discrete Mechanics

1 Approximate the action integral with a
quadrature rule—gives a

h
La(qo, q1, h) %/O L(q(t),q(t)) dt

where g(t) is the of the Euler—Lagrange
equations for L joining gy to g; over the
0 <t <h.

1See Marsden, J.E. and M. West [2001],
, Acta Numerica 10, 357-514 for a survey of the theory.



Discrete Mechanics

1 Approximate the action integral with a
quadrature rule—gives a

h
Laldo, qu, ) ~ / L{q(t), 4(t)) dt

where g(t) is the of the Euler-Lagrange
equations for L joining gy to g; over the
0<t<h.

Using the exact value and not an approximation would
lead to a solution to the

1See Marsden, J.E. and M. West [2001],
, Acta Numerica 10, 357-514 for a survey of the theory.
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Discrete Hamilton’s Principle

Given a discrete Lagrangian, form the
N-1

Sa = La(qr qrrr, ha)
k=0

. Bx-
tremize Sy with fixed end points, gy and gy

di  varied point

Discrete variational principle
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the , that 1s, the
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DoLg(qi-1,qi, hi—1) + D1Lq(qi, @iv1, hi) =0



Discrete Hamilton’s Principle

vary the point ¢;; the only terms in the sum that are af-
fected are Lq (gi—1, ¢i, hi—1) +Lq (¢, @i+1, hi); this gives
the , that 1s, the

equations:

DoLg(qi-1,qi, hi—1) + D1Lq(qi, @iv1, hi) =0

This defines the DEL
(Gi-1, ;) = (Gis Qi)
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Simple Example

Let M be a positive definite symmetric n X n matrix and V' : R" — R
be a given potential. Lagrangian: L(q, q¢) = %q'TMq' — Vi(q).

Choose the discrete Lagrangian to be

L= (50w (129) v

Use the “rectangle rule” on the action integral and the approximation
g~ (q1—qo)/h
DEL equations are a discretization of Newton’s equations:

Qg1 — 2q + q—
M(k+1 th k 1)——VV(qk)

Midpoint rule, Newmark algorithms,
symplectic partitioned Runge-Kutta algorithms, Verlet, etc etc.
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will be doing optimal control.
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Forced or Controlled Case

Dealing with external forces is important for us as we
will be doing optimal control.

For this (and the dissipative case) one discretizes the
Lagrange-d’Alembert principle:

5/L(q,q)dt+/f-5th:0

In addition to approximating the action with the dis-

crete Lagrangian, we approximate the virtual work:
(k+1)h

fo - 0qr+ fii - 0qus1 & /k ) dg(t) d,

where f,", f; € T*Q are the left and right discrete
forces.
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was applied to optimal orbit insertion for Genesis'
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Optimization

merge discrete mechanics and optimal control

Room for lots of new ideas too; eg, use discrete multi-
symplectic mechanics, pattern search ideas, SMF (sur-
rogate management framework; John Dennis), etc.

Many - NTG (Milam and
Murray)—the one we used for optimization in a dy-
namic ocean environment and COOP (Petzold) that
was applied to optimal orbit insertion for Genesis®™

DMOC well and

. 'That 1s, can
take large time steps, At.

BSerban, R., W. S. Koon, M. Lo, J. E. Marsden, L. R. Petzold, S. D. Ross and R. S. Wilson [2002],
Automatica 38, 571-583.
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The Lagrange Problem

Minimize a cost function

Tz ) = / Cla(t), ult) dt

to
subject to dynamical (plus other) constraints:

o(t) = fla(t), u(t))

subject to initial contitions z(ty) = z” and final condi-
tions z(ts) = x/.

Centered on Pontryagin maximum principle,
receding horizon control.....

Brute force optimization software.
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MOC: Mechanical Optimal Control

. x 1s a point in the velocity
phase space of the system; z = (q,q) € T'Q), where ()
is the configuration manifold.

Most current software packages use
to do the basic opti-
mization.

For the Lagrange problem, one has to also deal with the
constraints of the equations of motion. How these are
handled is one of the key differences between sottware
packages.
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Equations are of Euler—Lagrange
type with control forces, which are determined from the
“variational” principle of
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MOC: Mechanical Optimal Control

Equations are of Euler—Lagrange
type with control forces, which are determined from the
“variational” principle of

5 / " Liq(t). q(t)) dt + / Cu(t)5q(t) dt = O

to to
for a given Lagrangian L : T'() — R.

Our strategy'®: make use of direct SQP methods for
dealing with optimization—but

0 Junge, O., J. E. Marsden, and S. Ober-Blobaum [2005],
, 2005 IFAC Proceedings.
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DMOC Summary

Choose a discrete L using a chosen quadrature method

Discretize the virtual work term in the Lagrange-d’Alembert prin-
ciple, giving left and right discrete forces v~ and u™

Result:
D1Lg(qxs s 1)+ Dalqr—1, ) +u™ (up, wjer 1) +u (ug 1, ug) =0
Discretize the cost functional

N—1

Ja(qa:ua) = Y CalQp Qo1 s 1)
k=0

Hand this off to standard and powerful SQP packages, enforcing the
initial and final conditions and any other constraints.
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Hovercraft Example

A group of hovercraft are asked to move from a given
starting position to a hexagonal final formation shown
in an optimal way. (The hovercraft themselves need to
decide who goes where).

mechanical systems with 3 degrees of freedom
(position (x, %), heading angle 0), so @ = R* x S

—one along the axis of the
hovercraft (forward acceleration), and a perpendicular
force towards the rear of the hovercraft. not through
the center of mass of the hovercraft (sideways slip and
steering).



Hovercraft Example

The system 1s . The Lagrangian for
the system is the standard kinetic energy of the hov-
ercraft and the equations of motion are the standard
Euler-Lagrange equations with forcing.
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Hovercraft Example

System 1s , but 1s
—each point in () can be reached by ap-
plying suitably chosen forces fi(t) and fs(t).

The Lagrangian = kinetic energy:
. [ . -
L(g,4) = 5(mid” +my” + J6°),
where ¢ = (x,¥,0), m is the mass of the hovercraft
and J its moment of inertia. The forces acting in -,
y- and 0- direction resulting from f; and fy are

cos O(t) f1(t) — sin 6(t) fo(t)
ft) = | sin6(t)fi(t) + cos O(t) fa(t)
—7 fo(1)



Hovercraft Example

Forced discrete Euler-Lagrange equations

1
=M (—=qr-1+ 2q1 — qrs1) + 5

hiffer+tfk  Jet+ Jeer)

h 2( R >_O’
m 0 0
k=1,....N—1 where M = | 0 m 0
0 0 J

Let g¢; = (x4, y;, 0;) the configuration of the ¢-th hover-
craft and by f; = (fi1, fio) the corresponding forces.
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Hovercraft Example

- minimize the control eflort needed to attain the
final formation.

Add the costs for each
hovercratt

1
T f) = / 200 + FA(0) dt,



Hovercraft Example

Optimal rearrangement of a group of three hovercratt
from an initial configuration along a line into a triangle
Optimal rearrangement of a group of six hovercraft

from a random initial configuration into a hexagon.



Hovercraft Example

Hovercraft
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Articulated bodies in fluids!’

ITKanso, E., J. E. Marsden, C. W. Rowley, and J. Melli-Huber [2004],
. J. Nonlinear Science (to appear). We owe a lot to Scott Kelly and Jim
Radford !
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Locomotion Optimization

Articulated bodies in fluids!’

Coupled rigid bodies (simulating and elastic swimming
fish) interacting dynamically with potential flow.

Symplectic reduction theory from geometric mechanics
(cotangent bundle reduction theorem) proves useful;
one uses this to get rid of the fluid particle relabeling
symmetry (which gives Kelvin’s theorem).

ITKanso, E., J. E. Marsden, C. W. Rowley, and J. Melli-Huber [2004],
, J. Nonlinear Science (to appear). We owe a lot to Scott Kelly and Jim

Radford !



Locomotion Optimization

Attractive feature of DMOC:
not hard to implement

This problem:

(The underlying the-
ory is related to the falling cat
theorem).?

“Kanso, E. and J. E. Marsden [2005],

, Proc. CDC' (submitted).
The optimal flapper is due to Shane Ross.
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More Future Directions

Use GAIO, Perron Frobenius eigenfunctions, and coarse-
fine techniques to separate local from global minima.

Extend DMOC to the AVI context and use hierarchical
and network optimization (primal-dual ideas).

Further work on optimization and collision avoidance
using collision potentials, gyroscopic controls, and selt
organized patterns.'®

Discrete geometry (Whitney forms) for fluids and solid
mechanics

8Chang, D., S. Shadden, J. E. Marsden, and R. Olfati-Saber [2003],
, Proc. CDC' 42, 539-543.
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