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Poincaré (1901) and Arnold (1966). First the set up:

2



Early History
� The topic of this lecture begins with the following ba-

sic Theorem due (more or less) to Ehrenfest (1900),
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Early History
� The topic of this lecture begins with the following ba-

sic Theorem due (more or less) to Ehrenfest (1900),
Poincaré (1901) and Arnold (1966). First the set up:

•Consider a time dependent divergence free vector
field u(x, t) on a region M ⊂ R

3 (or a Riemannian
manifold) and u(x, t) is parallel to the boundary.

• Let η(x, t) be its flow (think of particle paths): i.e.,

d

dt
η(x, t) = u(η(x, t), t)

•For each fixed t, letting ηt(x) = η(x, t), ηt ∈ Diffvol(M),
the group of volume preserving diffeomorphisms of
M (Sobolev class Hs, s > (n/2) + 1 to be precise).
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Early History
•Theorem: the following two statements are equiv-
alent:

(i) The veclocity field u(x, t) satisfies the Euler equations for
ideal (homogeneous, incompressible, inviscid) flow ; i.e.,

∂u

∂t
+ ∇uu = −grad p

(∇ is the Levi-Civita connection; in R
3, ∇uu = u · ∇u)

(ii) The curve ηt ∈ Diffvol(M) is an L2 geodesic.

3



Early History
•Theorem: the following two statements are equiv-
alent:

(i) The veclocity field u(x, t) satisfies the Euler equations for
ideal (homogeneous, incompressible, inviscid) flow ; i.e.,

∂u

∂t
+ ∇uu = −grad p

(∇ is the Levi-Civita connection; in R
3, ∇uu = u · ∇u)

(ii) The curve ηt ∈ Diffvol(M) is an L2 geodesic.

� Ebin and JEM (1970) showed that while the Euler
equations for u are a PDE, the equations for η are
an ODE in the sense that it satisfies an equation with
no derivative loss on Diffvol. Lets call this the
smoothness property .
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Early History
� In particular, this makes local existence and uniqueness

“trivial”; many other consequences too: e.g., particle
paths are C∞ even if the initial data is only Hs, any
two nearby diffeomorphisms can be uniquely joined by
a solution, etc. Many of these properties were rediscov-
ered in the fluids literature between 1970 and present.
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Early History
� In particular, this makes local existence and uniqueness

“trivial”; many other consequences too: e.g., particle
paths are C∞ even if the initial data is only Hs, any
two nearby diffeomorphisms can be uniquely joined by
a solution, etc. Many of these properties were rediscov-
ered in the fluids literature between 1970 and present.

� Interestingly, these same properties hold for other sys-
tems; eg, the integrable shallow water equa-
tion—the CH (Camassa-Holm) equation has both the
geodesic and the smoothness property and the KdV
equation has the geodesic property. But there is much
more to the story!!
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LANS-α Equation
� Motivated by work on the CH equation as well as aver-

aging techniques for variational principles by, for exam-
ple, Whitham, the LAE-α equations were introduced
by Holm, JEM and Ratiu in 1998.
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by Holm, JEM and Ratiu in 1998.

� Here are the LAE-α equations :

∂

∂t
m + (u · ∇)m − α2(∇u)T · ∆u = − grad p,

where α > 0 is a small parameter, m = (1 − α2∆)u,
div u = 0, and p is the fluid pressure.
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� Motivated by work on the CH equation as well as aver-

aging techniques for variational principles by, for exam-
ple, Whitham, the LAE-α equations were introduced
by Holm, JEM and Ratiu in 1998.

� Here are the LAE-α equations :

∂

∂t
m + (u · ∇)m − α2(∇u)T · ∆u = − grad p,

where α > 0 is a small parameter, m = (1 − α2∆)u,
div u = 0, and p is the fluid pressure.

� The original formal derivation was improved by JEM
and Shkoller in 2001 and then improved again by Bhat,
Fetecau, JEM, Mohseni and West (2003).
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LANS-α Equation
� The idea of the derivation is to average Hamilton’s

principle of ideal fluid mechanics. Recall that the
action function is defined on curves in Diffvol and may
be expressed in terms of either η or u. It is

S(η(·)) =
1

2

∫ b

a

‖u(x, t)‖2 d3x dt
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LANS-α Equation
� The idea of the derivation is to average Hamilton’s

principle of ideal fluid mechanics. Recall that the
action function is defined on curves in Diffvol and may
be expressed in terms of either η or u. It is

S(η(·)) =
1

2

∫ b

a

‖u(x, t)‖2 d3x dt

� Given a test curve ηt ∈ Diffvol, one now considers
a bundle of curves forming a tube surrounding ηt in
Diffvol; the quantity α measures the size of the
fluctuations in this tube.
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LANS-α Equation
� One expands the action function in terms of the fluc-

tuation size and truncates at cubic order in α.
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LANS-α Equation
� One expands the action function in terms of the fluc-

tuation size and truncates at cubic order in α.

� Choosing an averaging operation with natural/reasonable
properties, one averages the action principle.

� Imposing a Lie advection flow rule on the fluctuations—
a type of Taylor Hypothesis , the system closes and
one gets (after some slow and careful calcula-
tions), the averaged action function

Sα(η(·)) =

∫
M

{
1

2
‖u‖2 +

α2

2
‖∇u‖2

}
d3x.
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LANS-α Equation
� Finally, one computes the Euler–Lagrange equations

associated to this averaged action function and one gets
the LAE-α equations. In doing so, it is helpful to have
Euler-Poincaré reduction theory handy. (see
any modern textbook on geometric mechanics).
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LANS-α Equation
� Finally, one computes the Euler–Lagrange equations

associated to this averaged action function and one gets
the LAE-α equations. In doing so, it is helpful to have
Euler-Poincaré reduction theory handy. (see
any modern textbook on geometric mechanics).

� More or less by construction, we see that the flow η of
a solution u of the LAE-α equations is a geodesic on
Diffvol with respect to the H1 metric. The converse is
also true by Euler-Poincaré theory.

� Theorem. (Shkoller, 1999) The LAE-α equa-
tions have, just as with the Euler equations,
the smoothness property.
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LANS-α Equation
� Averaged equations for many other flows, such as geo-

physical flows were also obtained.
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LANS-α Equation
� Averaged equations for many other flows, such as geo-

physical flows were also obtained.

� Viscosity was added to the LAE-α equations by Chen,
Foias, Holm and Titi to produce the LANS-α equa-
tions (Lagrangian averaged Navier-Stokes equations).

� Shkoller noted that one can get the same viscosity term
by modifying (as in work of Peskin) the action principle
to include stochastic variations .

� Numerical simulations were begun by the Los Alamos
group for forced turbulent flows in a periodic box, al-
ready in 1999 and continue to the present time.
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LANS-α Equation
� These were continued by Mohseni, Kosovic, Shkoller

and JEM and extended to, e.g., decaying turbulence.
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LANS-α Equation
� These were continued by Mohseni, Kosovic, Shkoller

and JEM and extended to, e.g., decaying turbulence.

� Bottom numerical line: The LANS-α equations
are a competitive LES (Large Eddy Simulation) com-
putational model.

� The theoretical structure of LANS-α is very at-
tractive: global existence of smooth solutions in three
dimensions (even if α is the size of a molecule), a Kelvin
theorem, a nice H1 energy bound, ....

� Research in this area continues....

10



Compressible Flows
� Building on work of Holm, Bhat, Fetecau, JEM, Mohseni

& West derived the CLANS-α equations .
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Compressible Flows
� Building on work of Holm, Bhat, Fetecau, JEM, Mohseni

& West derived the CLANS-α equations .

� This is really the subject of another talk, but suf-
fice it to say that initial simulations, such as the ones
shown here make us hopeful that these will provide
good shock capturing methods as an alternative
to artificial viscosity methods.
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Compressible Flows
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Compressible Flows

Expansion fan

shock

A shock capturing WENO scheme is used to solve a set of
averaged compressible equations for a shock tube. The

quantity α controls the thickness of the shock.

13



The EPDiff Equations
� We now turn to another set of equations, the EPDiff

equations (Euler-Poincaré for the Diff group). These
equations are an n-dimensional generalization of the
CH equation for shallow water :

ut + 3uux = uxxt + 2uxuxx + uuxxx.
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The EPDiff Equations
� We now turn to another set of equations, the EPDiff

equations (Euler-Poincaré for the Diff group). These
equations are an n-dimensional generalization of the
CH equation for shallow water :

ut + 3uux = uxxt + 2uxuxx + uuxxx.

� Equivalently, the CH equation reads

mt + umx + 2uxm = 0,

where m = u − α2uxx and α2 is a positive constant.
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The EPDiff Equations
� In this m-form, the CH equation is the Lie-Poisson

equation associated with the Lie algebra of one di-
mensional vector fields and with the Hamiltonian

h(m) =
1

2

∫
u m dx.
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The EPDiff Equations
� In this m-form, the CH equation is the Lie-Poisson

equation associated with the Lie algebra of one di-
mensional vector fields and with the Hamiltonian

h(m) =
1

2

∫
u m dx.

� The CH equation is also in Euler-Poincaré form
with the Lagrangian corresponding to the H1 metric
corresponding to the Lagrangian,

l(u) =
1

2

∫
(u2 + α2u2

x) dx.
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The EPDiff Equations
� Euler-Poincaré theory tells us that the one parameter

curve of diffeomorphisms η(x, t) defined, as in the case
of the Euler equations, by

∂

∂t
η(x, t) = u(η(x, t), t)

is a geodesic in the group of diffeomorphisms of R (or,
in the spatially periodic case, the circle S1) equipped
with the right invariant metric equal to the H1 metric
at the identity.
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Hey, what are the Equations?
� Here are the n-dimensional EPDiff equations :

∂

∂t
m + u · ∇m︸ ︷︷ ︸

convection
+ ∇uT · m︸ ︷︷ ︸

stretching
+ m (div u)︸ ︷︷ ︸

expansion

= 0,

where, as before, m = (1 − α2∆)u.

17



Hey, what are the Equations?
� Here are the n-dimensional EPDiff equations :

∂

∂t
m + u · ∇m︸ ︷︷ ︸

convection
+ ∇uT · m︸ ︷︷ ︸

stretching
+ m (div u)︸ ︷︷ ︸

expansion

= 0,

where, as before, m = (1 − α2∆)u.

� In the 1d case, these reduce to the CH equations.

17



Hey, what are the Equations?
� Here are the n-dimensional EPDiff equations :

∂

∂t
m + u · ∇m︸ ︷︷ ︸

convection
+ ∇uT · m︸ ︷︷ ︸

stretching
+ m (div u)︸ ︷︷ ︸

expansion

= 0,

where, as before, m = (1 − α2∆)u.

� In the 1d case, these reduce to the CH equations.

� These equations also come up in computer vision !
There they are known as the averaged template
matching equations and are obtained (Mumford
and company, Hirani and JEM) by an optimization
process on deformations of one image to
another .
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Hey, what are the Equations?
� As a hint of the geometry to come, and as with much

of fluid mechanics, there are other suggestive and more
geometric ways of writing the equations.

18



Hey, what are the Equations?
� As a hint of the geometry to come, and as with much

of fluid mechanics, there are other suggestive and more
geometric ways of writing the equations.

� For the EPDiff equations, they can be written as

∂m

∂t
+ £um = 0,

where £u denotes the Lie derivative of m regarded as
a one form density.

18



EPDiff Properties
� The EPDiff equations have a Lagrangian and Hamil-

tonian structure in the sense of Euler-Poincaré (varia-
tional) or Lie-Poisson (Poisson brackets) theory. The
Lagrangian is the same H1 energy function as before.
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tional) or Lie-Poisson (Poisson brackets) theory. The
Lagrangian is the same H1 energy function as before.

� It follows that the flows of solutions of the EPDiff equa-
tions are geodesics on Diff and conversely, geodesics
give rise to solutions to the EPDiff equations.

19



EPDiff Properties
� The EPDiff equations have a Lagrangian and Hamil-

tonian structure in the sense of Euler-Poincaré (varia-
tional) or Lie-Poisson (Poisson brackets) theory. The
Lagrangian is the same H1 energy function as before.

� It follows that the flows of solutions of the EPDiff equa-
tions are geodesics on Diff and conversely, geodesics
give rise to solutions to the EPDiff equations.

� One more miracle: the same smoothness property
as was shared by the Euler equations is also true for
the EPDiff equations. Thus, the initial value problem
is well posed (and many other things can be read off
as well).
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Singular Solutions
� Recall that in ideal fluids, special singular solutions are

important: point vortices in the plane, vortex blobs
(= weak solutions of the 2D LAE-α equations), vortex
filaments, etc.
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Weinstein and JEM in 1983 and that work had a lot of
spin-off’s (eg, the work of Langer and Perline on inte-
grable hierarchies associated with filament dynamics).
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Singular Solutions
� Recall that in ideal fluids, special singular solutions are

important: point vortices in the plane, vortex blobs
(= weak solutions of the 2D LAE-α equations), vortex
filaments, etc.

� The geometry of singular solutions was investigated by
Weinstein and JEM in 1983 and that work had a lot of
spin-off’s (eg, the work of Langer and Perline on inte-
grable hierarchies associated with filament dynamics).

� More or less the same thing is true for the EPDiff equa-
tions! More deja vu!.
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Peakons for CH
� Now the CH equation is completely integrable and its

soliton solutions are called peakons . Unlike the usual
solitons, they are not smooth. Otherwise they have
properties similar to solitons.

� The CH equation has singular solutions whose momen-
tum is supported at points on the real line:

m(x, t) =

N∑
i=1

pi(t) δ
(
x − qi(t)

)
.
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Peakons for CH
� The corresponding velocity is obtained by convolution

with the Green’s function,

G(|x − y|) = 1
2e

−|x−y|/α ,

for the one-dimensional Helmholtz operator, Qop =
(1 − α2∂2

x), appearing in the CH momentum velocity
relationship, m = Qopu.

� Thus, the CH velocity corresponding to this momen-
tum is given by a superposition of peaked traveling
wave pulses ,

u(x, t) =
1

2

N∑
i=1

pi(t) e−|x−qi(t)|/α .
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Peakons for CH
� The resulting equations for pi(t) and qi(t), i = 1, . . . , N ,

is an integrable system for any N . This system has
a lot of fascinating algebraic geometry associated with
it (Alber, Camassa, Fedorov, Holm and JEM).
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Singular EPDiff Solutions
� Holm and Staley introduced the following measure-

valued ansatz for n−dimensional solutions of the EPDiff
equation:

m(x, t) =

N∑
a=1

∫
Pa(s, t) δ

(
x − Qa(s, t)

)
ds.
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of codimension (n − k) for s ∈ R

k with k < n.
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Singular EPDiff Solutions
� Holm and Staley introduced the following measure-

valued ansatz for n−dimensional solutions of the EPDiff
equation:

m(x, t) =

N∑
a=1

∫
Pa(s, t) δ

(
x − Qa(s, t)

)
ds.

� These solutions are supported on N surfaces (or curves)
of codimension (n − k) for s ∈ R

k with k < n.

� For example, they may be supported on sets of points
(vector peakons , k = 0), one-dimensional filaments
(strings , k = 1), or two-dimensional surfaces (sheets ,
k = 2) in three dimensions.
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Singular EPDiff Solutions
� Substitution of the solution ansatz into the EPDiff

equations gives the following integro-partial-differential
equations:

∂

∂t
Qa(s, t)=

N∑
b=1

∫
Pb(s′, t) G(Qa(s, t) − Qb(s′, t)

)
ds′ ,

∂

∂t
Pa(s, t)=−

N∑
b=1

∫ (
Pa(s, t)·Pb(s′, t)

) ∂

∂Qa(s, t)
G

(
Qa(s, t) − Qb(s′, t)

)
ds
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Singular EPDiff Solutions
� Substitution of the solution ansatz into the EPDiff

equations gives the following integro-partial-differential
equations:

∂

∂t
Qa(s, t)=

N∑
b=1

∫
Pb(s′, t) G(Qa(s, t) − Qb(s′, t)

)
ds′ ,

∂

∂t
Pa(s, t)=−

N∑
b=1

∫ (
Pa(s, t)·Pb(s′, t)

) ∂

∂Qa(s, t)
G

(
Qa(s, t) − Qb(s′, t)

)
ds

� Again, one can check that the P ’s and Q’s themselves
evolve according to an interesting Hamiltonian system
(integrability unknown!).
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Hey, Where is the Geometry?
� Now one can wheel out the old paper with Weinstein

and start making parallel statements about Poisson
structures, dual pairs, etc etc.
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Hey, Where is the Geometry?
� Now one can wheel out the old paper with Weinstein

and start making parallel statements about Poisson
structures, dual pairs, etc etc.

� Basic observation that ties everything together:

� Theorem: (Holm and JEM) The solution Ansatz
defines a momentum map (Noether current)
from T ∗ Emb(S, Rn) to the space of densities .

� Here, S is a manifold that is the support set of the P ’s
and Q’s and the momentum map is with respect to the
natural left action of the group of diffeomorphisms
of the target space. The whole system was, recall,
right invariant, hence dual pairs, ....
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Hey, Where’s the Physics?

(a) (b)

Comparison of evolutionary EPDIFF solutions in two dimensions (a)

and Synthetic Aperture Radar observations by the Space Shuttle of

internal waves in the South China Sea (b). Both Figures show

nonlinear reconnection occurring in the wave train interaction.
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Hey, Where’s the Physics?

Staley1
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Staley2
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Hey, Where’s the Physics?

Staley3
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Future Directions
� More insight into the numerics: mimetic differencing

(a la Staley) and recent developments in DEC
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Future Directions
� More insight into the numerics: mimetic differencing

(a la Staley) and recent developments in DEC

� Links to real surface waves (the derivation of the CH
equations suggests that this may be possible).

� Applications to computer vision

� Integrable structures?

� Well posedness of the singular solutions?

� The geometric setting briefly indicated in this lecture
suggests just a TON of interesting research questions.
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The End
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