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Context
� Example of a FBP: asteroid pairs.
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Context
� This talk will be about the geometry and reduction

for such problems and is based on work with Hernan
Cendra, with input from various others in the group.
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Context
� This talk will be about the geometry and reduction

for such problems and is based on work with Hernan
Cendra, with input from various others in the group.

� Others will speak about dynamical systems aspects of
these problems, including transport rates, etc.
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Important Tools
� For mechanical systems with symmetry, some of the

tools are:

•Momentum maps, ie conserved quantities

•Reduction, shape space

• Stability and the energy-momentum method

•Geometric phases
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Restricted Problems
�Restricted means that one part of the system evolves

in the field of another part of the system; Examples are

• Spherical pendulum on a Merry-Go-Round (the
pendulum dynamics does not affect the rotation
of the Merry-Go-Round)

•Fluid flow on a rotating earth (the fluid does not
affect the Earth’s rotation)

•Restricted 3-body problem
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Restricted Problems
�Restricted means that one part of the system evolves

in the field of another part of the system; Examples are

• Spherical pendulum on a Merry-Go-Round (the
pendulum dynamics does not affect the rotation
of the Merry-Go-Round)

•Fluid flow on a rotating earth (the fluid does not
affect the Earth’s rotation)

•Restricted 3-body problem

� We typically handle restricted problems by the theory
of moving systems .
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Restricted 3-body Problem
◦ consider the planar case—the spatial case is similar

◦ Kinetic energy (wrt inertial frame) in rotating coordinates:

K(x, y, ẋ, ẏ) =
1

2

[
(ẋ − ωy)2 + (ẏ + ωx)2

]

◦ Lagrangian is K.E. − P.E., given by

L(x, y, ẋ, ẏ) = K(x, y, ẋ, ẏ) − V (x, y); V (x, y) = −1 − µ

r1
− µ

r2

◦ Euler-Lagrange equations :

ẍ − 2ωẏ = −∂Vω

∂x
, ÿ + 2ωẋ = −∂Vω

∂y

where the effective potential is

Vω = V − ω2(x2 + y2)

2
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Effective potential
•Equations for the third body are those of a particle
moving in an effective potential plus a magnetic
field (Jacobi, Hill, etc)

S J

Effective Potential Level set shows the Hill region
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More Tools of the Trade
�Geometric mechanics provides a general theory

for (usually) nonrestricted problems: mechanical sys-
tems with symmetry. Eg, notions of amended potien-
tial, relative equilibria, stability by the energy-momentum
method, variational integration algorithms (symplectic
integrators), etc.

8



F2BP
� The full 2-body problem has a SE(3) symmetry and

corresponding conserved quantities
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F2BP
� The full 2-body problem has a SE(3) symmetry and

corresponding conserved quantities

�Configuration Manifold : Q = SE(3) × SE(3)

� The shape space Q/G gives the system shape
and plays an important role in reduction theory.

� Lots of work by many people, as in Dan Scheeres talk
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Reduction for the FBP
�Material points in a reference configuration Xi; i =

1 for body 1 and i = 2 for body 2

� Points in the current configuration xi.

� Given a configuration

((A1, r1), (A2, r2)) ∈ SE(3) × SE(3),

the material and spatial points are related by

x1 = A1X1 + r1 and x2 = A2X2 + r2
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Reduction for the FBP

X1

(A1, r1)

E1

E2

E3

e1

e2

e3

x1

X2

x2
(A2, r2)
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Reduction for the FBP
�Lagrangian equals kinetic minus potential energy:

L(A1, r1, A2, r2, Ȧ1, ṙ1, Ȧ2, ṙ2)

=
1

2

∫

B1

‖ẋ1‖2dµ1(X1) +
1

2

∫

B2

‖ẋ2‖2dµ2(X2) +

∫

B1

∫

B2

Gdµ1(X1)dµ2(X2)

‖x1 − x2‖

=
m1

2
‖ṙ1‖2 +

1

2
〈Ω1, I1Ω1〉 +

m2

2
‖ṙ2‖2 +

1

2
〈Ω2, I2Ω2〉

+

∫

B1

∫

B2

Gdµ1(X1)dµ2(X2)

‖A1X1 − A2X2 + r1 − r2‖
.

� Here, for instance, Ω1 = A−1
1 Ȧ1 is the body angular

velocity of the first body (with the usual identification
of 3 × 3 skew matrices with vectors.
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Reduction for the FBP
� Goal: Reduce by overall translations and rotations

and bring the machinery of geometric mechanics to
bear.

� SE(3) acts by the diagonal left action on Q:

(A, r) · (A1, r1, A2, r2) = (AA1, Ar1 + r, AA2, Ar2 + r).

�Momentum map

J : TQ → se(3)∗

is the total linear and angular momentum .

�Shape space Q/G: one copy of SE(3); coordinatized
by the relative attitude A = A−1

1 A2 and relative
position R = AT

2 (r1 − r2).
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Some Reduction Theory
� General reduction theory says that the variational prin-

ciple and the equations of motion drop (in the appro-
priate sense) to the quotient space (TQ)/G. (Similarly
to (T ∗Q)/G for Hamiltonian mechanics.
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Some Reduction Theory
� General reduction theory says that the variational prin-

ciple and the equations of motion drop (in the appro-
priate sense) to the quotient space (TQ)/G. (Similarly
to (T ∗Q)/G for Hamiltonian mechanics.

� To get a nice realization of (TQ)/G, one chooses a
connection A : TQ → g on the bundle Q → Q/G
(assume that this is a principle bundle–i.e., there are
no singularities.

� In this case, one gets a natural identification

αA : (TQ)/G → T (Q/G) × g̃

where g̃ = (Q × g)/G is the associated bundle .
Similarly for the Hamiltonian side of the story.
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The FBP Case
� Take the case in which Q = G×G for a Lie group G.

(So in our case, G = SE(3).)
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The FBP Case
� Take the case in which Q = G×G for a Lie group G.

(So in our case, G = SE(3).)

� First of all, shape space is given by

X = (G × G)/G ∼= G,

where the map π : Q = G × G → G is given by

x = π(g1, g2) = g−1
1 g2.

� A natural connection on the bundle Q → Q/G is given
by

A(g1ξ1, g2ξ2) = Adg2
ξ2

This connection has zero curvature.
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The FBP Case
� Take the case in which Q = G×G for a Lie group G.

(So in our case, G = SE(3).)

� First of all, shape space is given by

X = (G × G)/G ∼= G,

where the map π : Q = G × G → G is given by

x = π(g1, g2) = g−1
1 g2.

� A natural connection on the bundle Q → Q/G is given
by

A(g1ξ1, g2ξ2) = Adg2
ξ2

This connection has zero curvature.

� This has picked out one of the bodies as special.
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The FBP Case
� This gives rise to the identification

(T (G × G)) /G ∼= G × g × g

where we map the class of (g1, ġ1, g2, ġ2) to (x, w, ξ2),
where x = g−1

1 g2 and ξ2 = g−1
2 ġ2 as above and where

w = ẋx−1.
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The FBP Case
� This gives rise to the identification

(T (G × G)) /G ∼= G × g × g

where we map the class of (g1, ġ1, g2, ġ2) to (x, w, ξ2),
where x = g−1

1 g2 and ξ2 = g−1
2 ġ2 as above and where

w = ẋx−1.

� Thus, by general theory, the equations of motion will
reduce to equations for the variables (x, w, ξ2).
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More General Theory
� In general, the equations of motion for a given invari-

ant Lagrangian L : TQ → R drop to equations on
(TQ)/G ∼= T (Q/G) × g̃.

17



More General Theory
� In general, the equations of motion for a given invari-

ant Lagrangian L : TQ → R drop to equations on
(TQ)/G ∼= T (Q/G) × g̃.

� One gets, therefore, two sets of equations, one set of
second order equtions for the shape space variables
x ∈ Q/G and another set of equations for the vari-
ables in g̃. These equations are called the Lagrange-
Poincaré equations.
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More General Theory
� In general, the equations of motion for a given invari-

ant Lagrangian L : TQ → R drop to equations on
(TQ)/G ∼= T (Q/G) × g̃.

� One gets, therefore, two sets of equations, one set of
second order equtions for the shape space variables
x ∈ Q/G and another set of equations for the vari-
ables in g̃. These equations are called the Lagrange-
Poincaré equations.

� The equations correspond to breaking up the varia-
tional principle into two parts: one for horizontal vari-
ations (Lagrange part of the equations) and one for
vertical variations (Poincaré part of the equations).
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Back to FBP
� One can work this all out quite explicitly for the general

case of Q = G × G, where, say, G = SE(3) and for
Lagrangians of the form

L(g1ξ1, g2ξ2) =
1

2

[
Tr(K1ξ

T
1 ξ1) + Tr(K2ξ

T
2 ξ2)

]
−V (g−1

1 g2).
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T
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equals the above expression, where ξ1 = −w +xξ2x
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and the variational structure of the reduced equations.
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Back to FBP
� One can work this all out quite explicitly for the general

case of Q = G × G, where, say, G = SE(3) and for
Lagrangians of the form

L(g1ξ1, g2ξ2) =
1

2

[
Tr(K1ξ

T
1 ξ1) + Tr(K2ξ

T
2 ξ2)

]
−V (g−1

1 g2).

� The reduced Lagrangian is given by �(x, w, ξ2) which
equals the above expression, where ξ1 = −w +xξ2x

−1.

� One gets by this procedure, the correct FBP equations
and the variational structure of the reduced equations.

� Similarly, one gets the Hamiltonian version of the equa-
tions, the reduced Poission structure, etc.
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Systematic Structures
� For numerics as well as analysis of stability of relative

equilibria (analog of the libration points), the varia-
tional and Hamiltonian structures are useful.

� Previous works guessed these structures and missed
the variational structure altogether. Using reduction,
one derives them in a simple and natural way, one
gets the Jacobi integrals naturally, etc.

� Extra symmetries give extra conserved quantities and
further reductions.
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Restricted Simpler Case
� Restricted (as in restricted 3-body problem) simple

case already exhibits the basic ejection and collision
dynamics

� Point mass moving in the xy-plane under the grav-
itational field of a uniformly rotating elliptical body,
without affecting its uniform rotation.
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Restricted Simpler Case
� Restricted (as in restricted 3-body problem) simple

case already exhibits the basic ejection and collision
dynamics

� Point mass moving in the xy-plane under the grav-
itational field of a uniformly rotating elliptical body,
without affecting its uniform rotation.

�Equations of motion relative to a rotating Carte-
sian coordinate frame and appropriately normalized:

ẍ − 2ẏ =
∂V

∂x
and ÿ + 2ẋ =

∂V

∂y
,
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Restricted Simpler Case
where

V (x, y) =
1√

x2 + y2
+

1

2
(x2 + y2) + U22;

and where

U22 =
3C22

(
x2 − y2

)

(x2 + y2)5/2

� The coefficient C22 is the ellipticity .

� Jacobi integral: J = 1
2

(
ẋ2 + ẏ2 + ż2

)
− V .
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Restricted Simpler Case
where

V (x, y) =
1√

x2 + y2
+

1

2
(x2 + y2) + U22;

and where

U22 =
3C22

(
x2 − y2

)

(x2 + y2)5/2

� The coefficient C22 is the ellipticity .

� Jacobi integral: J = 1
2

(
ẋ2 + ẏ2 + ż2

)
− V .

�Moving systems approach gives, as in the RCTBP,
the Lagrangian and Hamiltonian structure and Jacobi
integral.
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Restricted Simpler Case
� Lagrangian (kinetic minus potential energy) written in

the rotating system and with angular velocity normal-
ized to unity, is

L =
1

2
[(ẋ − y)2 + (x + ẏ)2 + ż2] − U(x, y, z).

where

U(x, y, z) = −1

r
− U22.

� Euler–Lagrange equations produce the previous equa-
tions and the Legendre transformation gives the Hamil-
tonian structure, the Jacobi integral, etc.

22



F2BP: Phase Space Structure
� The Jacobi integral (energy) is an indicator of the type

of global dynamics possible.

� For energies above a threshold, E > ES, correspond-
ing to symmetric saddle points, movement between the
realm near the asteroid (interior realm) and away
from the asteroid (exterior realm) is possible. For
energies E ≤ ES, no such movement is possible.
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F2BP: Phase Space Structure
� The Jacobi integral (energy) is an indicator of the type

of global dynamics possible.

� For energies above a threshold, E > ES, correspond-
ing to symmetric saddle points, movement between the
realm near the asteroid (interior realm) and away
from the asteroid (exterior realm) is possible. For
energies E ≤ ES, no such movement is possible.

� As in the CRTBP, motion between realms is mediated
by phase space tubes .

� General theory allows us to transition what we learned
in the CRTBP to this case.
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F2BP: Phase Space Structure
� Phase space in each realm organized further into dif-

ferent resonance regions , connected via lobes .
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F2BP: Phase Space Structure
� Poincaré sections in the different realms, U1 and U2

are linked by tubes in the phase space. Under the
Poincaré map f1 on U1, a trajectory reaches an exit ,
the last Poincaré cut of a tube before it enters another
realm. The map f12 takes points in the exit of U1

to the entrance of U2. The trajectory then evolves
under the action of the Poincaré map f2 on U2.

� See Shane’s talk and the material on the FBP website
for further information.
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The End
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