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What Dirac did; what we do
�Dirac (who knew mechanics!), studied Lagrangian sys-

tems with constraints, including those arising from
degeneracies.
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What Dirac did; what we do
�Dirac (who knew mechanics!), studied Lagrangian sys-

tems with constraints, including those arising from
degeneracies.

� See his article on “Generalized Hamiltonian Mechan-
ics” in the Canadian J. of Math., circa 1950.

�He also worked on the program of going to the Hamil-
tonian side via the Legendre transformation and com-
puting the associated Poisson brackets.

� Lesson learned from examples and applications:
In many if not most cases, one does not start on the
Hamiltonian side, but rather on the Lagrangian side
with a variational principle.
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papers are written; but this seems to have been a
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What Dirac did; what we do
�Dirac understood this very clearly and it is how his

papers are written; but this seems to have been a
forgotten lesson!

�While it is quite appropriate that Dirac structures are
named after him, it seems that workers in the field
have so far left out Lagrangian mechanics from the
story! Our goal is to fill this gap (or canyon) .

� You are wrong if you believe that this gap can be
trivially filled by simply waving a Legendre transfor-
mation wand.
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Examples
• Standard nondegenerate Lagrangian and Hamiltonian sys-

tems, possibly with symmetry, possibly reduced.

• Specific case: the dynamics of asteroid pairs, such as Ida
and Dactyl:
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Examples
• Nonholonomic mechanics. Specific example is the rolling

penny. Have a look at one of my favorite books:
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Examples
• Electrical Networks. Specific example; how to analyze the

dynamics associated with this network:
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Theoretical Developments
• General development of Dirac structures (Courant, Wein-

stein, Dorfman) and reduction theory of Dirac structures
(Van der Schaft, Blankenstein, Ratiu).

• Application to nonholonomic systems and circuits, but on
the Hamiltonian side (horrors!) by Van der Schaft, Maschke,
Bloch, Crouch and others.
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Theoretical Developments
• General development of Dirac structures (Courant, Wein-

stein, Dorfman) and reduction theory of Dirac structures
(Van der Schaft, Blankenstein, Ratiu).

• Application to nonholonomic systems and circuits, but on
the Hamiltonian side (horrors!) by Van der Schaft, Maschke,
Bloch, Crouch and others.

• Lagrangian and Hamiltonian reduction theory (see article
of JM and Alan on the history of the subject).

• General symplectic and Poisson reduction are fine, but one
wants more detail for the case of tangent and cotangent
bundles. Why? Well, that is how one does examples!
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Theoretical Developments
• Hamiltonian reduction of cotangent bundles1 Start with
H : T∗Q → R and a Lie group G acting (free and proper
for simplicity) on Q. Choose a principal connection A on
the shape space bundle Q → Q/G.

1Weinstein, Sternberg, Montgomery, Cendra, JEM, Ratiu,....
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• Hamiltonian reduction of cotangent bundles1 Start with
H : T∗Q → R and a Lie group G acting (free and proper
for simplicity) on Q. Choose a principal connection A on
the shape space bundle Q → Q/G.

•Mechanics and examples tell you that this global perspec-
tive is the right one–that is, one should really choose a
connection at this point. Then,

T∗Q/G �A T∗(Q/G)× g̃∗

with its natural Poisson structure (containing curvature
terms from A), etc.

• Reduced equations on this space are called the Hamilton-
Poincaré equations. When Q = G, you get the Lie-Poisson
equations on g∗.

1Weinstein, Sternberg, Montgomery, Cendra, JEM, Ratiu,....
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Theoretical Developments
• If you do symplectic reduction in this context by impos-

ing a momentum map constraint J = µ then one gets an
associated coadjoint orbit bundle

J−1(µ)/Gµ = T∗(Q/G)× Õµ
whose symplectic structure is a combination of the KKS
orbit bracket with the cotangent bracket plus a curvature
term.
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Theoretical Developments
• If you do symplectic reduction in this context by impos-

ing a momentum map constraint J = µ then one gets an
associated coadjoint orbit bundle

J−1(µ)/Gµ = T∗(Q/G)× Õµ
whose symplectic structure is a combination of the KKS
orbit bracket with the cotangent bracket plus a curvature
term.

• This is actually useful in examples; eg, the asteroid pair
problem, in the dynamics of a fluid with a free surface.
(The Hodge decomposition provides the connection).
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Theoretical Developments
• Lagrangian reduction of tangent bundles2: Start with L :
TQ → R and a Lie group G acting (free and proper for
simplicity) on Q. Choose a principal connection A on the
shape space bundle Q → Q/G, so that

TQ/G �A T(Q/G)× g̃

2JEM, Scheurle, Weinstein, Cendra, Ratiu, ...
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Theoretical Developments
• Lagrangian reduction of tangent bundles2: Start with L :
TQ → R and a Lie group G acting (free and proper for
simplicity) on Q. Choose a principal connection A on the
shape space bundle Q → Q/G, so that

TQ/G �A T(Q/G)× g̃

• Reduced equations on this space are called the Lagrange-
Poincaré equations. When Q = G, you get the Euler-
Poincaré equations on g.

• Strategy: reduce variational principles, not symplectic or
Poisson structures. One can close up this category so that
reduction keeps you in it (reduction by stages).

• Don’t you dare choose a metric and identify TQ and T∗Q
or a Killing form and identify g and g∗!!

2JEM, Scheurle, Weinstein, Cendra, Ratiu, ...
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Theoretical Developments
•Many other variations on the theme: For example, semi-

direct product reduction theory3 and its recent generaliza-
tion to group extensions (including Bott Virasoro, Camassa-
Holm, Dym, etc).

3Guillemin-Sternberg, JEM, Weinstein, Ratiu, Leonard, Holm,...
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Theoretical Developments
•Many other variations on the theme: For example, semi-

direct product reduction theory3 and its recent generaliza-
tion to group extensions (including Bott Virasoro, Camassa-
Holm, Dym, etc).

• Stability theory4 for relative equilibria; energy-momentum
method (Arnold method, energy-Casimir, block diagonal-
ization, ....).

3Guillemin-Sternberg, JEM, Weinstein, Ratiu, Leonard, Holm,...
4Arnold, JEM, Simo, Lewis,...
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Nonholonomic Mechanical Systems

• Constraints such as rolling constraints. Dynamics gov-
erned by the Lagrange–d’Alembert principle: start with a
distribution ∆ ⊂ TQ and ask that

δ
∫
Ldt = 0

for all δq ∈ ∆. One also impose the condition q̇ ∈ ∆.
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Nonholonomic Mechanical Systems

• Constraints such as rolling constraints. Dynamics gov-
erned by the Lagrange–d’Alembert principle: start with a
distribution ∆ ⊂ TQ and ask that

δ
∫
Ldt = 0

for all δq ∈ ∆. One also impose the condition q̇ ∈ ∆.

q(a)

q(b)

Q

q(t) varied curve

δq(t) ∈ ∆
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Nonholonomic Mechanical Systems

• Reduction theory for these systems started by Jair Koiller!
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• The equations on the Hamiltonian side (assuming the La-
grangian is regular) are governed by an almost Poisson
structure and, in a sense, by an almost symplectic struc-
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Nonholonomic Mechanical Systems

• Reduction theory for these systems started by Jair Koiller!

• In general, symmetries need not lead to conservation laws;
Momentum equation discovered by BKMM. This, together
with holonomy (geometric phases) plays a crucial role in
locomotion (eg, how snakes move).

• The equations on the Hamiltonian side (assuming the La-
grangian is regular) are governed by an almost Poisson
structure and, in a sense, by an almost symplectic struc-
ture. In fact, the Jacobiator is measured by the curvature
of ∆.5

• Despite this, the system is described by a Dirac structure,
as I will explain below.

5Van der Schaft and Maschke, Bates and Sniatycki, Koon and JEM, Marle, ...
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Nonholonomic Mechanical Systems

• Despite the above, there is also an energy-momentum
method for stability (applies to the classical examples: rat-
tleback, the unicycle, ... ); there is also a picture similar
to the bundle picture above with a beautiful intrinsic geo-
metric description.6

• Resulting equations: the Lagrange-d’Alembert-Poincaré
equations.

• (Not quite as bad as hemi-quasi-twisted-algebroids, ...)

• Circuits are typically not only nonholonomic (because of
the Kirchhoff current laws), they are also often degenerate
(giving primary constraints in the sense of Dirac).

6Obtained by Cendra, Marsden and Ratiu in 2001.
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Variational methods are useful!
• Shell collisions: thin shell models using multisymplectic

variational methods, AVI + subdivision + collision meth-
ods (JEM, Ortiz, Cirac–West)

Shell collision
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A Question for you.
• The Euler–Lagrange equations come from Hamilton’s prin-

ciple

• Hamilton’s equations come from Hamilton’s phase space
variational principle

• The Euler-Poincaré equations come from the Euler-Poincaré
variational principle
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make the question harder and ask this for the Hamilton-
Poincaré equations or the Lagrange-Poincaré equations).

16



A Question for you.
• The Euler–Lagrange equations come from Hamilton’s prin-

ciple

• Hamilton’s equations come from Hamilton’s phase space
variational principle

• The Euler-Poincaré equations come from the Euler-Poincaré
variational principle

• Question: what is it for the Lie-Poisson equations? (I can
make the question harder and ask this for the Hamilton-
Poincaré equations or the Lagrange-Poincaré equations).

• Euler-Poincaré equations on g

d
dt
δl
δv

= ad∗v
δl
δv
,
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A Question for you.
• Answer:7

δ
∫ b
a
l (v(t))dt = 0

for constrained variations of the form

δv(t) = η̇(t)+ [v(t), η(t)],
where η(t) has fixed endpoints.

7See, for example, Mechanics and Symmetry by JEM and Ratiu.
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A Question for you.
• Answer:7

δ
∫ b
a
l (v(t))dt = 0

for constrained variations of the form

δv(t) = η̇(t)+ [v(t), η(t)],
where η(t) has fixed endpoints.

•Method of proof: reduce Hamilton’s principle on TG

7See, for example, Mechanics and Symmetry by JEM and Ratiu.
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A Question for you.
• Back to our question: how are the Lie-Poisson equations

µ̇ = ad∗δh/δµ µ

on g∗ variational?
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µ̇ = ad∗δh/δµ µ

on g∗ variational?

• Answer: A Pontryagin type principle:

δ
∫ b
a
(〈µ(t), v(t)〉 − h(µ(t)))dt = 0

for variations of the form

δv(t) = η̇(t)+ [v(t), η(t)],
where η(t) has fixed endpoints, but δµ are arbitrary.

18



A Question for you.
• Back to our question: how are the Lie-Poisson equations

µ̇ = ad∗δh/δµ µ

on g∗ variational?

• Answer: A Pontryagin type principle:

δ
∫ b
a
(〈µ(t), v(t)〉 − h(µ(t)))dt = 0

for variations of the form

δv(t) = η̇(t)+ [v(t), η(t)],
where η(t) has fixed endpoints, but δµ are arbitrary.

• The Legendre transformation v = δh/δµ is part of the
variational principle! Neat! We will need this sort of thing.

•Method: reduce Hamilton’s phase space principle.
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Implicit Hamiltonian Systems
• Recall: a Dirac structure on a manifold R is: a subbundle
D ⊂ TR × T∗R such that D = D⊥, where the perp is with
respect to the natural pairing

〈〈(u,α), (v, β)〉〉 = 〈β,u〉 + 〈α,v〉
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(almost) Poisson structure. [Not enough for nonholonomic
systems—one needs to put in the constraints].
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Implicit Hamiltonian Systems
• Recall: a Dirac structure on a manifold R is: a subbundle
D ⊂ TR × T∗R such that D = D⊥, where the perp is with
respect to the natural pairing

〈〈(u,α), (v, β)〉〉 = 〈β,u〉 + 〈α,v〉
• Standard examples: graph of an (almost) symplectic or

(almost) Poisson structure. [Not enough for nonholonomic
systems—one needs to put in the constraints].

• For a symplectic or Poisson manifold, a Hamiltonian vec-
tor field XH on R associated to a function H satisfies

(X,dH) ∈ D
at each point of R. For good reason, Van der Schaft calls
these things implicit Hamiltonian systems; they are an
important part of his theory of “interconnected” and “port
controlled” systems.
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The Big Diagram
• Before defining an implicit Lagrangian system, we will

need some more terminology and a “big diagram”.8

• Namely, we need two natural diffeomorphisms; first there
is the diffeomorphism

TT∗Q → T∗T∗Q

associated with the canonical symplectic form on T∗Q.

• Second, there is the natural diffeomorphism between

TT∗Q → T∗TQ

given in coordinates by (q,p, δq, δp)� (q, δq, δp,p) and
determined intrinsically by the commutativity of the fol-
lowing “big diagram”.

8Some parts of this picture are due to Tulczyjew; the full diagram was formulated by Cendra, JM
and Ratiu.
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The Big Diagram

TT ∗Q
Ωb κQ

T ∗T ∗Q T ∗TQ

π2 τT∗Q TπQ π1

i3

i2
i1

πT∗Q πTQ

T ∗Q TQ ⊕ T ∗Q TQ
pr2 pr1

πQ pr3 τQ

Q

Pontryagin Space
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Implicit Lagrangian Systems
• Let D ⊂ TT∗Q × T∗T∗Q be a given Dirac structure on
T∗Q. Let L : TQ → R be a given Lagrangian and let

DL ∈ T∗T∗Q
be dL ∈ T∗TQ transferred over to T∗T∗Q by the canoni-
cal diffeomorphisms.
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Implicit Lagrangian Systems
• Let D ⊂ TT∗Q × T∗T∗Q be a given Dirac structure on
T∗Q. Let L : TQ → R be a given Lagrangian and let

DL ∈ T∗T∗Q
be dL ∈ T∗TQ transferred over to T∗T∗Q by the canoni-
cal diffeomorphisms.

• An implicit Lagrangian system relative to the given Dirac
structure D is a vector field X on T∗Q satisfying

(X,DL) ∈ D
at each point of T∗Q.
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Standard Lagrangian Systems
• Hamilton’s principle may be rewritten so that it fits very

well with the above definition.

•Write Hamilton’s principle this way:

0 = δ
∫ b
a
L(q(t) q̇(t)) dt

=
∫ b
a

(
∂L
∂q
δq + ∂L

∂q̇
δq̇
)
dt

=
∫ b
a

(
ṗ δq − ṗ δq + ∂L

∂q
δq + ∂L

∂q̇
δq̇
)
dt

=
∫ b
a

(
−ṗ δq − pδq̇ + ∂L

∂q
δq + ∂L

∂q̇
δq̇
)
dt + pδq

∣∣∣∣b
a

= −
∫ b
a

{(
ṗ − ∂L

∂q

)
δq +

(
p − ∂L

∂q̇

)
δq̇
}
dt + pδq

∣∣∣∣b
a
.
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Comments
• This derivation can be given entirely intrinsically using

objects in the big diagram.
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Comments
• This derivation can be given entirely intrinsically using

objects in the big diagram.

• Notice that the final equations include the Legendre trans-
formation p = ∂L/∂q̇ as part of the equations. The bound-
ary term, as is (now) standard, gives the canonical one-
form.
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Comments
• This derivation can be given entirely intrinsically using

objects in the big diagram.

• Notice that the final equations include the Legendre trans-
formation p = ∂L/∂q̇ as part of the equations. The bound-
ary term, as is (now) standard, gives the canonical one-
form.

• The equations (where X(q,p) = (q,p, q̇, ṗ)) written this
way are exactly the Dirac structure equations, namely,
(X,DL) ∈ D, including the Legendre transform and also
the correct identification of q̇.
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Nonholonomic Example
• Now we are ready to state the nonholonomic equations in

terms of Dirac structures.

• Given the constraint distribution ∆ ⊂ TQ, we will now
define an associated Dirac structure D∆ on T∗Q.

• It will save time if we define D∆ when Q = V , a vector
space. Then at each point q ∈ V , ∆ ⊂ V and

D∆ ⊂ TT∗Q× T∗T∗Q
becomes, at each fiber point (q,p) ∈ V × V∗,

D∆ ⊂ (V × V∗)× (V∗ × V)
Let

D∆ =
{
(v, β), (γ,−v) | v ∈ ∆, γ − β ∈ ∆o}

where ∆o ⊂ V∗ is the polar of ∆.
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Nonholonomic Example
• It is easy to check that D∆ is a Dirac structure.
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Nonholonomic Example
• It is easy to check that D∆ is a Dirac structure.

• Then we have

Theorem. The statement that (X,DL) ∈ D∆ is equivalent to the
Lagrange-d’Alembert equations, including the dynamic equations,
the condition q̇ ∈ ∆, and the constraints.
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Nonholonomic Example
• It is easy to check that D∆ is a Dirac structure.

• Then we have

Theorem. The statement that (X,DL) ∈ D∆ is equivalent to the
Lagrange-d’Alembert equations, including the dynamic equations,
the condition q̇ ∈ ∆, and the constraints.

• Of course this is also directly tied to the Lagrange-d’Al-
embert variational structure of the equations.
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Concluding Remarks
• You are seeing the tip of a big iceberg. Much is left to

uncover.
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tures should produce, for instance, a Dirac structure for
the Lagrange-d’Alembert-Poincaré equations as a special
case; that is, Lagrange-d’Alembert reduction should be
consistent with Dirac reduction. Ditto for the Lie-Poisson
variational principle described in the “question to you”. A
metaprinciple emerges.
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Concluding Remarks
• You are seeing the tip of a big iceberg. Much is left to

uncover.

• Conjectures are easy to make: Reduction of Dirac struc-
tures should produce, for instance, a Dirac structure for
the Lagrange-d’Alembert-Poincaré equations as a special
case; that is, Lagrange-d’Alembert reduction should be
consistent with Dirac reduction. Ditto for the Lie-Poisson
variational principle described in the “question to you”. A
metaprinciple emerges.

• In particular, the reduction of the standard Dirac structure
on T∗Q is not the standard Dirac structure on g∗, but
rather should be one on g×g∗ associated with the reduced
“Pontryagin” space.
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Concluding Remarks
• In doing PDE, relativistic field theories or even quantum

mechanics, multisymplectic and multipoisson structures
are the way to do. What is a multi-Dirac structure? (Think
of a rolling ball of jello, or squishy tires on a road to mo-
tivate nonholonomic PDE’s).
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Concluding Remarks
• In doing PDE, relativistic field theories or even quantum

mechanics, multisymplectic and multipoisson structures
are the way to do. What is a multi-Dirac structure? (Think
of a rolling ball of jello, or squishy tires on a road to mo-
tivate nonholonomic PDE’s).

• The Lagrangian perspective on circuits provide a beautiful
set of examples and show how Dirac structures can handle
situations that are of the sort considered by Dirac.

• Hopefully Dirac himself would be pleased with all this.

◦ Go to my home page for free templates for making TeX slides like
these ones. Click on “Marslides”.
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The End
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