Variational Principles, Dirac Structures, and Reduction

Dedicated to Alan@60

Jerrold E. Marsden

Joint work with Hiroaki Yoshimura (and others)

Control and Dynamical Systems, Caltech
http://www.cds.caltech.edu/~marsden/

Alanfest, Vienna, August 7, 2003
Dirac (who knew mechanics!), studied Lagrangian systems with constraints, including those arising from degeneracies.
Dirac (who knew mechanics!), studied Lagrangian systems with constraints, including those arising from degeneracies.

See his article on “Generalized Hamiltonian Mechanics” in the Canadian J. of Math., circa 1950.
Dirac (who knew mechanics!), studied Lagrangian systems with constraints, including those arising from degeneracies.

See his article on “Generalized Hamiltonian Mechanics” in the *Canadian J. of Math.*, circa 1950.

He also worked on the program of going to the Hamiltonian side via the Legendre transformation and computing the associated Poisson brackets.
What Dirac did; what we do

- Dirac (who knew mechanics!), studied Lagrangian systems with constraints, including those arising from degeneracies.
- See his article on “Generalized Hamiltonian Mechanics” in the *Canadian J. of Math.*, circa 1950.
- He also worked on the program of going to the Hamiltonian side via the Legendre transformation and computing the associated Poisson brackets.
- **Lesson** learned from examples and applications: In many if not most cases, one does *not start* on the Hamiltonian side, but rather on the Lagrangian side with a variational principle.
Dirac understood this very clearly and it is how his papers are written; but this seems to have been a forgotten lesson!
Dirac understood this very clearly and it is how his papers are written; but this seems to have been a forgotten lesson!

While it is quite appropriate that \textit{Dirac structures} are named after him, it seems that workers in the field have so far left out Lagrangian mechanics from the story! \textit{Our goal is to fill this gap (or canyon).}
Dirac understood this very clearly and it is how his papers are written; but this seems to have been a forgotten lesson!

While it is quite appropriate that *Dirac structures* are named after him, it seems that workers in the field have so far left out Lagrangian mechanics from the story! *Our goal is to fill this gap (or canyon).*

You are wrong if you believe that this gap can be trivially filled by simply waving a Legendre transformation wand.
Examples

• Standard nondegenerate Lagrangian and Hamiltonian systems, possibly with symmetry, possibly reduced.

• Specific case: *the dynamics of asteroid pairs*, such as Ida and Dactyl:
Examples

- **Nonholonomic mechanics.** Specific example is the rolling penny. Have a look at one of my favorite books:
• **Electrical Networks.** Specific example; how to analyze the dynamics associated with this network:
Theoretical Developments

• General development of Dirac structures (Courant, Weinstein, Dorfman) and reduction theory of Dirac structures (Van der Schaft, Blankenstein, Ratiu).

• Application to nonholonomic systems and circuits, but on the Hamiltonian side (horrors!) by Van der Schaft, Maschke, Bloch, Crouch and others.
Theoretical Developments

- General development of Dirac structures (Courant, Weinstein, Dorfman) and reduction theory of Dirac structures (Van der Schaft, Blankenstein, Ratiu).

- Application to nonholonomic systems and circuits, but on the Hamiltonian side (horrors!) by Van der Schaft, Maschke, Bloch, Crouch and others.

- Lagrangian and Hamiltonian reduction theory (see article of JM and Alan on the history of the subject).

- General symplectic and Poisson reduction are fine, but one wants more detail for the case of tangent and cotangent bundles. Why? Well, that is how one does examples!
Theoretical Developments

- Hamiltonian reduction of cotangent bundles\(^1\) Start with \(H : T^* Q \to \mathbb{R}\) and a Lie group \(G\) acting (free and proper for simplicity) on \(Q\). Choose a principal connection \(A\) on the shape space bundle \(Q \to Q/G\).

\(^1\)Weinstein, Sternberg, Montgomery, Cendra, JEM, Ratiu,....
Theoretical Developments

• Hamiltonian reduction of cotangent bundles\(^1\) Start with \(H : T^*Q \to \mathbb{R}\) and a Lie group \(G\) acting (free and proper for simplicity) on \(Q\). Choose a principal connection \(A\) on the \textit{shape space bundle} \(Q \to Q/G\).

• Mechanics and examples tell you that this global perspective is the right one—that is, one should really choose a connection at this point. Then,

\[
T^*Q/G \cong_A T^*(Q/G) \times \tilde{\mathfrak{g}}^*
\]

with its natural Poisson structure (containing curvature terms from \(A\)), etc.

\(^1\)Weinstein, Sternberg, Montgomery, Cendra, JEM, Ratiu,....
• Hamiltonian reduction of cotangent bundles\(^1\) Start with \(H : T^*Q \to \mathbb{R}\) and a Lie group \(G\) acting (free and proper for simplicity) on \(Q\). Choose a principal connection \(A\) on the \textit{shape space bundle} \(Q \to Q/G\).

• Mechanics and examples tell you that this global perspective is the right one—that is, one should really choose a connection at this point. Then,

\[
T^*Q/G \cong_A T^*(Q/G) \times \mathfrak{g}^*
\]

with its natural Poisson structure (containing curvature terms from \(A\)), etc.

• Reduced equations on this space are called the \textit{Hamilton–Poincaré equations}. When \(Q = G\), you get the \textit{Lie–Poisson equations} on \(\mathfrak{g}^*\).

\(^1\) Weinstein, Sternberg, Montgomery, Cendra, JEM, Ratiu,....
If you do symplectic reduction in this context by imposing a momentum map constraint $J = \mu$ then one gets an **associated coadjoint orbit bundle**

$$J^{-1}(\mu)/G_\mu = T^*(Q/G) \times \tilde{O}_\mu$$

whose symplectic structure is a combination of the KKS orbit bracket with the cotangent bracket plus a curvature term.
Theoretical Developments

• If you do symplectic reduction in this context by imposing a momentum map constraint $J = \mu$ then one gets an associated coadjoint orbit bundle

$$J^{-1}(\mu)/G_\mu = T^*(Q/G) \times \tilde{O}_\mu$$

whose symplectic structure is a combination of the KKS orbit bracket with the cotangent bracket plus a curvature term.

• This is actually useful in examples; eg, the asteroid pair problem, in the dynamics of a fluid with a free surface. (The Hodge decomposition provides the connection).
Theoretical Developments

- **Lagrangian reduction of tangent bundles**: Start with $L : TQ \to \mathbb{R}$ and a Lie group G acting (free and proper for simplicity) on Q. Choose a principal connection A on the shape space bundle $Q \to Q/G$, so that

$$TQ/G \cong_A T(Q/G) \times \tilde{g}$$

2 JEM, Scheurle, Weinstein, Cendra, Ratiu, ...
Theoretical Developments

• **Lagrangian reduction of tangent bundles**: Start with $L : TQ \to \mathbb{R}$ and a Lie group G acting (free and proper for simplicity) on Q. Choose a principal connection A on the *shape space bundle* $Q \to Q/G$, so that

$$TQ/G \cong_A T(Q/G) \times \tilde{g}$$

• Reduced equations on this space are called the *Lagrange-Poincaré equations*. When $Q = G$, you get the *Euler-Poincaré equations* on g.

\(^2\)JEM, Scheurle, Weinstein, Cendra, Ratiu, ...

2 JEM, Scheurle, Weinstein, Cendra, Ratiu, ...
Theoretical Developments

• **Lagrangian reduction of tangent bundles**: Start with $L : TQ \to \mathbb{R}$ and a Lie group G acting (free and proper for simplicity) on Q. Choose a principal connection A on the shape space bundle $Q \to Q/G$, so that

$$TQ/G \cong_A T(Q/G) \times \tilde{g}$$

• Reduced equations on this space are called the **Lagrange-Poincaré equations**. When $Q = G$, you get the **Euler-Poincaré equations** on \mathfrak{g}.

• **Strategy**: reduce variational principles, not symplectic or Poisson structures. One can close up this category so that reduction keeps you in it (reduction by stages).

2JEM, Scheurle, Weinstein, Cendra, Ratiu, ...
Theoretical Developments

• **Lagrangian reduction of tangent bundles**: Start with $L : TQ \to \mathbb{R}$ and a Lie group G acting (free and proper for simplicity) on Q. Choose a principal connection A on the **shape space bundle** $Q \to Q/G$, so that

\[TQ/G \cong_A T(Q/G) \times \tilde{g} \]

• Reduced equations on this space are called the **Lagrange-Poincaré equations**. When $Q = G$, you get the **Euler-Poincaré equations** on \mathfrak{g}.

• **Strategy**: reduce variational principles, not symplectic or Poisson structures. One can close up this category so that reduction keeps you in it (reduction by stages).

• *Don’t you dare* choose a metric and identify TQ and T^*Q or a Killing form and identify \mathfrak{g} and \mathfrak{g}^*!!

2JEM, Scheurle, Weinstein, Cendra, Ratiu, ...
Theoretical Developments

• Many other variations on the theme: For example, semi-direct product reduction theory\(^3\) and its recent generalization to group extensions (including Bott Virasoro, Camassa-Holm, Dym, etc).

\(^3\)Guillemin-Sternberg, JEM, Weinstein, Ratiu, Leonard, Holm,...
Theoretical Developments

• Many other variations on the theme: For example, *semi-direct product reduction theory*\(^3\) and its recent generalization to group extensions (including Bott Virasoro, Camassa-Holm, Dym, etc).

• **Stability theory**\(^4\) for relative equilibria; energy-momentum method (Arnold method, energy-Casimir, block diagonalization, ...).

\(^3\)Guillemin-Sternberg, JEM, Weinstein, Ratiu, Leonard, Holm, ...
\(^4\)Arnold, JEM, Simo, Lewis, ...
Nonholonomic Mechanical Systems

- Constraints such as rolling constraints. Dynamics governed by the *Lagrange–d’Alembert principle*: start with a distribution $\Delta \subset TQ$ and ask that

$$\delta \int L \, dt = 0$$

for all $\delta q \in \Delta$. One also impose the condition $\dot{q} \in \Delta$.
Nonholonomic Mechanical Systems

- Constraints such as rolling constraints. Dynamics governed by the Lagrange–d’Alembert principle: start with a distribution $\Delta \subset TQ$ and ask that

$$\delta \int L \, dt = 0$$

for all $\delta q \in \Delta$. One also impose the condition $\dot{q} \in \Delta$.

![Diagram showing varied curve $q(t)$ and points $q(a)$ and $q(b)$ with $\delta q(t) \in \Delta$.](image-url)
\textbf{Nonholonomic Mechanical Systems}

- Reduction theory for these systems started by Jair Koiller!
Nonholonomic Mechanical Systems

- Reduction theory for these systems started by Jair Koiller!
- In general, symmetries need not lead to conservation laws; *Momentum equation* discovered by BKMM. This, together with holonomy (geometric phases) plays a crucial role in locomotion (eg, how snakes move).
Nonholonomic Mechanical Systems

• Reduction theory for these systems started by Jair Koiller!

• In general, symmetries need not lead to conservation laws; \textit{Momentum equation} discovered by BKMM. This, together with holonomy (geometric phases) plays a crucial role in locomotion (eg, how snakes move).

• The equations on the Hamiltonian side (assuming the Lagrangian is regular) are governed by an \textit{almost Poisson structure} and, in a sense, by an almost symplectic structure. In fact, the Jacobiator is measured by the curvature of Δ^5.

\footnote{Van der Schaft and Maschke, Bates and Sniatycki, Koon and JEM, Marle, ...}
Reduction theory for these systems started by Jair Koiller!

In general, symmetries need not lead to conservation laws; *Momentum equation* discovered by BKMM. This, together with holonomy (geometric phases) plays a crucial role in locomotion (e.g., how snakes move).

The equations on the Hamiltonian side (assuming the Lagrangian is regular) are governed by an *almost Poisson structure* and, in a sense, by an almost symplectic structure. In fact, the Jacobiator is measured by the curvature of Δ.\(^5\)

Despite this, the system *is* described by a Dirac structure, as I will explain below.

\(^5\)Van der Schaft and Maschke, Bates and Sniatycki, Koon and JEM, Marle, ...
Despite the above, there is also an energy-momentum method for stability (applies to the classical examples: rat-tleback, the unicycle, ...); there is also a picture similar to the bundle picture above with a beautiful intrinsic geometric description.6

\textbf{Resulting equations:} the \textit{Lagrange-d’Alembert-Poincaré} equations.

\textbf{(Not quite as bad as hemi-quasi-twisted-algebroids, ...)}

\textbf{Circuits} are typically not only nonholonomic (because of the Kirchhoff current laws), they are also often degenerate (giving \textit{primary} constraints in the sense of Dirac).

6Obtained by Cendra, Marsden and Ratiu in 2001.
Variational methods are useful!

- Shell collisions: thin shell models using *multisymplectic variational methods, AVI + subdivision + collision methods* (JEM, Ortiz, Cirac–West)
A Question for you.

- The Euler–Lagrange equations come from Hamilton’s principle.
- Hamilton’s equations come from Hamilton’s phase space variational principle.
- The Euler–Poincaré equations come from the Euler–Poincaré variational principle.
A Question for you.

- The Euler–Lagrange equations come from Hamilton’s principle.
- Hamilton’s equations come from Hamilton’s phase space variational principle.
- The Euler–Poincaré equations come from the Euler–Poincaré variational principle.
- **Question:** what is it for the Lie–Poisson equations? (I can make the question harder and ask this for the Hamilton–Poincaré equations or the Lagrange–Poincaré equations.)
A Question for you.

- The Euler–Lagrange equations come from Hamilton’s principle
- Hamilton’s equations come from Hamilton’s phase space variational principle
- The Euler–Poincaré equations come from the Euler–Poincaré variational principle
- **Question**: what is it for the Lie–Poisson equations? (I can make the question harder and ask this for the Hamilton–Poincaré equations or the Lagrange–Poincaré equations).
- Euler–Poincaré equations on g

\[
\frac{d}{dt} \frac{\delta l}{\delta \nu} = \text{ad}^*_\nu \frac{\delta l}{\delta \nu},
\]
A Question for you.

• Answer:\(^7\)

\[\delta \int_a^b l(\nu(t)) \, dt = 0 \]

for \textit{constrained} variations of the form

\[\delta \nu(t) = \dot{\eta}(t) + [\nu(t), \eta(t)], \]

where \(\eta(t) \) has fixed endpoints.

\(^7\)See, for example, \textit{Mechanics and Symmetry} by JEM and Ratiu.
A Question for you.

- **Answer:**
 \[\delta \int_a^b l(\nu(t)) \, dt = 0 \]
 for constrained variations of the form
 \[\delta \nu(t) = \dot{\eta}(t) + [\nu(t), \eta(t)], \]
 where \(\eta(t) \) has fixed endpoints.

- **Method of proof:** reduce Hamilton’s principle on \(TG \)

\[^{7}\text{See, for example, Mechanics and Symmetry by JEM and Ratiu.}\]
• Back to our question: how are the Lie–Poisson equations

$$\dot{\mu} = \text{ad}_{\delta h/\delta \mu}^* \mu$$

on \mathfrak{g}^* variational?
A Question for you.

Back to our question: how are the Lie–Poisson equations

\[\dot{\mu} = \text{ad}_{\delta h/\delta \mu}^* \mu \]
on \mathfrak{g}^* variational?

Answer: A Pontryagin type principle:

\[\delta \int_a^b (\langle \mu(t), v(t) \rangle - h(\mu(t))) \, dt = 0 \]

for variations of the form

\[\delta v(t) = \dot{\eta}(t) + [v(t), \eta(t)], \]

where \(\eta(t) \) has fixed endpoints, but \(\delta \mu \) are arbitrary.
A Question for you.

- Back to our question: how are the Lie-Poisson equations
 \[\dot{\mu} = \text{ad}_{\delta h/\delta \mu}^* \mu \]
on \mathfrak{g}^* variational?

- **Answer:** A Pontryagin type principle:
 \[\delta \int_a^b (\langle \mu(t), v(t) \rangle - h(\mu(t))) \, dt = 0 \]
for variations of the form
 \[\delta v(t) = \dot{\eta}(t) + [v(t), \eta(t)], \]
where \(\eta(t) \) has fixed endpoints, but \(\delta \mu \) are arbitrary.

- The Legendre transformation \(v = \delta h/\delta \mu \) is part of the
 variational principle! Neat! We will need this sort of thing.

- **Method:** reduce Hamilton’s phase space principle.
Recall: a **Dirac structure** on a manifold R is: a subbundle $D \subset TR \times T^*R$ such that $D = D^\perp$, where the perp is with respect to the natural pairing

$$\langle\langle (u, \alpha), (v, \beta) \rangle\rangle = \langle \beta, u \rangle + \langle \alpha, v \rangle$$
Implicit Hamiltonian Systems

- Recall: a **Dirac structure** on a manifold R is: a subbundle $D \subset TR \times T^*R$ such that $D = D^\perp$, where the perp is with respect to the natural pairing

$$\langle \langle (u, \alpha), (v, \beta) \rangle \rangle = \langle \beta, u \rangle + \langle \alpha, v \rangle$$

- **Standard examples**: graph of an (almost) symplectic or (almost) Poisson structure. [Not enough for nonholonomic systems—one needs to put in the constraints].
Implicit Hamiltonian Systems

- Recall: a **Dirac structure** on a manifold R is: a subbundle $D \subset TR \times T^*R$ such that $D = D^\perp$, where the perp is with respect to the natural pairing

$$\langle\langle (u, \alpha), (v, \beta) \rangle\rangle = \langle \beta, u \rangle + \langle \alpha, v \rangle$$

- **Standard examples**: graph of an (almost) symplectic or (almost) Poisson structure. [Not enough for nonholonomic systems—one needs to put in the constraints].

- For a symplectic or Poisson manifold, a **Hamiltonian vector field** X_H on R associated to a function H satisfies

$$(X, dH) \in D$$

at each point of R. For good reason, Van der Schaft calls these things **implicit Hamiltonian systems**; they are an important part of his theory of “interconnected” and “port controlled” systems.
Before defining an implicit Lagrangian system, we will need some more terminology and a “big diagram”.\footnote{Some parts of this picture are due to Tulczyjew; the full diagram was formulated by Cendra, JM and Ratiu.}

Namely, we need two natural diffeomorphisms; first there is the diffeomorphism

\[TT^*Q \rightarrow T^*T^*Q \]

associated with the canonical symplectic form on \(T^*Q \).

Second, there is the natural diffeomorphism between

\[TT^*Q \rightarrow T^*TQ \]

given in coordinates by \((q,p,\delta q,\delta p) \rightarrow (q,\delta q,\delta p,p)\) and determined intrinsically by the commutativity of the following “big diagram”.
The Big Diagram

\[T^*T^*Q \xrightarrow{\Omega_b} TT^*Q \xrightarrow{\kappa_Q} T^*TQ \]

\[T^*Q \xrightarrow{\pi^2} TT^*Q \xrightarrow{T_{\pi_Q}} TQ \]

\[T^*Q \xrightarrow{\tau_{T^*Q}} TQ \]

\[TQ \xrightarrow{\pi_T} TQ \]

\[TQ \oplus T^*Q \text{ Pontryagin Space} \]

\[TQ \xrightarrow{pr_1} Q \]

\[T^*TQ \xrightarrow{\pi^{1}} TQ \xrightarrow{\tau_Q} Q \]

\[T^*TQ \xrightarrow{\pi^{TQ}} TQ \xrightarrow{pr_3} Q \]

\[T^*TQ \xrightarrow{\pi_T} TQ \xrightarrow{pr_2} TQ \]

\[T^*TQ \xrightarrow{\Omega^b} TT^*Q \xrightarrow{T_{\pi_Q}} TQ \]
Let $D \subset TT^*Q \times T^*T^*Q$ be a given Dirac structure on T^*Q. Let $L : TQ \to \mathbb{R}$ be a given Lagrangian and let

$$DL \in T^*T^*Q$$

be $dL \in T^*TQ$ transferred over to T^*T^*Q by the canonical diffeomorphisms.
Implicit Lagrangian Systems

Let $D \subset TT^*Q \times T^*T^*Q$ be a given Dirac structure on T^*Q. Let $L : TQ \to \mathbb{R}$ be a given Lagrangian and let $\mathcal{D}L \in T^*T^*Q$

be $dL \in T^*TQ$ transferred over to T^*T^*Q by the canonical diffeomorphisms.

An implicit Lagrangian system relative to the given Dirac structure D is a vector field X on T^*Q satisfying

$$(X, \mathcal{D}L) \in D$$

at each point of T^*Q.
• Hamilton’s principle may be rewritten so that it fits very well with the above definition.

• Write Hamilton’s principle this way:

\[
0 = \delta \int_a^b L(q(t), \dot{q}(t)) \, dt \\
= \int_a^b \left(\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right) \, dt \\
= \int_a^b \left(\dot{p} \delta q - \dot{p} \delta q + \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right) \, dt \\
= \int_a^b \left(-\dot{p} \delta q - p \delta \dot{q} + \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right) \, dt + p \delta q \bigg|_a^b \\
= -\int_a^b \left\{ \left(\dot{p} - \frac{\partial L}{\partial q} \right) \delta q + \left(p - \frac{\partial L}{\partial \dot{q}} \right) \delta \dot{q} \right\} \, dt + p \delta q \bigg|_a^b.
\]
This derivation can be given entirely intrinsically using objects in the big diagram.
• This derivation can be given entirely intrinsically using objects in the big diagram.

• Notice that the final equations include the Legendre transformation \(p = \partial L / \partial \dot{q} \) as part of the equations. The boundary term, as is (now) standard, gives the canonical one-form.
• This derivation can be given entirely intrinsically using objects in the big diagram.

• Notice that the final equations include the Legendre transformation $p = \partial L / \partial \dot{q}$ as part of the equations. The boundary term, as is (now) standard, gives the canonical one-form.

• The equations (where $X(q, p) = (q, p, \dot{q}, \dot{p})$) written this way are exactly the Dirac structure equations, namely, $(X, D_L) \in D$, including the Legendre transform and also the correct identification of \dot{q}.
Now we are ready to state the nonholonomic equations in terms of Dirac structures.

Given the constraint distribution $\Delta \subset TQ$, we will now define an associated Dirac structure D_Δ on T^*Q.

It will save time if we define D_Δ when $Q = V$, a vector space. Then at each point $q \in V$, $\Delta \subset V$ and

$$D_\Delta \subset TT^*Q \times T^*T^*Q$$

becomes, at each fiber point $(q, p) \in V \times V^*$,

$$D_\Delta \subset (V \times V^*) \times (V^* \times V)$$

Let

$$D_\Delta = \{(v, \beta), (y, -v) | v \in \Delta, y - \beta \in \Delta^o\}$$

where $\Delta^o \subset V^*$ is the polar of Δ.
It is easy to check that D_Δ is a Dirac structure.
Nonholonomic Example

- It is easy to check that D_Δ is a Dirac structure.
- Then we have

Theorem. The statement that $(X,\mathcal{D}L) \in D_\Delta$ is equivalent to the Lagrange–d’Alembert equations, including the dynamic equations, the condition $\dot{q} \in \Delta$, and the constraints.
Nonholonomic Example

- It is easy to check that D_Δ is a Dirac structure.
- Then we have

Theorem. The statement that $(X, \mathcal{D}L) \in D_\Delta$ is equivalent to the Lagrange-d’Alembert equations, including the dynamic equations, the condition $\dot{q} \in \Delta$, and the constraints.

- Of course this is also directly tied to the Lagrange-d’Alembert variational structure of the equations.
• You are seeing the tip of a big iceberg. Much is left to uncover.
Concluding Remarks

• You are seeing the tip of a big iceberg. Much is left to uncover.

• Conjectures are easy to make: Reduction of Dirac structures should produce, for instance, a Dirac structure for the Lagrange-d’Alembert-Poincaré equations as a special case; that is, Lagrange-d’Alembert reduction should be consistent with Dirac reduction. Ditto for the Lie-Poisson variational principle described in the “question to you”. A metaprinciple emerges.
Concluding Remarks

- You are seeing the tip of a big iceberg. Much is left to uncover.

- Conjectures are easy to make: Reduction of Dirac structures should produce, for instance, a Dirac structure for the Lagrange-d’Alembert-Poincaré equations as a special case; that is, Lagrange-d’Alembert reduction should be consistent with Dirac reduction. Ditto for the Lie-Poisson variational principle described in the “question to you”. A metaprinciple emerges.

- In particular, the reduction of the standard Dirac structure on T^*Q is not the standard Dirac structure on g^*, but rather should be one on $g \times g^*$ associated with the reduced “Pontryagin” space.
Concluding Remarks

In doing PDE, relativistic field theories or even quantum mechanics, multisymplectic and multipoisson structures are the way to do. What is a **multi-Dirac** structure? (Think of a rolling ball of jello, or squishy tires on a road to motivate nonholonomic PDE’s).
Concluding Remarks

- In doing PDE, relativistic field theories or even quantum mechanics, multisymplectic and multipoisson structures are the way to do. What is a *multi-Dirac* structure? (Think of a rolling ball of jello, or squishy tires on a road to motivate nonholonomic PDE’s).

- The Lagrangian perspective on circuits provide a beautiful set of examples and show how Dirac structures can handle situations that are of the sort considered by Dirac.
Concluding Remarks

• In doing PDE, relativistic field theories or even quantum mechanics, multisymplectic and multipoisson structures are the way to do. What is a multi-Dirac structure? (Think of a rolling ball of jello, or squishy tires on a road to motivate nonholonomic PDE’s).

• The Lagrangian perspective on circuits provide a beautiful set of examples and show how Dirac structures can handle situations that are of the sort considered by Dirac.

• Hopefully Dirac himself would be pleased with all this.
Concluding Remarks

• In doing PDE, relativistic field theories or even quantum mechanics, multisymplectic and multipoisson structures are the way to do. What is a *multi-Dirac* structure? (Think of a rolling ball of jello, or squishy tires on a road to motivate nonholonomic PDE’s).

• The Lagrangian perspective on circuits provide a beautiful set of examples and show how Dirac structures can handle situations that are of the sort considered by Dirac.

• Hopefully Dirac himself would be pleased with all this.

 ◦ Go to my home page for free templates for making TeX slides like these ones. Click on “Marslides”.

The End