

Variational Principles, Dirac Structures, and Reduction

Dedicated to Alan@60

Serrold E. Marsden Z

Joint work with Hiroaki Yoshimura (and others)

Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/~marsden/

Alanfest, Vienna, August 7, 2003

Dirac (who knew mechanics!), studied Lagrangian systems with constraints, including those arising from degeneracies.

- Dirac (who knew mechanics!), studied Lagrangian systems with constraints, including those arising from degeneracies.
- □ See his article on "Generalized Hamiltonian Mechanics" in the *Canadian J. of Math.*, circa 1950.

- Dirac (who knew mechanics!), studied Lagrangian systems with constraints, including those arising from degeneracies.
- □ See his article on "Generalized Hamiltonian Mechanics" in the *Canadian J. of Math.*, circa 1950.
- He also worked on the program of going to the Hamiltonian side via the Legendre transformation and computing the associated Poisson brackets.

- Dirac (who knew mechanics!), studied Lagrangian systems with constraints, including those arising from degeneracies.
- □ See his article on "Generalized Hamiltonian Mechanics" in the *Canadian J. of Math.*, circa 1950.
- He also worked on the program of going to the Hamiltonian side via the Legendre transformation and computing the associated Poisson brackets.
- Lesson learned from examples and applications: In many if not most cases, one does *not start* on the Hamiltonian side, but rather on the Lagrangian side with a variational principle.

Dirac understood this very clearly and it is how his papers are written; but this seems to have been a forgotten lesson!

- Dirac understood this very clearly and it is how his papers are written; but this seems to have been a forgotten lesson!
- □ While it is quite appropriate that *Dirac structures* are named after him, it seems that workers in the field have so far left out Lagrangian mechanics from the story! *Our goal is to fill this gap (or canyon)*.

- Dirac understood this very clearly and it is how his papers are written; but this seems to have been a forgotten lesson!
- □ While it is quite appropriate that *Dirac structures* are named after him, it seems that workers in the field have so far left out Lagrangian mechanics from the story! *Our goal is to fill this gap (or canyon)*.
- □ You are wrong if you believe that this gap can be trivially filled by simply waving a Legendre transformation wand.

Examples

- Standard nondegenerate Lagrangian and Hamiltonian systems, possibly with symmetry, possibly reduced.
- Specific case: *the dynamics of asteroid pairs*, such as Ida and Dactyl:

Examples

• Nonholonomic mechanics. Specific example is the rolling penny. Have a look at one of my favorite books:

Examples

• Electrical Networks. Specific example; how to analyze the dynamics associated with this network:

- General development of Dirac structures (Courant, Weinstein, Dorfman) and reduction theory of Dirac structures (Van der Schaft, Blankenstein, Ratiu).
- Application to nonholonomic systems and circuits, but on the Hamiltonian side (horrors!) by Van der Schaft, Maschke, Bloch, Crouch and others.

- General development of Dirac structures (Courant, Weinstein, Dorfman) and reduction theory of Dirac structures (Van der Schaft, Blankenstein, Ratiu).
- Application to nonholonomic systems and circuits, but on the Hamiltonian side (horrors!) by Van der Schaft, Maschke, Bloch, Crouch and others.
- Lagrangian and Hamiltonian reduction theory (see article of JM and Alan on the history of the subject).
- General symplectic and Poisson reduction are fine, but one wants more detail for the case of tangent and cotangent bundles. Why? Well, that is how one does examples!

• Hamiltonian reduction of cotangent bundles¹ Start with $H: T^*Q \rightarrow \mathbb{R}$ and a Lie group *G* acting (free and proper for simplicity) on *Q*. Choose a principal connection *A* on the shape space bundle $Q \rightarrow Q/G$.

- Hamiltonian reduction of cotangent bundles¹ Start with $H: T^*Q \rightarrow \mathbb{R}$ and a Lie group *G* acting (free and proper for simplicity) on *Q*. Choose a principal connection *A* on the shape space bundle $Q \rightarrow Q/G$.
- Mechanics and examples tell you that this global perspective is the right one-that is, one should really choose a connection at this point. Then,

$$T^*Q/G \cong_A T^*(Q/G) \times \tilde{\mathfrak{g}^*}$$

with its natural Poisson structure (containing curvature terms from *A*), etc.

¹Weinstein, Sternberg, Montgomery, Cendra, JEM, Ratiu,....

- Hamiltonian reduction of cotangent bundles¹ Start with $H: T^*Q \rightarrow \mathbb{R}$ and a Lie group *G* acting (free and proper for simplicity) on *Q*. Choose a principal connection *A* on the shape space bundle $Q \rightarrow Q/G$.
- Mechanics and examples tell you that this global perspective is the right one-that is, one should really choose a connection at this point. Then,

 $T^*Q/G \cong_A T^*(Q/G) \times \tilde{\mathfrak{g}^*}$

with its natural Poisson structure (containing curvature terms from *A*), etc.

Reduced equations on this space are called the *Hamilton-Poincaré equations*. When Q = G, you get the *Lie-Poisson equations* on g*.

¹Weinstein, Sternberg, Montgomery, Cendra, JEM, Ratiu,....

• If you do symplectic reduction in this context by imposing a momentum map constraint $J = \mu$ then one gets an *associated coadjoint orbit bundle*

$$\mathbf{J}^{-1}(\boldsymbol{\mu})/G_{\boldsymbol{\mu}} = T^*(Q/G) \times \tilde{\mathcal{O}}_{\boldsymbol{\mu}}$$

whose symplectic structure is a combination of the KKS orbit bracket with the cotangent bracket plus a curvature term.

• If you do symplectic reduction in this context by imposing a momentum map constraint $J = \mu$ then one gets an *associated coadjoint orbit bundle*

$$\mathbf{J}^{-1}(\boldsymbol{\mu})/G_{\boldsymbol{\mu}} = T^*(Q/G) \times \tilde{\mathcal{O}}_{\boldsymbol{\mu}}$$

whose symplectic structure is a combination of the KKS orbit bracket with the cotangent bracket plus a curvature term.

This is actually *useful* in examples; eg, the asteroid pair problem, in the dynamics of a fluid with a free surface. (The Hodge decomposition provides the connection).

• Lagrangian reduction of tangent bundles²: Start with L: $TQ \rightarrow \mathbb{R}$ and a Lie group G acting (free and proper for simplicity) on Q. Choose a principal connection A on the shape space bundle $Q \rightarrow Q/G$, so that

 $TQ/G \cong_A T(Q/G) \times \tilde{\mathfrak{g}}$

²JEM, Scheurle, Weinstein, Cendra, Ratiu, ...

• Lagrangian reduction of tangent bundles²: Start with L: $TQ \rightarrow \mathbb{R}$ and a Lie group G acting (free and proper for simplicity) on Q. Choose a principal connection A on the shape space bundle $Q \rightarrow Q/G$, so that

 $TQ/G \cong_A T(Q/G) \times \tilde{\mathfrak{g}}$

• Reduced equations on this space are called the *Lagrange-Poincaré equations*. When Q = G, you get the *Euler-Poincaré equations* on g.

²JEM, Scheurle, Weinstein, Cendra, Ratiu, ...

• Lagrangian reduction of tangent bundles²: Start with L: $TQ \rightarrow \mathbb{R}$ and a Lie group G acting (free and proper for simplicity) on Q. Choose a principal connection A on the shape space bundle $Q \rightarrow Q/G$, so that

 $TQ/G \cong_A T(Q/G) \times \tilde{\mathfrak{g}}$

- Reduced equations on this space are called the *Lagrange-Poincaré equations*. When Q = G, you get the *Euler-Poincaré equations* on g.
- Strategy: reduce variational principles, not symplectic or Poisson structures. One can close up this category so that reduction keeps you in it (reduction by stages).

²JEM, Scheurle, Weinstein, Cendra, Ratiu, ...

• Lagrangian reduction of tangent bundles²: Start with L: $TQ \rightarrow \mathbb{R}$ and a Lie group G acting (free and proper for simplicity) on Q. Choose a principal connection A on the shape space bundle $Q \rightarrow Q/G$, so that

 $TQ/G \cong_A T(Q/G) \times \tilde{\mathfrak{g}}$

- Reduced equations on this space are called the *Lagrange-Poincaré equations*. When Q = G, you get the *Euler-Poincaré equations* on g.
- Strategy: reduce variational principles, not symplectic or Poisson structures. One can close up this category so that reduction keeps you in it (reduction by stages).
- **Don't you dare** choose a metric and identify TQ and T^*Q or a Killing form and identify g and $g^*!!$

²JEM, Scheurle, Weinstein, Cendra, Ratiu, ...

Many other variations on the theme: For example, *semi-direct product reduction theory*³ and its recent generalization to group extensions (including Bott Virasoro, Camassa-Holm, Dym, etc).

³Guillemin-Sternberg, JEM, Weinstein, Ratiu, Leonard, Holm,...

- Many other variations on the theme: For example, *semidirect product reduction theory*³ and its recent generalization to group extensions (including Bott Virasoro, Camassa-Holm, Dym, etc).
- Stability theory⁴ for relative equilibria; energy-momentum method (Arnold method, energy-Casimir, block diagonal-ization,).

³Guillemin-Sternberg, JEM, Weinstein, Ratiu, Leonard, Holm,... ⁴Arnold, JEM, Simo, Lewis,...

• Constraints such as rolling constraints. Dynamics governed by the *Lagrange–d'Alembert principle*: start with a distribution $\Delta \subset TQ$ and ask that

$$\delta \int L \, dt = 0$$

for all $\delta q \in \Delta$. One also impose the condition $\dot{q} \in \Delta$.

• Constraints such as rolling constraints. Dynamics governed by the *Lagrange–d'Alembert principle*: start with a distribution $\Delta \subset TQ$ and ask that

$$\delta \int L \, dt = 0$$

for all $\delta q \in \Delta$. One also impose the condition $\dot{q} \in \Delta$.

• Reduction theory for these systems started by Jair Koiller!

- Reduction theory for these systems started by Jair Koiller!
- In general, symmetries need not lead to conservation laws; *Momentum equation* discovered by BKMM. This, together with holonomy (geometric phases) plays a crucial role in locomotion (eg, how snakes move).

- Reduction theory for these systems started by Jair Koiller!
- In general, symmetries need not lead to conservation laws; *Momentum equation* discovered by BKMM. This, together with holonomy (geometric phases) plays a crucial role in locomotion (eg, how snakes move).
- The equations on the Hamiltonian side (assuming the Lagrangian is regular) are governed by an *almost Poisson structure* and, in a sense, by an almost symplectic structure. In fact, the Jacobiator is measured by the curvature of Δ .⁵

⁵Van der Schaft and Maschke, Bates and Sniatycki, Koon and JEM, Marle, ...

- Reduction theory for these systems started by Jair Koiller!
- In general, symmetries need not lead to conservation laws; *Momentum equation* discovered by BKMM. This, together with holonomy (geometric phases) plays a crucial role in locomotion (eg, how snakes move).
- The equations on the Hamiltonian side (assuming the Lagrangian is regular) are governed by an *almost Poisson structure* and, in a sense, by an almost symplectic structure. In fact, the Jacobiator is measured by the curvature of Δ .⁵
- Despite this, the system *is* described by a Dirac structure, as 1 will explain below.

⁵Van der Schaft and Maschke, Bates and Sniatycki, Koon and JEM, Marle, ...

- Despite the above, there is also an energy-momentum method for stability (applies to the classical examples: rattleback, the unicycle, ...); there is also a picture similar to the bundle picture above with a beautiful intrinsic geometric description.⁶
- Resulting equations: the *Lagrange-d'Alembert-Poincaré* equations.
- (Not quite as bad as hemi-quasi-twisted-algebroids, ...)
- Circuits are typically not only nonholonomic (because of the Kirchhoff current laws), they are also often degenerate (giving *primary* constraints in the sense of Dirac).

⁶Obtained by Cendra, Marsden and Ratiu in 2001.

Variational methods are useful!

• Shell collisions: thin shell models using *multisymplectic variational methods, AVI + subdivision + collision methods* (JEM, Ortiz, Cirac–West)

Shell collision

- The Euler–Lagrange equations come from Hamilton's principle
- Hamilton's equations come from Hamilton's phase space variational principle
- The Euler-Poincaré equations come from the Euler-Poincaré variational principle

- The Euler–Lagrange equations come from Hamilton's principle
- Hamilton's equations come from Hamilton's phase space variational principle
- The Euler-Poincaré equations come from the Euler-Poincaré variational principle
- Question: what is it for the Lie-Poisson equations? (1 can make the question harder and ask this for the Hamilton-Poincaré equations or the Lagrange-Poincaré equations).

- The Euler–Lagrange equations come from Hamilton's principle
- Hamilton's equations come from Hamilton's phase space variational principle
- The Euler-Poincaré equations come from the Euler-Poincaré variational principle
- Question: what is it for the Lie-Poisson equations? (1 can make the question harder and ask this for the Hamilton-Poincaré equations or the Lagrange-Poincaré equations).
- Euler-Poincaré equations on g

$$\frac{d}{dt}\frac{\delta l}{\delta v} = \operatorname{ad}_{v}^{*}\frac{\delta l}{\delta v},$$

• Answer:⁷

 $\delta \int_{a}^{b} l(v(t)) dt = 0$ for constrained variations of the form $\delta v(t) = \dot{\eta}(t) + [v(t), \eta(t)],$

where $\eta(t)$ has fixed endpoints.

⁷See, for example, *Mechanics and Symmetry* by JEM and Ratiu.
• Answer:⁷

$$\delta \int_{a}^{b} l\left(v\left(t\right)\right) dt = 0$$

for constrained variations of the form

$$\delta v(t) = \dot{\eta}(t) + [v(t), \eta(t)],$$

where $\eta(t)$ has fixed endpoints.

• Method of proof: reduce Hamilton's principle on *TG*

⁷See, for example, *Mechanics and Symmetry* by JEM and Ratiu.

• Back to our question: how are the Lie-Poisson equations

 $\dot{\mu} = \operatorname{ad}_{\delta h/\delta \mu}^* \mu$

on g^* variational?

• Back to our question: how are the Lie-Poisson equations

 $\dot{\mu} = \operatorname{ad}_{\delta h/\delta \mu}^* \mu$

on g^* variational?

• Answer: A Pontryagin type principle:

$$\delta \int_{a}^{b} \left(\langle \mu(t), v(t) \rangle - h\left(\mu(t) \right) \right) dt = 0$$

for variations of the form

$$\delta v(t) = \dot{\eta}(t) + [v(t), \eta(t)],$$

where $\eta(t)$ has fixed endpoints, but $\delta\mu$ are arbitrary.

• Back to our question: how are the Lie-Poisson equations

 $\dot{\mu} = \operatorname{ad}_{\delta h/\delta \mu}^* \mu$

on g^* variational?

• Answer: A Pontryagin type principle:

$$\delta \int_{a}^{b} \left(\langle \mu(t), \nu(t) \rangle - h\left(\mu(t) \right) \right) dt = 0$$

for variations of the form

$$\delta v(t) = \dot{\eta}(t) + [v(t), \eta(t)],$$

where $\eta(t)$ has fixed endpoints, but $\delta\mu$ are arbitrary.

- The Legendre transformation $v = \delta h / \delta \mu$ is part of the variational principle! Neat! We will need this sort of thing.
- Method: reduce Hamilton's phase space principle.

Implicit Hamiltonian Systems

• Recall: a *Dirac structure* on a manifold *R* is: a subbundle $D \subset TR \times T^*R$ such that $D = D^{\perp}$, where the perp is with respect to the natural pairing

 $\langle\langle (u, \alpha), (v, \beta) \rangle\rangle = \langle \beta, u \rangle + \langle \alpha, v \rangle$

Implicit Hamiltonian Systems

• Recall: a *Dirac structure* on a manifold *R* is: a subbundle $D \subset TR \times T^*R$ such that $D = D^{\perp}$, where the perp is with respect to the natural pairing

 $\langle \langle (u, \alpha), (v, \beta) \rangle \rangle = \langle \beta, u \rangle + \langle \alpha, v \rangle$

• Standard examples: graph of an (almost) symplectic or (almost) Poisson structure. [Not enough for nonholonomic systems—one needs to put in the constraints].

Implicit Hamiltonian Systems

• Recall: a *Dirac structure* on a manifold *R* is: a subbundle $D \subset TR \times T^*R$ such that $D = D^{\perp}$, where the perp is with respect to the natural pairing

 $\langle \langle (u, \alpha), (v, \beta) \rangle \rangle = \langle \beta, u \rangle + \langle \alpha, v \rangle$

- Standard examples: graph of an (almost) symplectic or (almost) Poisson structure. [Not enough for nonholonomic systems—one needs to put in the constraints].
- For a symplectic or Poisson manifold, a *Hamiltonian vector field* X_H on R associated to a function H satisfies

 $(X, dH) \in D$

at each point of *R*. For good reason, Van der Schaft calls these things *implicit Hamiltonian systems*; they are an important part of his theory of "interconnected" and "port controlled" systems.

The Big Diagram

- Before defining an implicit Lagrangian system, we will need some more terminology and a "big diagram".⁸
- Namely, we need two natural diffeomorphisms; first there is the diffeomorphism

 $TT^*Q \to T^*T^*Q$

associated with the canonical symplectic form on T^*Q .

• Second, there is the natural diffeomorphism between

 $TT^*Q \rightarrow T^*TQ$

given in coordinates by $(q, p, \delta q, \delta p) \mapsto (q, \delta q, \delta p, p)$ and determined intrinsically by the commutativity of the following "big diagram".

⁸Some parts of this picture are due to Tulczyjew; the full diagram was formulated by Cendra, JM and Ratiu.

The Big Diagram

Implicit Lagrangian Systems

• Let $D \subset TT^*Q \times T^*T^*Q$ be a given Dirac structure on T^*Q . Let $L:TQ \to \mathbb{R}$ be a given Lagrangian and let

 $\mathfrak{D}L \in T^*T^*Q$

be $dL \in T^*TQ$ transferred over to T^*T^*Q by the canonical diffeomorphisms.

Implicit Lagrangian Systems

• Let $D \subset TT^*Q \times T^*T^*Q$ be a given Dirac structure on T^*Q . Let $L:TQ \to \mathbb{R}$ be a given Lagrangian and let

 $\mathfrak{D}L \in T^*T^*Q$

be $dL \in T^*TQ$ transferred over to T^*T^*Q by the canonical diffeomorphisms.

• An *implicit Lagrangian system* relative to the given Dirac structure *D* is a vector field *X* on *T***Q* satisfying

 $(X, \mathfrak{D}L) \in D$

at each point of T^*Q .

Standard Lagrangian Systems

- Hamilton's principle may be rewritten so that it fits very well with the above definition.
- Write Hamilton's principle this way:

$$\begin{split} 0 &= \delta \int_{a}^{b} L(q(t) \dot{q}(t)) dt \\ &= \int_{a}^{b} \left(\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right) dt \\ &= \int_{a}^{b} \left(\dot{p} \, \delta q - \dot{p} \, \delta q + \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right) dt \\ &= \int_{a}^{b} \left(-\dot{p} \, \delta q - p \, \delta \dot{q} + \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right) dt + p \, \delta q \Big|_{a}^{b} \\ &= -\int_{a}^{b} \left\{ \left(\dot{p} - \frac{\partial L}{\partial q} \right) \, \delta q + \left(p - \frac{\partial L}{\partial \dot{q}} \right) \, \delta \dot{q} \right\} dt + p \, \delta q \Big|_{a}^{b} . \end{split}$$

Comments

• This derivation can be given entirely intrinsically using objects in the big diagram.

Comments

- This derivation can be given entirely intrinsically using objects in the big diagram.
- Notice that the final equations include the Legendre transformation $p = \partial L / \partial \dot{q}$ as part of the equations. The boundary term, as is (now) standard, gives the canonical oneform.

Comments

- This derivation can be given entirely intrinsically using objects in the big diagram.
- Notice that the final equations include the Legendre transformation $p = \partial L / \partial \dot{q}$ as part of the equations. The boundary term, as is (now) standard, gives the canonical oneform.
- The equations (where $X(q, p) = (q, p, \dot{q}, \dot{p})$) written this way are *exactly* the Dirac structure equations, namely, $(X, \mathfrak{D}L) \in D$, *including* the Legendre transform and also the correct identification of \dot{q} .

- Now we are ready to state the nonholonomic equations in terms of Dirac structures.
- Given the constraint distribution $\Delta \subset TQ$, we will now define an *associated Dirac structure* D_{Δ} on T^*Q .
- It will save time if we define D_{Δ} when Q = V, a vector space. Then at each point $q \in V$, $\Delta \subset V$ and

 $D_{\Delta} \subset TT^*Q \times T^*T^*Q$

becomes, at each fiber point $(q, p) \in V \times V^*$,

 $D_{\Delta} \subset (V \times V^*) \times (V^* \times V)$

Let

$$D_{\Delta} = \{(\nu, \beta), (\gamma, -\nu) \mid \nu \in \Delta, \gamma - \beta \in \Delta^{o}\}$$

where $\Delta^{o} \subset V^{*}$ is the polar of Δ .

• It is easy to check that D_{Δ} is a Dirac structure.

- It is easy to check that D_{Δ} is a Dirac structure.
- Then we have

Theorem. The statement that $(X, \mathfrak{D}L) \in D_{\Delta}$ is equivalent to the Lagrange-d'Alembert equations, including the dynamic equations, the condition $\dot{q} \in \Delta$, and the constraints.

- It is easy to check that D_{Δ} is a Dirac structure.
- Then we have

Theorem. The statement that $(X, \mathfrak{D}L) \in D_{\Delta}$ is equivalent to the Lagrange-d'Alembert equations, including the dynamic equations, the condition $\dot{q} \in \Delta$, and the constraints.

• Of course this is also directly tied to the Lagrange-d'Alembert variational structure of the equations.

• You are seeing the tip of a big iceberg. Much is left to uncover.

- You are seeing the tip of a big iceberg. Much is left to uncover.
- Conjectures are easy to make: Reduction of Dirac structures should produce, for instance, a Dirac structure for the Lagrange-d'Alembert-Poincaré equations as a special case; that is, Lagrange-d'Alembert reduction should be consistent with Dirac reduction. Ditto for the Lie-Poisson variational principle described in the "question to you". A *metaprinciple* emerges.

- You are seeing the tip of a big iceberg. Much is left to uncover.
- Conjectures are easy to make: Reduction of Dirac structures should produce, for instance, a Dirac structure for the Lagrange-d'Alembert-Poincaré equations as a special case; that is, Lagrange-d'Alembert reduction should be consistent with Dirac reduction. Ditto for the Lie-Poisson variational principle described in the "question to you". A *metaprinciple* emerges.
- In particular, the reduction of the standard Dirac structure on *T***Q* is *not* the standard Dirac structure on g*, but rather should be one on g×g* associated with the reduced "Pontryagin" space.

• In doing PDE, relativistic field theories or even quantum mechanics, multisymplectic and multipoisson structures are the way to do. What is a *multi-Dirac* structure? (Think of a rolling ball of jello, or squishy tires on a road to motivate nonholonomic PDE's).

- In doing PDE, relativistic field theories or even quantum mechanics, multisymplectic and multipoisson structures are the way to do. What is a *multi-Dirac* structure? (Think of a rolling ball of jello, or squishy tires on a road to motivate nonholonomic PDE's).
- The Lagrangian perspective on circuits provide a beautiful set of examples and show how Dirac structures can handle situations that are of the sort considered by Dirac.

- In doing PDE, relativistic field theories or even quantum mechanics, multisymplectic and multipoisson structures are the way to do. What is a *multi-Dirac* structure? (Think of a rolling ball of jello, or squishy tires on a road to motivate nonholonomic PDE's).
- The Lagrangian perspective on circuits provide a beautiful set of examples and show how Dirac structures can handle situations that are of the sort considered by Dirac.
- Hopefully Dirac himself would be pleased with all this.

- In doing PDE, relativistic field theories or even quantum mechanics, multisymplectic and multipoisson structures are the way to do. What is a *multi-Dirac* structure? (Think of a rolling ball of jello, or squishy tires on a road to motivate nonholonomic PDE's).
- The Lagrangian perspective on circuits provide a beautiful set of examples and show how Dirac structures can handle situations that are of the sort considered by Dirac.
- Hopefully Dirac himself would be pleased with all this.
- Go to my home page for free templates for making TeX slides like these ones. Click on "Marslides".

TYPESETTING SOFTWARE: TEX, *Textures*, LATEX, hyperref, texpower, Adobe Acrobat 4.05 GRAPHICS SOFTWARE: Adobe Illustrator 10.0.1 LATEX SLIDE MACRO PACKAGES: Wendy McKay, Ross Moore