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Mission to Europa
�Motivation: Oceans and life on Europa?
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Mission to Europa
�Motivation: Oceans and life on Europa?
� There is international interest in sending a scientific

spacecraft to orbit and study Europa
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NASA’s Europa Orbiter
�Original plans canceled due to budget constraints

Europa orbiter - courtesy NASA
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Multi-Moon Orbiter
�Orbit each moon in a single mission
�Other Jovian moons are also worthy of study
• Evidence from Galileo suggests all may have oceans,
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single spacecraft to orbit multiple moons
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Multi-Moon Orbiter
�We design trajectories that use little fuel and allow a

single spacecraft to orbit multiple moons
� Each moon is orbited for much longer than the quick

flybys of previous missions

�Using a standard “patched-conics” approach, the ∆V
necessary would be prohibitively high

� By decomposing the N-body problem into 3-body
problems and using the natural dynamics of the 3-
body problem, the ∆V can be lowered significantly
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What is Involved
� 3-body problem dynamics
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What is Involved
� 3-body problem dynamics

� resonance structures

� coupling different 3-body systems
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Some History
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Some History
� 1700-1850 : Euler, Lagrange, Gauss: foundations

� 1880-1890 : Poincaré: fundamental work on the 3-
body problem; origins of chaos

� 1900-1965 : Moser, McGehee, Conley, & others make
fundamental contributions to the 3-body problem

� 1965-present : Research in the 3 and 4 body prob-
lems continues by many people .

� 1970-present : Concrete missions (such as ICEE-3,
SOHO and Hiten) begin to use dynamical systems
methods in interesting ways. Especially the pioneer-
ing work of Farquhar, Simo (the Barcelona Group),
Miller and Belbruno
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General Three Body Problem
� Three bodies move in R3 under mutual gravitational

interaction
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General Three Body Problem
� Three bodies move in R3 under mutual gravitational

interaction

� Rich problem; basic work by Poincaré

�New periodic solutions found recently (Montgomery,
Chenciner, Simo...)
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Special 3-Body Solutions

figure 8 orbit
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Special 3-Body Solutions

Exotic A
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Special 3-Body Solutions

Exotic B
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Restricted Circular Problem
� Two primaries move in circles; the smaller third body

moves in the field of the primaries (without affecting
them); view the motion in a rotating frame
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Restricted Circular Problem
� Two primaries move in circles; the smaller third body

moves in the field of the primaries (without affecting
them); view the motion in a rotating frame

�Need both the planar and the spatial problems

� there are places of balance; eg, a point between the
two bodies where the attraction balances

� There are five such equilibrium points:
• Three collinear (Euler,1750) on the x-axis—L1, L2, L3

• Two equilateral points (Lagrange,1760)—L4, L5

12



Restricted Circular Problem
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Restricted Circular Problem
� if a spacecraft is at L1 or at L2, it will stay there

� one can go into orbit about the L1 and L2 points—
that is where the Genesis spacecraft is at the mo-
ment (in orbit about the Earth-Sun L1 point)

� some of these periodic orbits are called Liapunov or-
bits , others are called halo and Lissajous orbits

�Key Role: Invariant manifolds of L1 and L2, periodic
orbits surrounding L1 and L2, other periodic, homo-
clinic and heteroclinic orbits in the 3-body problem

�Genesis is interesting from a dynamical systems per-
spective: it has a heteroclinic return orbit to Earth
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Genesis Launch–Aug 8, 2001
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Genesis Spacecraft
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Genesis Orbit
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Invariant Manifolds in the 3-Body Problem
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Invariant Manifolds–Genesis Overlay
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Spatial Problem
� The dynamics of the 3-body problem relevant to the

motion of comets and Genesis-type spacecraft; orbit
structure and heteroclinic connections between peri-
odic orbits now fairly well understood1

� In the 3D problem, connections are between tori in-
stead of periodic orbits—one can extend most of the
preceding picture to guarantee, for instance, lots of
interesting high inclination orbits2

1Koon, Lo, Marsden, & Ross [2001]
2Gómez, Koon, Lo, Marsden, Masdemont & Ross [2001]
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Equations of Motion
◦ consider the planar case—the spatial case is similar

◦ Kinetic energy (wrt inertial frame) in rotating coordinates:

K(x,y, ẋ, ẏ) = 1
2

[
(ẋ −ωy)2 + (ẏ +ωx)2

]

◦ Lagrangian is K.E. − P.E., given by

L(x,y, ẋ, ẏ) = K(x,y, ẋ, ẏ)− V(x,y); V(x,y) = −1− µ
r1

− µ
r2

◦ Euler-Lagrange equations:

ẍ − 2ωẏ = −∂Vω
∂x

, ÿ + 2ωẋ = −∂Vω
∂y

where the effective potential is

Vω = V −ω
2(x2 +y2)

2
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Effective potential
• In the circular planar restricted three body problem, and

in a rotating frame, the equations for the third body are
those of a particle moving in an effective potential plus a
magnetic field (results of Jacobi, Hill, etc)

S J

Effective Potential Level set shows the Hill region
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Invariant Manifold Tubes
� invariant manifolds of a halo orbit (projected to con-

figuration space) for illustration

� red = unstable, green = stable
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Invariant Manifold Tubes
� These manifold tubes play a crucial role in what passes

through the resonance (transit orbits)

� and what bounces back (non-transit orbits)

� transit possible if you are “inside” the tube, otherwise
nontransit—important for transport issues
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Idea of Tube-Hopping

LunarL1GatewayService.mov
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Back to Jupiter’s Moons
• Apply these ideas to find a trajectory that orbits multiple

moons of Jupiter
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Back to Jupiter’s Moons
• Apply these ideas to find a trajectory that orbits multiple

moons of Jupiter

• Example 1: Europa → Io → Jupiter collision

1. Begin tour
2. Europa encounter
3. Jump between tubes
4. Io encounter
5. Collide with Jupiter
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Construction Strategy
� use burns (controls) that enable a transfer from one 3-

body system to another via direct McGehee-Conley
tube hopping
• from the Jupiter-Europa-spacecraft system to
• the Jupiter-Io-spacecraft system
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Construction Strategy
� use burns (controls) that enable a transfer from one 3-

body system to another via direct McGehee-Conley
tube hopping
• from the Jupiter-Europa-spacecraft system to
• the Jupiter-Io-spacecraft system

�make use of heteroclinic connections that enable a
(structured) transit across the neck of the Hill’s region

� trajectories do well on fuel savings

� here is a close-up of the Io encounter

27



Construction Strategy
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Construction Strategy
� Example 2: Ganymede → Europa → orbit in-

jection around Europa

pgt-3d-movie-inertial.qt
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Construction Strategy

pgt-3d-movie-ga.qt
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Construction Strategy

pgt-3d-movie-eu.qt
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Multi-Moon Orbiter—Refinement

• Preceding ∆V of 1400 m/s for the Ganymede-Europa or-
biter was half the Hohmann transfer (that is, using patched
conics, as in manned moon missions)

• Desirable to decrease ∆V further—one now does not di-
rectly “tube-hop”, but rather makes more refined use of
the phase space structure

• New things: resonant gravity assists with the moons

• Interesting: still fits well with the tube-hopping method
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Some History
�Resonance Gravity Assists

◦ 1890s: Poincaré: repeated close encounters of a particle with the
second primary in the 3-body problem can change its orbit from
one Keplerian ellipse to another, termed “second species solutions”

◦ 1960s-1980s: Arenstorf, Perko, Breakwell, Guillaume, and Hen-
rard consider periodic second species solutions

◦ 1990s: Bollt, Meiss, Schroer, and Ott contruct Earth to Moon
trajectories using lunar resonances; Sweetser et al. use resonance
hopping for initial Europa Orbiter trajectory; Belbruno, Brian Mars-
den, Lo, and Ross consider resonance hopping of comets

◦ 1999-2001 : Schoenmaekers, Horas, and Pulido use lunar reso-
nances to reach moon in design of ESA’s SMART-1, to launch in
March 2003
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Some History
◦ 2000-present : Barrabés, Font, Gómez, Nunes, and Simó (part of

the Barcelona group) systematically study jumping between reso-
nant orbits; Koon, Lo, Marsden, and Ross at Caltech systematically
study jumping between interior and exterior resonances and its
application to space mission trajectory design
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Some History
�Ballistic Capture/Escape &

Patched Three-Body Model
◦ 1950s-1960s: Moser, McGehee, Conley, at al. make fundamental

contributions to the 3-body problem
◦ 1990s: Belbruno and Miller save the Hiten mission using a ballis-

tic capture by the Moon
◦ 2000-present : Koon, Lo, Marsden, and Ross develop tube dy-

namics to systematically study missions using ballistic capture and
escape; patched three-body model developed to design missions
such as “Shoot the Moon” and MMO—the Multi-Moon Orbiter

35



Introductory Remarks
• Consider the following tour of Jupiter’s moons
◦ Begin in an orbit about Jupiter that grazes Callisto’s orbit at per-

ijove (point of closest approach to Jupiter), which is achievable
using a patched-conics trajectory from the Earth to Jupiter, just
like Galileo

◦ Goal: orbit Callisto, Ganymede, and Europa
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Example of a Resulting Orbit
�∆V = 22 m/s, but flight time is a few years

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame

Jupiter

Callisto
   Ganymede
              Europa 
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Features
•Model is a restricted bi-circular 5-body problem

• A user-assisted algorithm was necessary to produce it

• Future Goal: An automated algorithm

• The flight time is too long; should be reduced below 18
months (according to NASA)

• Evidence from other situations (such as lunar missions)
suggests that a significant decrease in flight time can be
gained for a modest increase in ∆V

• Radiation dose is not accounted for; will be included in fu-
ture models—affects mission lifetime and approach strat-
egy
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Construction Procedure
�Building blocks
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Construction Procedure
�Building blocks
� Patched three-body model: linking two adjacent

three-body systems
� Inter-moon transfer: decreasing Jovian energy via

resonance gravity assists
�Orbiting each moon: ballistic capture and escape
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Inter-Moon Transfer
� Spacecraft gets a gravity assist from outer moon M1

when it passes through apoapse if near a resonance
�When periapse close to inner moonM2’s orbit is reached,

it takes “control”; this occurs for ellipse E
Leaving moon M1 Approaching moon M2

Apoapse A fixed Periapse P fixed
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Inter-Moon Transfer
◦ The transfer between three-body systems occurs when energy sur-

faces intersect (similar to the Tisserand plots by Longuski et. al.); this
can be seen on semimajor axis vs. eccentricity diagram

1 1.5 2 2.5 3 3.5 4

0

0.05

0.1

0.15

0.2

0.25

0.3

Spacecraft jumping between resonances on the way to Europa

semimajor axis (a
Europa

 = 1)

ec
ce

n
tr

ic
it

y

E G C 

Curves of Constant
3-Body Energy 

within each system

Spacecraft path

41



Ballistic Capture
� An L2 orbit manifold tube leading to ballistic capture

around a moon is shown schematically

� Escape is the time reverse of ballistic capture

42



Why Does It Work?
� Recall: planar circular restricted three-body prob-

lem—motion of a spacecraft in the gravitational field
of two larger bodies in circular motion

L1 L2

Exterior Region

Interior (Jupiter)
 Region

Moon Region

Forbidden Region
(at a particular energy level)

spacecraft

Poincare section
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Poincaré Surface of Section
◦ Study Poincaré surface of section at fixed energy E, reducing sys-

tem to a 2-dimensional area preserving map

z

P(z)

Poincaré surface of section
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Poincaré Surface of Section
• Poincaré section reveals mixed phase space structure:

KAM tori and a “chaotic sea” are visible.
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Transport in Poincaré Section
• Phase space divided into regions Ri, i = 1, ..., NR

bounded by segments of stable and unstable manifolds
of unstable fixed points.
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Lobe Dynamics
Transport btwn regions computed via lobe dynamics.
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Movement Between Resonances

We can compute manifolds which naturally divide the
phase space into resonance regions.
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Movement Between Resonances

Transport and mixing between regions can be com-
puted.
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Movement Between Resonances
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Movement Between Resonances

Navigation from one resonance to another, essential
for the Multi-Moon Orbiter, can be performed.
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Oceanic Interlude
�
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Oceanic Interlude
� The software used to compute transport by lobe dy-

namics, namely MANGEN , comes from a study of
ocean dynamics.

� Interesting: there are analogs of navigating by invari-
ant manifolds in the ocean.

� Adaptive Ocean Sampling Network (AOSN-II)
◦ Princeton: Naomi Leonard, Clancy Rowley, Eddie Forelli, Ralf

Bachmayer, ...
◦ Caltech: Chad Couliette, Francois Lekien, JEM, Shawn Shadden
◦MIT: George Haller
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AOSN-II Remarks

10 UWG’s to be launched in summer, 2003, in Monterey Bay
Naomi Leonard, Clancy Rowley, JM ⊂ the ONR AOSN-II team.
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Features of the UWG’s
• Nearly conservative
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Features of the UWG’s
• Nearly conservative

• Very limited communications and control authority on
board; often working in unstable conditions

• Use of natural dynamics essential

• Primary Mission: Data gathering: maneuver near ocean
features of interest to oceanographers, biologists, such as
temperature fronts

• Underactuated
• Coordinated control is important

• Tools:
◦ Potential and kinetic shaping, gyroscopic controls
◦ Virtual leaders, control potentials, graph theory
◦Management of instabilities via invariant manifolds
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Sample Maneuver: Monterey Bay

DLE-climbing-80.qt
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Resonances and Tubes
�Resonances and tubes are linked
� It has been observed that the tubes of capture (resp.,

escape) orbits are coming from (resp., going to) cer-
tain resonances.

� Resonances are a function of energy E and the mass
parameter µ

� Koon, Lo, Marsden, Ross [2001]
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Resonances and Tubes
Poincaré sections in different realms (U1 through U4) are linked by phase
space tubes. The projection of the tubes on the configuration space
appear as strips.
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Resonances and Tubes
For example, points reach the exit in U1 and are transported via a tube
to the entrance of U2.
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Resonances and Tubes
Poincaré section: tube cross-sections are closed curves

Particles inside curves move toward or away the moon
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Resonances and Tubes
Same Poincaré section: resonance regions now plotted

2:3 exterior resonance
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Resonances and Tubes
� Regions of overlap lead to ballistic capture

Regions of overlap occur
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Escape Rates
�Applications to dynamical astronomy
�One can compute the rate of escape of particles

temporarily captured by Mars, e.g. asteroids or im-
pact ejecta liberated from the Martian surface.
• Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer [2002]

Mars with temporarily captured asteroids.
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Escape Rates
� Consider a particle at an energy such that it can es-

cape sunward. Using a statistical approach used in
chemical dynamics, the rate of escape can be esti-
mated.

63



Escape Rates

Sun

    Case 2 : E1<E<E2

Mars
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Escape Rates
Mixing assumption: all asteroids in the chaotic sea
surrounding Mars are equally likely to escape .
Escape rate = −log(1− p), where

p = Area of exit sunward
Area of chaotic sea

Exit to Interior Realm
with Area F

Chaotic Sea
with Area A

Tori Bounding
the Chaotic Sea
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Escape Rates
Compare this rate with one obtained from a Monte
Carlo simulations of 107,000 particles at randomly
selected initial conditions at the same energy.
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Escape Rates
Theory and numerical simulations agree well
◦Monte Carlo simulation (dashed) and theory (solid)
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Earth to Moon Trajectories
� Similar methods can be applied to near-Earth

space to study the ∆V verses time trade-off
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Earth to Moon Trajectories
� Similar methods can be applied to near-Earth

space to study the ∆V verses time trade-off
� Consider a transfer from Earth orbit to lunar orbit
• As before, use natural dynamics to lower propellant

usage
• Use planar circular restricted 3-body model
• Bollt and Meiss [1995]: targeting through recurrence
• Schroer and Ott [1997]: targeting passes between res-

onances

� Current work: seek intersections between resonances
and tubes leading to ballistic capture by the moon
• Take full advantage of all known phase space struc-

tures
68



Earth to Moon Trajectories
� Results: much shorter transfer times than previous

authors for only slightly more ∆V
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Trajectories from a circular Earth orbit (r=59669 km) to a stable lunar orbit

Hohmann transfer
∆V = 1220 m/s

TOF = 6.6 days 

Present Work

Schroer & 
Ott [1997]

    Bollt & 
Meiss [1995]
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Earth to Moon Trajectories
� Compare with Bollt and Meiss [1995]
• A tenth of the time for only 100 m/s more

Current Result Bollt and Meiss [1995]
65 days, ∆V = 860 m/s 748 days, ∆V = 750 m/s

TOF = 65 days
∆V = 860 m/s
1 Day Tick Marks

Earth Moon
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Example: GEO to Lunar Orbit
GEO to Moon Orbit Transfer

Seen in Geocentric Inertial Frame

TOF = 63 days
∆V = 1211 m/s
1 Day Tick Marks

EarthMoon’s
Orbit
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Example: GEO to Lunar Orbit

GEO to Moon - rotating frame
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Example: GEO to Lunar Orbit

GEO to Moon - inertial frame
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The End
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