

Dynamical Systems and Control in Celestial Mechanics and Space Mission Design

Jerrold E. Marsden Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/~marsden/

Wang Sang Koon (CDS), Martin Lo (JPL), Shane Ross (CDS)

SIAM meeting, San Diego, CA, Wednesday, July 11, 2001

Topics for discussion:

□ solar system dynamics (eg, dynamics of comets)

Topics for discussion:

- □ solar system dynamics (eg, dynamics of comets)
- □ the role of the three and four body problems

Topics for discussion:

- □ solar system dynamics (eg, dynamics of comets)
- □ the role of the three and four body problems
- space mission trajectory design

Topics for discussion:

- □ solar system dynamics (eg, dynamics of comets)
- □ the role of the three and four body problems
- □ space mission trajectory design
 - and the relationships between these topics

Some history:

- □ 1700-1850: Euler, Lagrange, Gauss, began to lay the mathematical foundations
- □ **1880–1890**: Poincaré: fundamental work on the **3-body problem**; creates the research area **chaos**
- □ **1900–1965**: Moser, Conley, and others make fundamental contributions to the 3-body problem
- Image: 1965-present. Research in the 3 and 4 body problems and other topics in geometric mechanics and associated applications continues by many people: by no means finished!

Current research importance

design of some NASA mission trajectories —such as the *Genesis Discovery Mission* to be launched July 30, 2001—EXCITING DAY!!

Current research importance

- design of some NASA mission trajectories —such as the *Genesis Discovery Mission* to be launched July 30, 2001—EXCITING DAY!!
- of current astrophysical interest for understanding the transport of solar system material (eg, how do pieces of Mars get to the Earth, etc)

Current research importance

- design of some NASA mission trajectories —such as the *Genesis Discovery Mission* to be launched July 30, 2001—EXCITING DAY!!
- of current astrophysical interest for understanding the transport of solar system material (eg, how do pieces of Mars get to the Earth, etc)

Acknowledgements

 the Genesis team, the groups of Kathy Howell (Purdue), Michael Dellnitz (Paderborn), Linda Petzold (UC Santa Barbara), Gerard Gomez, Josep Masdemont, Carles Simo (the Barcelona group), etc.

Dynamical Orbits

- Some dynamical systems concepts
- Simple pendulum
 - □ three kinds of orbits:
 - oscillating orbits
 - running orbits
 - special separating orbits

Dynamical Orbits

- Some dynamical systems concepts
- Simple pendulum
 - □ three kinds of orbits:
 - oscillating orbits
 - running orbits
 - special separating orbits

□ Via F = ma, can visualize solutions as trajectories in the $(\theta, \dot{\theta})$ plane $(\theta$ is the angle of the pendulum from the vertical downward position)

□ the resulting *phase portrait* allows one to put together the basic orbits in one figure:

Dynamical Orbits

Phase portrait of the simple pendulum

Invariant Manifolds

□ Higher dimensional analog of the invariant curves

Invariant manifolds

Periodic Orbits

□ Can replace equilibria by *periodic orbits*:

Stable Manifold (orbits move toward the periodic orbit)

Unstable Manifold (orbits move away from the periodic orbit)

Invariant manifolds attached to a periodic orbit

General Three Body Problem

□ Three bodies move under mutual gravitational interaction

General Three Body Problem

- □ Three bodies move under mutual gravitational interaction
- Some interesting new orbits discovered in the last few years by Richard Montgomery, Alain Chenciner, Carles Simo. Movies by Randy Paffenroth (Caltech) generated using AUTO

Figure 8 Orbits: 3-body-figure-8.qt

Fancy Orbit A: 3-body-exoticA.qt

Fancy Orbit B: 3-body-exoticB.qt

Restricted Circular Problem

- □ the two primaries move in circles; the smaller third body moves in the field of the primaries (without affecting them); view the motion in a *rotating frame*
- □ we consider the *planar* and the *spatial* problems

Restricted Circular Problem

- □ the two primaries move in circles; the smaller third body moves in the field of the primaries (without affecting them); view the motion in a *rotating frame*
- □ we consider the *planar* and the *spatial* problems
- □ there are places of *balance*; eg, a point between the two bodies where the attraction balances

Restricted Circular Problem

- □ the two primaries move in circles; the smaller third body moves in the field of the primaries (without affecting them); view the motion in a *rotating frame*
- □ we consider the *planar* and the *spatial* problems
- □ there are places of *balance*; eg, a point between the two bodies where the attraction balances
- □ There are five such *equilibrium points*:
 - Three collinear (Euler, 1750) on the x-axis- L_1, L_2, L_3
 - Two *equilateral points* (Lagrange, 1760)–*L*₄, *L*₅.

Equilibrium points for the three body problem

□ if a spacecraft is at L₁ or at L₂, it will stay there
□ one can go into orbit about the L₁ and L₂ points, even though there is no material object there!

 \Box if a spacecraft is at L_1 or at L_2 , it will stay there

- \Box one can go into orbit about the L_1 and L_2 points, even though there is no material object there!
- □ some of these orbits are called *Liapunov orbits*, others are called *halo and Lissajous orbits*.

- \Box if a spacecraft is at L_1 or at L_2 , it will stay there
- \Box one can go into orbit about the L_1 and L_2 points, even though there is no material object there!
- □ some of these orbits are called *Liapunov orbits*, others are called *halo and Lissajous orbits*.
- □ just as in the pendulum, one can draw the invariant manifolds associated to L_1 (and L_2) and the periodic orbits surrounding them.
- □ these *invariant manifolds* play a key role in what follows

Invariant manifolds for the 3-body problem

• consider the *planar case*; the *spatial case* is similar

• *Kinetic energy* (wrt inertial frame) in rotating coordinates:

$$K(x, y, \dot{x}, \dot{y}) = \frac{1}{2} \left[(\dot{x} - \omega y)^2 + (\dot{y} + \omega x)^2 \right]$$

• *Lagrangian* is K.E. – P.E., given by

$$L(x, y, \dot{x}, \dot{y}) = K(x, y, \dot{x}, \dot{y}) - V(x, y); \quad V(x, y) = -\frac{1-\mu}{r_1} - \frac{\mu}{r_2}$$

• Euler-Lagrange equations:

$$\ddot{x} - 2\omega\dot{y} = -\frac{\partial V\omega}{\partial x}, \qquad \ddot{y} + 2\omega\dot{x} = -\frac{\partial V\omega}{\partial y}$$

where the *effective potential* is

$$V_{\omega} = V - \frac{\omega^2 (x^2 + \gamma^2)}{2}$$

Effective potential

• In the circular planar restricted three body problem, and in a rotating frame, the equations for the third body are those of a particle moving in an effective potential plus a magnetic field (goes back to work of Jacobi, Hill, etc)

Effective Potential

Level set shows the Hill region

Invariant Manifolds of Periodic Orbits

red = unstable, **green** = stable

- □ These manifold tubes play a crucual role in what *passes through* the resonance (transit orbits)
- □ and what *bounces back* (non-transit orbits)
- □ transit possible if you are "inside" the tube, otherwise nontransit—important for *transport issues*

Comet Oterma

- □ we consider the historical record of the orbit of comet Oterma from 1910 to 1980
 - first in an inertial frame (fixed relative to the stars)
 - and then a rotating frame
 - very special case of *pattern evocation*
- □ similar pictures for many other comets

Comet Oterma

oterma-inertial.qt

Comet Oterma

oterma-rotating.qt

Genesis Discovery Mission

□ Mission Purpose: To gather solar wind samples and to return them to Earth for analysis

Genesis Discovery Mission

- □ **Mission Purpose:** To gather solar wind samples and to return them to Earth for analysis
- □ Mission Constraints/Features:
 - Return in Utah during the daytime
 - Descend with a parachute for a *helicopter snatch*
 - *lunar swingby contingency* in case of bad weather
 - *Energy efficient* (small thrust required): makes use of the dynamical sensitivity to design a low-cost trajectory

- Mission Trajectory
- □ Four phases:

- Mission Trajectory
- □ Four phases:
 - 1. from low Earth orbit, insertion onto an L_1 halo orbit stable manifold

- Mission Trajectory
- □ Four phases:
 - 1. from low Earth orbit, insertion onto an L₁ halo orbit *stable manifold*
 - 2. using *saddle point controllers*, remain on the halo orbit for about 2 years (4 revolutions)

- Mission Trajectory
- □ Four phases:
 - 1. from low Earth orbit, insertion onto an L₁ halo orbit *stable manifold*
 - 2. using *saddle point controllers*, remain on the halo orbit for about 2 years (4 revolutions)
 - 3. return to a near halo orbit around *L*₂ via a near *hetero-clinic connection*

Mission Trajectory

□ Four phases:

- 1. from low Earth orbit, insertion onto an L₁ halo orbit *stable manifold*
- 2. using *saddle point controllers*, remain on the halo orbit for about 2 years (4 revolutions)
- 3. return to a near halo orbit around *L*₂ via a near *hetero-clinic connection*
- 4. return to Earth on *an impact orbit* (guided by the unstable manifold of a halo orbit around *L*₂).

Mission Trajectory

□ Four phases:

- 1. from low Earth orbit, insertion onto an L_1 halo orbit stable manifold
- 2. using *saddle point controllers*, remain on the halo orbit for about 2 years (4 revolutions)
- 3. return to a near halo orbit around *L*₂ via a near *hetero-clinic connection*
- 4. return to Earth on *an impact orbit* (guided by the unstable manifold of a halo orbit around *L*₂).
- □ Final trajectory computation takes into account all the major bodies in the solar system.

The Genesis trajectory

View of the Genesis trajectory in the plane

Genesis orbit and the Sun-Earth dynamical structure

- Some *planet-impacting asteroids* use invariant manifolds as a pathway from nearby heliocentric orbits. This phenomena has been observed in the impact of comet *Shoemaker-Levy 9* with Jupiter.
- Some NEO's are subject to similar dynamics and are the most dangerous ones; perhaps the KT impact event was one of these too!
- □ These ideas apply to *any planet or moon system*!

□ in 1991, the Japanese mission, Muses-A, was given new life with a radical new mission concept & renamed the *Hiten Mission*

□ in 1991, the Japanese mission, Muses-A, was given new life with a radical new mission concept & renamed the *Hiten Mission*

□ the mission was "saved" by finding a more fuel efficient pathway to the moon (Miller and Belbruno)

□ now a deeper understanding of this is emerging

- □ in 1991, the Japanese mission, Muses-A, was given new life with a radical new mission concept & renamed the *Hiten Mission*
- □ the mission was "saved" by finding a more fuel efficient pathway to the moon (Miller and Belbruno)
- □ now a deeper understanding of this is emerging
- □ we approach this problem by
 - *systematically implementing* the view that the Sun-Earth-Moon-Spacecraft 4-body system can be modelled as *two coupled 3-body systems*
 - and using invariant manifold ideas

- Idea: put two Genesis-type trajectories together; we transfer from
 - the Sun-Earth-spacecraft system to
 - the Earth-Moon-spacecraft system

- Idea: put two Genesis-type trajectories together; we transfer from
 - the Sun-Earth-spacecraft system to
 - the *Earth-Moon-spacecraft* system
- □ 20% *more fuel efficient* than the Hohmann transfer (accelerate to an ellipse that reaches to the Moon, accelerating to catch the moon, then circularize).
- *But*: takes longer (6 months as opposed to 5 days). [OK for cargo ships, but not human missions]

- Idea: put two Genesis-type trajectories together; we transfer from
 - the Sun-Earth-spacecraft system to
 - the *Earth-Moon-spacecraft* system
- □ 20% *more fuel efficient* than the Hohmann transfer (accelerate to an ellipse that reaches to the Moon, accelerating to catch the moon, then circularize).
- *But*: takes longer (6 months as opposed to 5 days). [OK for cargo ships, but not human missions]
- □ Fuel savings *and* the time of flight in other missions (eg, to Jupiter's moon's) is more dramatic
- Schematic of the idea

shootthemoon-inertial.qt

shootthemoon-rotating.qt

Construction of new trajectories that visit the Jovian system.

Construction of new trajectories that visit the Jovian system.

■ Example 1: Europa → Io → Jupiter collision

- 1. Begin tour
- 2. Europa encounter
- 3. Jump between tubes
- 4. Io encounter
- 5. Collide with Jupiter

Strategy:

- □ use burns (controls) that enable a transfer from one three body system to another
 - from the Jupiter-Europa-spacecraft system to
 - the Jupiter-Io-spacecraft system
- □ this strategy is similar to that used in the lunar missions together with some symbolic dynamics
- □ trajectories do well on fuel savings
- □ here is a close-up of the lo encounter

Close-up of the lo encounter

■ Example 2: Ganymede → Europa → orbit injection around Europa

pgt-3d-movie-inertial.qt

pgt-3d-movie-ga.qt

pgt-3d-movie-eu.qt

Halo Orbit Insertion

- □ After launch, the *Genesis Discovery Mission* will get onto the stable manifold of its eventual periodic orbit around L_1
- □ Errors in, eg, launch velocity, means that there must be corrective manouvers
- □ The software COOPT is very useful in determining the necessary corrections (burn sizes and timing) systematically for a variety of launch conditions
- □ It gets one onto the orbit at the right time, while minimizing fuel (what is being optimized)

- □ A number of unusual features, such as the nature of the boundary conditions
- □ A very nice mixture of dynamical systems (providing guidance and first guesses) and optimal control
- See the talk of Linda Petzold in the satellite dynamics minisymposium (work with Radu Serban, Martin Lo, Wang Sang Koon, JEM and Shane Ross)

- Satellite reconfiguration, stationkeeping and deconfiguration
- □ This application makes use of the software NTG (Nonlinear Trajectory Generation) developed at Caltech
- Details were in the minisymposium talk: Richard Murray (together with Mark Milam and Nicolas Petit)
- □ This involves near Earth *spacecraft clusters*

Why clusters?

- Clusters can achieve the same resolution as a large telescope using vision systems coordinated in software and modern optics
- coordinated clusters can obtain unprecedented resolution for both Earth-pointing systems and those pointing into deep space

Two basic problems

- □ Formation maintenance: keep the satellites in relative position–use small controls
- □ Formation changes: get the formation as a whole to reposition itself for the next task—use larger controls
- Especially for reconfiguration, one wants to do this optimally (again, minimize fuel)
- Handles constraints, such as imaging and communication constraints very nicely

Formation maintenance with guaranteed Earth coverage.

Formation Flying Methodology

Active Formation Methodology

Passive Formation Methodology

Stationkeeping

Stationkeeping

Reconfiguration

Reconfiguration

Deconfiguration

Deconfiguration

Terrestrial Planet Finder

- □ *Goal*: probe for Earth-like planets using a large baseline group of satellites-this time a *deep space cluster*
- □ Orbiting around L_2 is a candidate position: away from the Earth.
- Each halo orbit is surrounded by a torus that provides a natural dynamical formation
- Very nice visualizations of this by Ken Museth, Martin Lo and Al Barr; see Martin's talk in the satellite minisymposium

Terrestrial Planet Finder

■ The L₁ Gateway Station

- □ A gateway at the *Earth-Moon* L_1 *point* is of interest as a semi-permanent *manned site*.
- □ Can be used for going to the moon, servicing TPF and possibly for missions to other planets.
- Efficient transfers can be created using the 3-body and invariant manifold techniques that our group has developed

moon-L1-to-earth-L2-mf.qt

moon-L1-to-earth-L2-ef.qt

More Information

- http://www.cds.caltech.edu/~marsden/ http://www.cds.caltech.edu/~koon/
- email: marsden@cds.caltech.edu
- two of the main publications:
 - Koon, W. S., M. Lo, J. E. Marsden and S. Ross [2000], *Heteroclinic Connections between periodic orbits and resonance transitions in celestial mechanics*, *Chaos*, 10, 427–469.
 - Serban, R, W.S. Koon, M.W. Lo, J.E. Marsden, L.R. Petzold, S.D. Ross and R.S. Wilson [2001], *Halo Orbit Mission Correction Maneuvers Using Optimal Control, Automatica*, to appear.

TYPESETTING SOFTWARE: TEX, *Textures*, LATEX, hyperref, texpower, Adobe Acrobat 4.05 GRAPHICS SOFTWARE: Adobe Illustrator 9.0.2 LATEX SLIDE MACRO PACKAGES: Wendy McKay, Ross Moore