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Introductory Remarks
� Topics for discussion:
� solar system dynamics (eg, dynamics of comets)
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Introductory Remarks
� Topics for discussion:
� solar system dynamics (eg, dynamics of comets)
� the role of the three and four body problems
� space mission trajectory design
• and the relationships between these topics
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Introductory Remarks
� Some history:
� 1700-1850 : Euler, Lagrange, Gauss, began to lay

the mathematical foundations
� 1880-1890 : Poincaré: fundamental work on the

3-body problem; creates the research area chaos
� 1900-1965 : Moser, Conley, and others make fun-

damental contributions to the 3-body problem
� 1965-present . Research in the 3 and 4 body prob-

lems and other topics in geometric mechanics and
associated applications continues by many people:
by no means finished!
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Introductory Remarks
�Current research importance
� design of some NASA mission trajectories

—such as the Genesis Discovery Mission to be
launched July 30, 2001—EXCITING DAY!!
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Dynamical Orbits
� Some dynamical systems concepts
� Simple pendulum
� three kinds of orbits:
• oscillating orbits
• running orbits
• special separating orbits
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Dynamical Orbits
� Some dynamical systems concepts
� Simple pendulum
� three kinds of orbits:
• oscillating orbits
• running orbits
• special separating orbits

� Via F = ma, can visualize solutions as trajectories
in the (θ, θ̇) plane (θ is the angle of the pendulum
from the vertical downward position)

� the resulting phase portrait allows one to put to-
gether the basic orbits in one figure:
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Dynamical Orbits
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Phase portrait of the simple pendulum
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Invariant Manifolds
�Higher dimensional analog of the invariant curves
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Invariant manifolds
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Periodic Orbits
� Can replace equilibria by periodic orbits:
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Invariant manifolds attached to a periodic orbit
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Three body problem
�General Three Body Problem

� Three bodies move under mutual gravitational inter-
action
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Three body problem
�General Three Body Problem

� Three bodies move under mutual gravitational inter-
action

� Some interesting new orbits discovered in the last
few years by Richard Montgomery, Alain Chenciner,
Carles Simo. Movies by Randy Paffenroth (Caltech)
generated using AUTO
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Three body problem

Figure 8 Orbits: 3-body-figure-8.qt
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Three body problem

Fancy Orbit A: 3-body-exoticA.qt
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Three body problem

Fancy Orbit B: 3-body-exoticB.qt
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Three body problem
�Restricted Circular Problem

� the two primaries move in circles; the smaller third
body moves in the field of the primaries (without af-
fecting them); view the motion in a rotating frame

�we consider the planar and the spatial problems
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Three body problem
�Restricted Circular Problem

� the two primaries move in circles; the smaller third
body moves in the field of the primaries (without af-
fecting them); view the motion in a rotating frame

�we consider the planar and the spatial problems

� there are places of balance; eg, a point between the
two bodies where the attraction balances

� There are five such equilibrium points:
• Three collinear (Euler,1750) on the x-axis—L1, L2, L3

• Two equilateral points (Lagrange,1760)—L4, L5.
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Three body problem
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Three body problem
� if a spacecraft is at L1 or at L2, it will stay there

� one can go into orbit about the L1 and L2 points,
even though there is no material object there!
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Three body problem
� if a spacecraft is at L1 or at L2, it will stay there

� one can go into orbit about the L1 and L2 points,
even though there is no material object there!

� some of these orbits are called Liapunov orbits , oth-
ers are called halo and Lissajous orbits .

� just as in the pendulum, one can draw the invariant
manifolds associated to L1 (and L2) and the periodic
orbits surrounding them.

� these invariant manifolds play a key role in what
follows
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Three body problem
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Three body problem
◦ consider the planar case; the spatial case is similar

◦ Kinetic energy (wrt inertial frame) in rotating coordinates:

K(x,y, ẋ, ẏ) = 1
2

[
(ẋ −ωy)2 + (ẏ +ωx)2

]

◦ Lagrangian is K.E. − P.E., given by

L(x,y, ẋ, ẏ) = K(x,y, ẋ, ẏ)− V(x,y); V(x,y) = −1− µ
r1

− µ
r2
.

◦ Euler-Lagrange equations:

ẍ − 2ωẏ = −∂Vω
∂x

, ÿ + 2ωẋ = −∂Vω
∂y

where the effective potential is

Vω = V −ω
2(x2 +y2)

2
.
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Three body problem
� Effective potential
• In the circular planar restricted three body problem, and

in a rotating frame, the equations for the third body are
those of a particle moving in an effective potential plus a
magnetic field (goes back to work of Jacobi, Hill, etc)

S J

Effective Potential Level set shows the Hill region
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Three body problem
� Invariant Manifolds of Periodic Orbits

� red = unstable, green = stable

0.82
0.84

0.86
0.88

0.9
0.92

0.94
0.96

0.98
1

1.02
−0.02

0

0.02

0.04

0.06

0.08

0.1−0.01
0

0.01

x

z

y

19



Three body problem
� These manifold tubes play a crucual role in what

passes through the resonance (transit orbits)

� and what bounces back (non-transit orbits)

� transit possible if you are “inside” the tube, otherwise
nontransit—important for transport issues
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Comet Oterma
�we consider the historical record of the orbit of comet

Oterma from 1910 to 1980
• first in an inertial frame (fixed relative to the stars)
• and then a rotating frame
• very special case of pattern evocation

� similar pictures for many other comets

21



Comet Oterma

oterma-inertial.qt
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Comet Oterma

oterma-rotating.qt
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Genesis Discovery Mission
�Mission Purpose: To gather solar wind samples and

to return them to Earth for analysis
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Genesis Discovery Mission
�Mission Purpose: To gather solar wind samples and

to return them to Earth for analysis

�Mission Constraints/Features:
• Return in Utah during the daytime
• Descend with a parachute for a helicopter snatch
• lunar swingby contingency in case of bad weather
• Energy efficient (small thrust required): makes use of

the dynamical sensitivity to design a low-cost trajectory
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Genesis Discovery Mission
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Genesis Discovery Mission
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Genesis Discovery Mission
�Mission Trajectory

� Four phases:
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Genesis Discovery Mission
�Mission Trajectory

� Four phases:
1. from low Earth orbit, insertion onto an L1 halo orbit

stable manifold
2. using saddle point controllers, remain on the halo orbit

for about 2 years (4 revolutions)
3. return to a near halo orbit around L2 via a near hetero-

clinic connection
4. return to Earth on an impact orbit (guided by the un-

stable manifold of a halo orbit around L2).

� Final trajectory computation takes into account all
the major bodies in the solar system.
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Genesis Discovery Mission
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Genesis Discovery Mission
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Genesis Discovery Mission
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Genesis Discovery Mission
� Some planet-impacting asteroids use invariant man-

ifolds as a pathway from nearby heliocentric orbits.
This phenomena has been observed in the impact of
comet Shoemaker-Levy 9 with Jupiter.

� Some NEO’s are subject to similar dynamics and are
the most dangerous ones; perhaps the KT impact
event was one of these too!

� These ideas apply to any planet or moon system!
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Lunar Missions
� in 1991, the Japanese mission, Muses-A, was given

new life with a radical new mission concept & re-
named the Hiten Mission
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Lunar Missions
� in 1991, the Japanese mission, Muses-A, was given

new life with a radical new mission concept & re-
named the Hiten Mission

� the mission was “saved” by finding a more fuel effi-
cient pathway to the moon (Miller and Belbruno)

� now a deeper understanding of this is emerging

�we approach this problem by
• systematically implementing the view that the Sun-

Earth-Moon-Spacecraft 4-body system can be modelled
as two coupled 3-body systems

• and using invariant manifold ideas
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Lunar Missions
� Idea: put two Genesis-type trajectories together;

we transfer from
• the Sun-Earth-spacecraft system to
• the Earth-Moon-spacecraft system
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Lunar Missions
� Idea: put two Genesis-type trajectories together;

we transfer from
• the Sun-Earth-spacecraft system to
• the Earth-Moon-spacecraft system

� 20% more fuel efficient than the Hohmann transfer
(accelerate to an ellipse that reaches to the Moon,
accelerating to catch the moon, then circularize).

� But : takes longer (6 months as opposed to 5 days).
[OK for cargo ships, but not human missions]
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Lunar Missions
� Idea: put two Genesis-type trajectories together;

we transfer from
• the Sun-Earth-spacecraft system to
• the Earth-Moon-spacecraft system

� 20% more fuel efficient than the Hohmann transfer
(accelerate to an ellipse that reaches to the Moon,
accelerating to catch the moon, then circularize).

� But : takes longer (6 months as opposed to 5 days).
[OK for cargo ships, but not human missions]

� Fuel savings and the time of flight in other missions
(eg, to Jupiter’s moon’s) is more dramatic

� Schematic of the idea
33



Lunar Missions

0.996 0.998 1 1.002 1.004 1.006 1.008 1.01 1.012

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

x

y

Earth

energetically
inaccessible

region

Sun

Moon

periodic orbit
around the 
 Sun-Earth L2

34



Lunar Missions

shootthemoon-inertial.qt
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Lunar Missions

shootthemoon-rotating.qt
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Jovian Lunar Tour
�Construction of new trajectories that visit the

Jovian system.
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Jovian Lunar Tour
�Construction of new trajectories that visit the

Jovian system.
� Example 1: Europa → Io → Jupiter collision

1. Begin tour
2. Europa encounter
3. Jump between tubes
4. Io encounter
5. Collide with Jupiter
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Jovian Lunar Tour
� Strategy:

� use burns (controls) that enable a transfer from one
three body system to another
• from the Jupiter-Europa-spacecraft system to
• the Jupiter-Io-spacecraft system

� this strategy is similar to that used in the lunar mis-
sions together with some symbolic dynamics

� trajectories do well on fuel savings

� here is a close-up of the Io encounter
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Jovian Lunar Tour
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Jovian Lunar Tour
� Example 2: Ganymede → Europa → orbit in-

jection around Europa

pgt-3d-movie-inertial.qt
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Jovian Lunar Tour

pgt-3d-movie-ga.qt
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Jovian Lunar Tour

pgt-3d-movie-eu.qt
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Uses of Optimal Control
�Halo Orbit Insertion

� After launch, the Genesis Discovery Mission will get
onto the stable manifold of its eventual periodic orbit
around L1

� Errors in, eg, launch velocity, means that there must
be corrective manouvers

� The software COOPT is very useful in determining the
necessary corrections (burn sizes and timing) system-
atically for a variety of launch conditions

� It gets one onto the orbit at the right time, while
minimizing fuel (what is being optimized)

43



Uses of Optimal Control
� A number of unusual features, such as the nature of

the boundary conditions

� A very nice mixture of dynamical systems (providing
guidance and first guesses) and optimal control

� See the talk of Linda Petzold in the satellite dynamics
minisymposium (work with Radu Serban, Martin Lo,
Wang Sang Koon, JEM and Shane Ross)
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Uses of Optimal Control

hoi

45



Uses of Optimal Control
� Satellite reconfiguration, stationkeeping and de-

configuration

� This application makes use of the software NTG (Non-
linear Trajectory Generation) developed at Caltech

�Details were in the minisymposium talk: Richard Mur-
ray (together with Mark Milam and Nicolas Petit)

� This involves near Earth spacecraft clusters
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Uses of Optimal Control
�Why clusters?
� Clusters can achieve the same resolution as a large

telescope using vision systems coordinated in soft-
ware and modern optics

� coordinated clusters can obtain unprecedented res-
olution for both Earth-pointing systems and those
pointing into deep space
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Uses of Optimal Control
� Two basic problems

� Formation maintenance: keep the satellites in rela-
tive position–use small controls

� Formation changes: get the formation as a whole to
reposition itself for the next task—use larger controls

� Especially for reconfiguration, one wants to do
this optimally (again, minimize fuel)

�Handles constraints , such as imaging and communi-
cation constraints very nicely
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Uses of Optimal Control

Formation maintenance with guaranteed Earth coverage.
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Formation Flying Methodology
�Active Formation Methodology

� Passive Formation Methodology
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Stationkeeping

Stationkeeping
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Reconfiguration

Reconfiguration
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Deconfiguration

Deconfiguration
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Terrestrial Planet Finder
�Goal : probe for Earth-like planets using a large base-

line group of satellites–this time a deep space cluster
�Orbiting around L2 is a candidate position: away from

the Earth.

� Each halo orbit is surrounded by a torus that provides
a natural dynamical formation

� Very nice visualizations of this by Ken Museth, Mar-
tin Lo and Al Barr; see Martin’s talk in the satellite
minisymposium
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Terrestrial Planet Finder
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Getting to TPF and Beyond
� The L1 Gateway Station

� A gateway at the Earth-Moon L1 point is of interest
as a semi-permanent manned site .

� Can be used for going to the moon, servicing TPF
and possibly for missions to other planets.

� Efficient transfers can be created using the 3-body
and invariant manifold techniques that our group has
developed
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Getting to TPF and Beyond
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Getting to TPF and Beyond

moon-L1-to-earth-L2-mf.qt
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Getting to TPF and Beyond

moon-L1-to-earth-L2-ef.qt
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More Information
� http://www.cds.caltech.edu/˜marsden/

http://www.cds.caltech.edu/˜koon/
� email: marsden@cds.caltech.edu
� two of the main publications:

• Koon, W. S., M. Lo, J. E. Marsden and S. Ross [2000], Het-
eroclinic Connections between periodic orbits and reso-
nance transitions in celestial mechanics, Chaos, 10, 427–
469.

• Serban, R, W.S. Koon, M.W. Lo, J.E. Marsden, L.R. Petzold,
S.D. Ross and R.S. Wilson [2001], Halo Orbit Mission Cor-
rection Maneuvers Using Optimal Control , Automatica, to
appear.
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The End

TYPESETTING SOFTWARE: TEX, Textures, LATEX, hyperref, texpower, Adobe Acrobat 4.05
GRAPHICS SOFTWARE: Adobe Illustrator 9.0.2
LATEX SLIDE MACRO PACKAGES: Wendy McKay, Ross Moore
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