The Averaged Euler Equations and Computational Mechanics

Jerry Marsden

Control and Dynamical Systems
California Institute of Technology

Goslar, July 19, 1999

marsden@cds.caltech.edu
http://www.cds.caltech.edu/~marsden/
OUTLINE

• Geometric methods play a vital role in the development of new continuum models suited for computation, as well as numerical algorithms that preserve structure at the discrete level.

• Recent work on the averaged Euler equations and computational mechanics is surveyed.

• The averaged Euler equations may be regarded as geodesic equations for the H^1 metric on the volume preserving diffeomorphism group, as Arnold did with the L^2 metric for the Euler equations.

• We present some of the analytical theorems including convergence as viscosity tends to zero, even in the presence of boundaries.

• We indicate some interesting computational aspects of the equations and how this relates to current trends in computational mechanics.
INTRODUCTION

Heritage of Poincaré

- Poincaré [1901] gave the Euler–Poincaré equations—the Lie group reduction of the Euler-Lagrange equations on a Lie group. He understood how the rigid body and ideal fluid equations are special cases.

- The first insights into the geometric formulation of hydrodynamics; combining dynamical systems methods, Lie groups, mechanics, geometry, analysis, bifurcation theory, etc.

- Interesting applications to rotating fluid masses, including the precession of the Earth, stability theory, bifurcations of rotating fluid masses and many, many other things.
Some Notations

• **Velocity Field.** Consider \(u(x, t) \), a time dependent divergence free vector field on a compact Riemannian \(n \)-manifold \(M \), possibly with boundary, with \(u \) parallel to the boundary.

\[
\begin{align*}
\frac{d}{dt} \eta(X, t) &= u(\eta(X, t), t) \\
\end{align*}
\]

![Diagram](image)

Figure 1: The velocity field and the particle paths for a fluid motion.

• **Particle paths.** Let \(\eta(X, t) \) be the volume preserving flow of \(u \):
\[
\frac{d}{dt} \eta(X, t) = u(\eta(X, t), t)
\]
• **Diffeomorphism group.** For each fixed t, the map η belongs to $\text{Diff}_{\text{vol}}(M)$, the group of volume preserving diffeomorphisms mapping M to M.

• **Euler equations for ideal flow:**

$$
\frac{\partial u}{\partial t} + \nabla u u = -\text{grad } p
$$

(∇ is the Levi-Civita connection).

• **Equivalent form of the Euler equations:**

$$
\frac{\partial u^\flat}{\partial t} + \mathcal{L}_u u^\flat = -dp'
$$

(Notation: $\mathcal{L} =$ Lie derivative, $u^\flat =$ one-form associated to u via the Riemannian structure and $p' = p - \|u\|^2/2$).
\begin{itemize}
 \item **The Euler equations in \(\mathbb{R}^3 \):**

 \[
 \frac{\partial u^i}{\partial t} + \sum_{j=1}^{3} u^j \frac{\partial u^i}{\partial x^j} = -\frac{\partial p}{\partial x^i}.
 \]

 \item **Implicit in Poincaré:**

 The Euler equations are the Euler–Poincaré equations on the Lie algebra of divergence free vector fields, the Lie algebra of \(\text{Diff}_{\text{vol}}(M) \).

 \item **Proved in Arnold [1966]:**

 \(u \) satisfies the Euler equations if and only if the curve \(t \mapsto \eta(\cdot, t) \) is an \(L^2 \) geodesic in \(\text{Diff}_{\text{vol}}(M) \).
\end{itemize}
Proved in Ebin and Marsden [1970]:

- **Smoothness of the spray.** The geodesic spray of the L^2 right invariant metric on $\text{Diff}^s_{\text{vol}}(M)$, the group of volume preserving Sobolev H^s diffeomorphisms is C^∞. Here, $s > (n/2) + 1$ where n is the dimension of the underlying manifold M. This implies well-posedness of the Euler equations (and many other things).

- **Limit of zero viscosity.** Solutions of the Navier-Stokes equations converge to solutions of the Euler equations as the viscosity goes to zero when M has no boundary.

- **Product formulas.** These are Trotter product type formulas interleaving the divergence constraint, the unconstrained dynamics, & the dissipation. Useful in some numerical algorithms.
Related Developments

- Hydrodynamic stability (the energy-Casimir method) with applications to plasma physics and stellar dynamics.
- Bifurcations such as rotating fluid masses, rotating liquid drops, symmetry induced instabilities (e.g., non-axial perturbations).
- Riemannian geometry of the group of diffeomorphisms. (Arnold, Misiolek, and Shkoller).
- The energy-momentum method (generalization of the energy-Casimir method) for stability and bifurcation in mechanical systems with symmetry.
- Geometric phases applied to, e.g., vortex dynamics.
- Development of Lagrangian reduction theory (Marsden and Scheurle), and in particular, new insight into the Euler–Poincaré...
equations (continuous and discrete):

\[
\frac{d}{dt} \frac{\partial l}{\partial \xi} = \text{ad}^* \frac{\partial l}{\partial \xi}.
\]

Notations:

- \(g \) is a given Lie algebra
- \(l : g \to \mathbb{R} \) is the given Lagrangian.
- \(\text{ad}_\xi : g \to g \) is the adjoint map \(\zeta \mapsto [\xi, \zeta] \),
- \(\text{ad}_{\xi}^* : g^* \to g^* \) is its dual.

Example: \(g = \text{so}(3) \cong \mathbb{R}^3 \); \(l : \mathbb{R}^3 \to \mathbb{R} \); the Euler–Poincaré equations become the rigid body equations:

\[
\frac{d}{dt} \frac{\partial l}{\partial \Omega} = \frac{\partial l}{\partial \Omega} \times \Omega.
\]
Both the \textbf{fluid Euler equations} and the \textbf{Euler rigid body equations} are examples of the general Euler–Poincaré equations, as are many other systems, including the main example of this talk, the \textbf{averaged Euler equations}.

\section*{Where We Are Headed}

- Instead of L^2 geodesics, we will be now looking at H^1 geodesics on $\text{Diff}_{\text{vol}}(M)$.
- What is \textbf{mathematically interesting} is also \textbf{physically and computationally interesting}: the resulting equations have a physical interpretation in terms of \textit{an averaging of the Euler equations over small scales}.
- This H^1 theory started historically with an \textbf{integrable shallow water model} and later the link with averaging was made.
A SHALLOW WATER EQUATION & H^1 GEODESICS

Shallow water equation in one spatial dimension:

$$u_t - u_{xxt} = -3uu_x + 2u_xu_{xx} + uu_{xxx},$$

or equivalently,

$$\frac{\partial v}{\partial t} + uv_x + 2vu_x = 0$$

where $v = u - u_{xx}$.

- This is a **completely integrable bi-Hamiltonian system** (Fokas and Fuchsteiner [1981] and Camassa and Holm [1993]).
- Has **non-smooth solitons** (peakons).
- Also has interesting associated **algebraic geometry** (Alber, Camassa, Holm and Marsden [1994,5]).
- Has an interpretation in terms of H^1 **geodesics** on $\text{Diff}(S^1)$ (Camassa and Holm [1993], Misiolek [1998], Kouranbaeva [1999]).
• Shkoller [1998] proved smoothness of the spray and the well posedness in $H^{3/2+\epsilon}(S^1)$.

• These results are related to the fact that the KdV equations are of Euler–Poincaré form on the Virasoro Lie algebra and are L^2 geodesics on the Bott–Virasoro group (Khesin and Ovsienko, 1988).

AVERAGED EULER EQUATIONS

• Equations due to Holm, Marsden and Ratiu [1998], who developed the “Poincaré–Arnold view” of fluid mechanics and applied this view it to many other types of fluid equations, such as those in geophysics.

• The equations may be described in two mathematically equivalent ways: as given PDE’s or as H^1 geodesics on $\text{Diff}_{\text{vol}}(M)$.
THE AVERAGED EULER EQUATIONS AS PDEs

- **Averaged Euler equations** in Euclidean coordinates:

\[
\frac{\partial v^i}{\partial t} + u^j \frac{\partial v^i}{\partial x^j} - \alpha^2 \left[\frac{\partial u^j}{\partial x^i} \right] \Delta u_j = - \frac{\partial p}{\partial x^i},
\]

- \(\alpha\) is a constant (a length scale in the averaging process),

\[v = u - \alpha^2 \Delta u,\]

- \(\Delta = \text{Laplacian}\); summation over repeated indices.
- \(p\) is determined from incompressibility: \(\text{div} \, u = 0\).

- Two choices of boundary conditions:

1. No slip: \(u = 0\) on the boundary. **Compatible with the usual Navier-Stokes boundary conditions.**
2. \(u \) parallel to the boundary and

\[\nabla_n u = S_n(u) \]

at points of \(\partial M \); \(S_n : T_xM \rightarrow T_xM \) is the second fundamental form of the boundary.

- The first set of boundary conditions corresponds to the subgroup of \(\text{Diff}_{\text{vol}}(M) \) leaving the boundary pointwise fixed, while the second corresponds to the subgroup that maps the normal direction to the normal direction. These are interesting subgroups of the diffeomorphism group.

- If \(\alpha \) tends to zero, we formally recover the usual Euler equations.

- Equations are the same as those of a certain second grade fluid, although the physics of our derivation is different.
- **Geometric form** of the equations:

\[
\frac{\partial v^b}{\partial t} + \mathcal{L}_u v^b = -dp
\]

where, as before, \(v = (1 - \alpha^2 \Delta)u \).

- Applying \(d \), one gets a **vorticity formulation**.

- **Conserved** \(H^1 \) energy:

\[
\frac{1}{2} \| u \|_{H^1}^2 = \frac{1}{2} \int_M \langle u, v \rangle \, d\mu
\]

BASIC LINK WITH GEODESICS

- **Theorem**: The flow \(\eta_t(\cdot) := \eta(\cdot, t) \) of the time dependent vector field \(u \) is a geodesic in a subgroup of \(\text{Diff}^s_{\text{vol}}(M) \) with respect to the right invariant \(H^1 \) metric iff the vector field \(u \) satisfies the averaged Euler equations.
• **Proved** by appealing to the Euler–Poincaré equations.
• Relates the Lagrangian dynamics on the large configuration space $\text{Diff}_{\text{vol}}(M)$ with the **reduced equations** on the Lie algebra.
• Part of the general theory of **Lagrangian reduction** for mechanical systems with symmetry.

DERIVATION OF THE EQUATIONS

■ **Lagrangian Mean–Fluctuating Decomposition**
• For each length scale α, assume that actual configuration of the fluid η can be described by a composition:

$$\eta_t = \xi_t^\alpha \circ \eta_t^\alpha.$$

• η_t^α defines the mean fluid configuration, (corresponding to an average over length scales smaller than α), and ξ_t^α denotes the La-
gargan (material) fluctuations of the fluid about the mean. When $\alpha = 0$, $\xi_0^t = e$, the identity map, and $\eta_0^t = \eta_t$.

Figure 2: Mean-fluctuating decomposition of the particle placement field.
Expansion of the Velocity Field

- The Lagrangian decomposition implies a decomposition of the spatial velocity field \(u \):

\[
 u_t \circ \eta_t = \omega^\alpha_t \circ \eta_t + D\xi^\alpha_t \circ u^\alpha_t \circ \eta^\alpha_t,
\]

where \(\omega^\alpha_t \) is the spatial velocity field of the fluctuations.

- Effect of the fluctuations to first order in \(\alpha \): Let

\[
 \xi' = \frac{d}{d\alpha} \bigg|_{\alpha=0} \xi^\alpha_t.
\]

- Expand in \(\alpha \):

\[
 u_t = \omega^\alpha_t + u^\alpha_t - \alpha \mathcal{L}_{\xi'} u^\alpha_t + O(\alpha^2),
\]

- Lie derivative–covariant derivative relation:

\[
 \mathcal{L}_Y X = \nabla_Y X - \nabla_X Y.
\]
• Consequence:

$$u_t = w_t^\alpha + u_t^\alpha - \alpha \nabla_\xi u_t^\alpha + \alpha \nabla u_t^\alpha \xi' + O(\alpha^2).$$

Now we make the following

Taylor Hypothesis. *Assume that the fluctuations are advected by parallel transport along the mean flow.*

$$\dot{\xi} + \nabla u_t^\alpha \xi' = O(\alpha)$$

• Consequence:

$$u_t = u_t^\alpha - \alpha \nabla_\xi u_t^\alpha + O(\alpha^2).$$
Averaging the Lagrangian

- Average the Lagrangian for Euler flow with respect to the fluctuations to produce the Lagrangian for the averaged Euler equations.

- Lagrangian for the Euler equations:

\[
L(u) = \frac{1}{2} \int_M \|u\|^2 \mu
\]

- Substitute the decomposition into this Lagrangian:

\[
L(u) = \frac{1}{2} \int_M \|u_t^\alpha - \alpha \nabla \xi u_t^\alpha + O(\alpha^2)\|^2 \mu
\]

- Average with respect to the fluctuations, producing a new averaged Lagrangian \(\overline{L}(u^\alpha)\).

- One has to be extremely careful with the higher order terms here.

- Assume that \(\overline{\xi'} = 0\).
- Terms appearing in \bar{L} containing factors linear in ξ' vanish when averaged.
- Averaged Lagrangian becomes
 \[\bar{L}(u^\alpha) = \frac{1}{2} \int_M \left\{ \langle u^\alpha, u^\alpha \rangle + \alpha^2 \langle \langle \xi' \otimes \xi' \nabla u^\alpha, \nabla u^\alpha \rangle \rangle \right\} \mu.\]

Since $\xi' \otimes \xi'$ is positive symmetric, this Lagrangian is that of an H^1 metric.

- One can think of the averaged Euler equations as a conservative regularization of the Euler equations, similar to the way KdV is a dispersive regularization of the inviscid Burger’s equation.
SOME ANALYTICAL RESULTS

■ Main Result A: Well-Posedness

- **Theorem:** The geodesic spray of the equations is smooth (in the sense of a smooth vector field on an infinite dimensional Hilbert manifold), just as in the case of the Euler equations.

- That is, for \(s > n/2 + 1 \), the geodesic spray is a \(C^1 \) vector field on \(T \text{Diff}^s_{\text{vol}}(M) \).

- Smoothness yields a **local existence and uniqueness theorem** and other analytical results parallel to those for the Euler equations.

- For example, the geodesic exponential map covers a **neighborhood of the identity** while the Lie group exponential map does not.
• Another result: **automatic smoothness** of solutions in time, even if the initial data has finite smoothness.

• **viscous analog** of the averaged Euler equations:

\[
\frac{\partial v^i}{\partial t} - \nu \nabla u^i + u^j \frac{\partial v^i}{\partial x^j} - \alpha^2 \left[\frac{\partial u^j}{\partial x^i} \right] \nabla u_j = - \frac{\partial p}{\partial x^i},
\]

which are the **averaged Navier-Stokes equations**, or the Navier-Stokes-\(\alpha\) equations.

• Same equations as those for a second-grade fluid, but the physics is quite different!

■ **Main Result B: Limit of Zero Viscosity**

• **Theorem:** The solutions for the corresponding viscous problem converge to those for the ideal problem, as the viscosity goes to zero (the infinite Reynolds number limit), even
in the presence of boundaries on uniform time intervals \([0, T]\), for \(T > 0\), independent of the viscosity. The size of the interval \([0, T]\) is governed by the time of existence for the averaged Euler equations with the initial data fixed.

- The inclusion of boundaries is a major difference from the situation with the usual Navier-Stokes equations and the Euler equations, where convergence is believed to not hold because of the generation of vorticity at the boundary.

- This provides a context in which one sees that on the average one gets convergence to the averaged Euler flow in the infinite Reynolds number limit, (conjectured by Ebin–Marsden–Fischer & Chorin–Barenblatt).

- This result may be relevant to the role of viscosity in turbulence theory, a subject going back to Onsager.
• **Product Formulas.** The smoothness of the spray leads to interesting representation formulas; e.g.,

\[E_t = \lim_{n \to \infty} \left(P^\alpha \circ G_{t/n} \right)^n, \]

- \(E_t \) is the flow on the space of divergence free velocity fields \(u \) of the averaged Euler equations (with, say, zero boundary conditions),
- \(P^\alpha \) is the \(H^2 \)-orthogonal projection onto the divergence free vector fields zero on the boundary
- \(G_t \) is the unconstrained \(H^1 \) spray—that is, the problem with the incompressibility condition dropped.

• In the case of the viscous version of the equations, *one does not require the vorticity creation operator to correct the boundary*
term. The form of this product formula is

\[F_t = \lim_{n \to \infty} \left(\frac{S_t}{n} \circ \frac{E_t}{n} \right)^n \]

\[= \lim_{n \to \infty} \left(\frac{S_t}{n} \circ P^\alpha \circ \frac{G_t}{n} \right)^n \]

where \(S_t \) is the Stokes-\(\alpha \) flow.

NUMERICAL SIMULATIONS

- **3D LES Model–Flow in a Periodic Box**

Allows one to compute with much higher Reynolds numbers than is possible with the usual NSE and still get the features of interest computed correctly.
Figure 3: Energy spectrum for Navier-Stokes-α: from Chen et al. [1999].

Treating flows with boundary layers in the context of recent work on transient instabilities (Farell, Trefethen, Bamieh, Dhaleh, etc) and HOT systems (robust yet fragile) (Doyle, Carleson) is under investigation.
Vortex Merger

- Simulations done with a fully-dealiased **pseudospectral scheme** using *170 modes* consisting of 85 sines and cosines on a $2\pi \times 2\pi$ periodic square. (Embedded Runge-Kutta Cash-Karp discretization in time; Nadiga and Shkoller [1999]).

- Initial conditions:

$$\omega_0 = (\sin(x^1) + \sin(2x^1)) \ast (\sin(x^2) + \sin(2x^2)).$$
Figure 4: The Initial Conditions.
• Simulation of the **Euler equations**:

![Image of Euler equation simulation]

Figure 5: Euler equation simulation.

• Energy and enstrophy are conserved. **Fragmentation** occurs.
Simulation of the **Navier-Stokes Equations**:

- \(\nu = 1.e^{-5} \)

Figure 6: Navier Stokes simulation.
Energy Spectrum for $\nu = 1.e^{-7}$ (dashed line); $1.e^{-6}$ (dot-dashed line); $1.e^{-5}$ (dot-dot-dot-dashed line); $5.e^{-5}$ (solid line).

Figure 7: The instantaneous energy spectrum at time 92 (92 eddy turnover times) for the Navier-Stokes simulation with four different values of the viscosity.
\[\| \omega \|_{L^2} \] for \(\nu = 1.e^{-7} \) (dashed line); \(1.e^{-6} \) (dot-dashed line); \(1.e^{-5} \) (dot-dot-dot-dashed line); \(5.e^{-5} \) (solid line).

Figure 8: Evolution of enstrophy for the Navier-Stokes simulations with four different values of the viscosity.
The drop in enstrophy during vertex merger is one of the key features of 2D turbulence.

NSE does a nice job modeling the vortex merger, but requires $\nu = 1.e^{-5}$ for which there is a 10% drop in energy. In many applications, such as geophysics, this is not acceptable. Usually one fudges one’s way out of this.

For longtime simulations, too much dissipation can destroy relevant features (structures) of the solution.

But the averaged Euler equations provide a simple and elegant solution to this, not requiring viscosity!
• Simulation of the **Euler-\(\alpha\) Equations:**

 \(\alpha = .1\); filters-out scales smaller than 1.6% of \(2\pi\)

Figure 9: Vortex merger using the Euler-alpha equations.
- \|\omega^\alpha\|_{L^2} \text{ for } \alpha = 0, .1, .2, .4.

Figure 10: Evolution of norms of enstrophies for the averaged Euler equations (the H^1 norm is conserved, but the L^2 norm is not); the solid line is $\alpha = 0$, the dashed line is $\alpha = 0.1$, the dot-dashed line is $\alpha = 0.2$ and the dot-dot-dot-dashed line is $\alpha = 0.4$.

- The **conservative** Euler-α simulation captures the vortex merger phenomenon without the addition of any artificial viscosity.
Figure 11: Evolution of energies. The H^1 energy is conserved, but the L^2 energy is not. The solid line is $\alpha = 0$, the dashed line is $\alpha = 0.1$, the dot-dashed line is $\alpha = 0.2$ and the dot-dot-dot-dashed line is $\alpha = 0.4$.

- Remarkably, while H^1_α energy is conserved, the L^2 kinetic energy increases – fluctuations are adding energy into the system.
- Averaged equations behave like a statistical theory. Enstrophy decay appears to be built in. More work needed here.
Variational Integrators

Multisymplectic Integrators

- Integration schemes used above, e.g., the spectral truncation, do not preserve the mechanical structure. **Structure preserving discretization schemes** can improve the numerical simulation by keeping the conservation laws inherent in the physics.

- Much more needs to be done with variational multisymplectic integrators as in Marsden, Patrick and Shkoller [1998] on the long time integration of soliton equations, for example.

- We are developing extensions of these techniques to the context of **classical field theory** (electromagnetism, fluids, elasticity) using **multisymplectic geometry**.

- Should also work for the averaged Euler equations.
Figure 12: Collision of solitons in the sine-Gordon equation.
Variational Integrators for ODE’s.

- There has been much recent progress in the area of variational integrators which build integrators out of the variational structure. This is based on the Veselov method for discrete mechanics. When designed this way, the integrators are automatically symplectic, momentum preserving and have excellent energy behavior.

- Idea is to update pairs of points

\[(q_k, q_{k+1}) \rightarrow (q_{k+1}, q_{k+2})\]

rather than position-velocity information. This leads to a discrete form of Hamilton’s principle and associated discrete Euler-Lagrange equations.

- Such integration algorithms are automatically symplectic.
One of the most widely used time stepping algorithms in structural mechanics is the **Newmark scheme**—it is *variational* (and hence symplectic; Kane, Marsden, Ortiz, West [1999]).
It has also been understood how to properly incorporate dissipative and forcing into the algorithm via a discrete Lagrange d’Alembert type principle—it gets the changes in energy correct!

Figure 14: Energy behavior of integrators for a dissipative system. The variational integrators accurately simulate energy decay, unlike standard methods such as Runge-Kutta.
These algorithms can also be extended to the context of collisions of rigid and elastic bodies—again the variational structure is critical as are the techniques of nonsmooth analysis (eg, as in Clarke). This is recent and ongoing work of Kane, Ortiz, Marsden and Pandolfi.
A BIASED GLIMPSE AT THE LITERATURE

■ Era of Poincaré

Post Poincaré

Energy-Casimir Method for Hydrodynamical Stability

Shallow Water Equation

Averaged Euler and Navier–Stokes Equations

- Foias, C., D.D. Holm and E.S. Titi [1999], in preparation (Well-posedness of the averaged Navier-Stokes equations and attractor estimates).
Second Grade Fluids

Limit of Zero Viscosity

Numerical Simulations

- Nadiga, B. and S. Shkoller [1999], On a conservative numerical scheme for vortex merger (preprint.)

Variational Integrators & Discrete Mechanics

Multisymplectic Geometry & Integrators

