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OUTLINE

• Geometric methods play a vital role in the development of new
continuum models suited for computation, as well as numerical
algorithms that preserve structure at the discrete level.

• Recent work on the averaged Euler equations and computational
mechanics is surveyed.

• The averaged Euler equations may be regarded as geodesic equa-
tions for the H1 metric on the volume preserving diffeomorphism
group, as Arnold did with the L2 metric for the Euler equations.

• We present some of the analytical theorems including convergence
as viscosity tends to zero, even in the presence of boundaries.

• We indicate some interesting computational aspects of the equa-
tions and how this relates to current trends in computational me-
chanics.
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INTRODUCTION

� Heritage of Poincaré

• Poincaré [1901] gave the Euler–Poincaré equations—the Lie
group reduction of the Euler-Lagrange equations on a Lie group.
He understood how the rigid body and ideal fluid equations are
special cases.

• The first insights into the geometric formulation of hydrodynam-
ics; combining dynamical systems methods, Lie groups, mechanics,
geometry, analysis, bifurcation theory, etc.

• Interesting applications to rotating fluid masses, including the pre-
cession of the Earth, stability theory, bifurcations of rotating fluid
masses and many, many other things.
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� Some Notations

• Velocity Field. Consider u(x, t), a time dependent divergence
free vector field on a compact Riemannian n-manifold M , possibly
with boundary, with u parallel to the boundary.

M

trajectory of 
fluid particle

u(x,t)

X

x = η(X,t)

Figure 1: The velocity field and the particle paths for a fluid motion.

• Particle paths. Let η(X, t) be the volume preserving flow of u:

d

dt
η(X, t) = u(η(X, t), t)
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• Diffeomorphism group. For each fixed t, the map η belongs to
Diffvol(M), the group of volume preserving diffeomorphisms map-
ping M to M .

• Euler equations for ideal flow:

∂u

∂t
+ ∇uu = −grad p

(∇ is the Levi-Civita connection).

• Equivalent form of the Euler equations:

∂u�

∂t
+ £uu

� = −dp′

(Notation: £ = Lie derivative, u� = one-form associated to u via
the Riemannian structure and p′ = p− ‖u‖2/2).
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• The Euler equations in R
3:

∂ui

∂t
+

3∑
j=1

uj
∂ui

∂xj
= − ∂p

∂xi
.

� Implicit in Poincaré:

The Euler equations are the Euler–Poincaré equations on
the Lie algebra of divergence free vector fields, the Lie alge-
bra of Diffvol(M).

� Proved in Arnold [1966]:

u satisfies the Euler equations if and only if the curve t �→
η(·, t) is an L2 geodesic in Diffvol(M).
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� Proved in Ebin and Marsden [1970]:

• Smoothness of the spray. The geodesic spray of the L2 right
invariant metric on Diffsvol(M), the group of volume preserving
Sobolev Hs diffeomorphisms is C∞. Here, s > (n/2) + 1 where
n is the dimension of the underlying manifold M . This implies
well-posedness of the Euler equations (and many other things).

• Limit of zero viscosity. Solutions of the Navier-Stokes equa-
tions converge to solutions of the Euler equations as the viscosity
goes to zero when M has no boundary.

• Product formulas. These are Trotter product type formulas
interleaving the divergence constraint, the unconstrained dynamics,
& the dissipation. Useful in some numerical algorithms.
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� Related Developments

• Hydrodynamic stability (the energy-Casimir method) with
applications to plasma physics and stellar dynamics

• Bifurcations such as rotating fluid masses, rotating liquid drops,
symmetry induced instabilities (e.g., non-axial perturbations).

• Riemannian geometry of the group of diffeomorphisms. (Arnold,
Misiolek, and Shkoller).

• The energy-momentum method (generalization of the energy-
Casimir method) for stability and bifurcation in mechanical sys-
tems with symmetry.

• Geometric phases applied to, e.g., vortex dynamics.

• Development of Lagrangian reduction theory (Marsden and
Scheurle), and in particular, new insight into the Euler–Poincaré
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equations (continuous and discrete):

d

dt

∂l

∂ξ
= ad∗ξ

∂l

∂ξ
.

Notations:

◦ g is a given Lie algebra

◦ l : g → R is the given Lagrangian.

◦ adξ : g → g is the adjoint map ζ �→ [ξ, ζ],

◦ ad∗ξ : g∗ → g∗ is its dual.

◦ Example: g = so(3) ∼= R
3; l : R

3 → R; the Euler–Poincaré
equations become the rigid body equations:

d

dt

∂l

∂Ω
=
∂l

∂Ω
× Ω.
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◦ Both the fluid Euler equations and the Euler rigid body
equations are examples of the general Euler–Poincaré equa-
tions, as are many other systems, including the main example
of this talk, the averaged Euler equations.

� Where We Are Headed

• Instead of L2 geodesics, we will be now looking at H1 geodesics on
Diffvol(M).

• What is mathematically interesting is also physically and
computationally interesting: the resulting equations have a
physical interpretation in terms of an averaging of the Euler
equations over small scales.

• This H1 theory started historically with an integrable shallow
water model and later the link with averaging was made.
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A SHALLOW WATER EQUATION & H1 GEODESICS

Shallow water equation in one spatial dimension:

ut − uxxt = −3uux + 2uxuxx + uuxxx,

or equivalently,
∂v

∂t
+ uvx + 2vux = 0

where v = u− uxx.
• This is a completely integrable bi-Hamiltonian system

(Fokas and Fuchsteiner [1981] and Camassa and Holm [1993])

• Has non-smooth solitons (peakons).

• Also has interesting associated algebraic geometry (Alber, Ca-
massa, Holm and Marsden [1994,5]).

• Has an interpretation in terms of H1 geodesics on Diff(S1) (Ca-
massa and Holm [1993], Misiolek [1998], Kouranbaeva [1999]).
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• Shkoller [1998] proved smoothness of the spray and the well posed-

ness in H3/2+ε(S1).

• These results are related to the fact that the KdV equations
are of Euler–Poincaré form on the Virasoro Lie algebra and are
L2 geodesics on the Bott–Virasoro group (Khesin and Ovsienko,
1988).

AVERAGED EULER EQUATIONS

• Equations due to Holm, Marsden and Ratiu [1998], who developed
the “Poincaré–Arnold view” of fluid mechanics and applied this
view it to many other types of fluid equations, such as those in
geophysics.

• The equations may be described in two mathematically equivalent
ways: as given PDE’s or as H1 geodesics on Diffvol(M).



13

THE AVERAGED EULER EQUATIONS AS PDEs

• Averaged Euler equations in Euclidean coordinates:

∂vi

∂t
+ uj

∂vi

∂xj
− α2

[
∂uj

∂xi

]
�uj = − ∂p

∂xi
,

◦ α is a constant (a length scale in the averaging process),

v = u− α2�u,
◦ � = Laplacian; summation over repeated indices.

◦ p is determined from incompressibility: div u = 0.

• Two choices of boundary conditions:

1. No slip: u = 0 on the boundary. Compatible with the
usual Navier-Stokes boundary conditions.
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2. u parallel to the boundary and

∇nu = Sn(u)

at points of ∂M ; Sn : TxM → TxM is the second funda-
mental form of the boundary.

• The first set of boundary conditions corresponds to the subgroup
of Diffvol(M) leaving the boundary pointwise fixed, while the
second corresponds to the subgroup that maps the normal direc-
tion to the normal direction. These are interesting subgroups
of the diffeomorphism group.

• If α tends to zero, we formally recover the usual Euler equations.

• Equations are the same as those of a certain second grade fluid,
although the physics of our derivation is different.
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• Geometric form of the equations:

∂v�

∂t
+ £uv

� = −dp

where, as before, v = (1 − α2∆)u.

• Applying d, one gets a vorticity formulation.

• Conserved H1 energy:
1

2
‖u‖2

H1 =
1

2

∫
M

〈〈u, v〉〉 dµ

BASIC LINK WITH GEODESICS

• Theorem: The flow ηt(·) := η(·, t) of the time dependent vec-
tor field u is a geodesic in a subgroup of Diffsvol(M) with respect

to the right invariant H1 metric iff the vector field u satisfies
the averaged Euler equations.
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• Proved by appealing to the Euler–Poincaré equations.

• Relates the Lagrangian dynamics on the large configuration space
Diffvol(M) with the reduced equations on the Lie algebra.

• Part of the general theory of Lagrangian reduction for me-
chanical systems with symmetry.

DERIVATION OF THE EQUATIONS

� Lagrangian Mean–Fluctuating Decomposition

• For each length scale α, assume that actual configuration of the
fluid η can be described by a composition:

ηt = ξαt ◦ ηαt .

• ηαt defines the mean fluid configuration, (corresponding to an av-
erage over length scales smaller than α), and ξαt denotes the La-
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grangian (material) fluctuations of the fluid about the mean. When
α = 0, ξ0t = e, the identity map, and η0

t = ηt.

X

x = η(X, t)
   = ξα(xα, t)

mean motion of 
fluid particle

xα = ηα(X, t)

fluctuations of 
fluid particle

Figure 2: Mean-fluctuating decomposition of the particle placement field.
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� Expansion of the Velocity Field

• The Lagrangian decomposition implies a decomposition of the spa-
tial velocity field u:

ut ◦ ηt = wαt ◦ ηt + Dξαt ◦ uαt ◦ ηαt ,
where wαt is the spatial velocity field of the fluctuations.

• Effect of the fluctuations to first order in α: Let

ξ′t =
d

dα

∣∣∣∣
α=0

ξαt .

• Expand in α: ut = wαt + uαt − α£ξ′t
uαt +O(α2),.

• Lie derivative–covariant derivative relation:

£Y X = ∇Y X −∇XY.
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• Consequence:

ut = wαt + uαt − α∇ξ′uαt + α∇uαt ξ
′ +O(α2).

Now we make the following

Taylor Hypothesis. Assume that the fluctuations are
advected by parallel transport along the mean flow.

ξ̇′ + ∇uαt ξ
′ = O(α)

• Consequence:

ut = uαt − α∇ξ′uαt +O(α2).
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� Averaging the Lagrangian

• Average the Lagrangian for Euler flow with respect to the fluctua-
tions to produce the Lagrangian for the averaged Euler equations.

• Lagrangian for the Euler equations:

L(u) =
1

2

∫
M

‖u‖2µ

• Substitute the decomposition into this Lagrangian:

L(u) =
1

2

∫
M

‖uαt − α∇ξ′uαt +O(α2)‖2µ

• Average with respect to the fluctuations, producing a new averaged
Lagrangian L̄(uα).

• One has to be extremely careful with the higher order terms here.

• Assume that ξ′ = 0.
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• Terms appearing in L̄ containing factors linear in ξ′ vanish when
averaged

• Averaged Lagrangian becomes

L̄(uα) =
1

2

∫
M

{
〈〈uα, uα〉〉 + α2

〈〈
ξ′ ⊗ ξ′∇uα,∇uα

〉〉}
µ.

Since ξ′ ⊗ ξ′ is positive symmetric, this Lagrangian is that of an
H1 metric.

• One can think of the averaged Euler equations as a conservative
regularization of the Euler equations, similar to the way KdV
is a dispersive regularization of the inviscid Burger’s equation.
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SOME ANALYTICAL RESULTS

� Main Result A: Well-Posedness

• Theorem: The geodesic spray of the equations is smooth (in
the sense of a smooth vector field on an infinite dimensional
Hilbert manifold), just as in the case of the Euler equations.

• That is, for s > n/2 + 1, the geodesic spray is a C1 vector field on
T Diffsvol(M).

• Smoothness yields a local existence and uniqueness the-
orem and other analytical results parallel to those for the Euler
equations.

• For example, the geodesic exponential map covers a neighbor-
hood of the identity while the Lie group exponential map does
not.
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• Another result: automatic smoothness of solutions in time,
even if the initial data has finite smoothness.

• viscous analog of the averaged Euler equations:

∂vi

∂t
− ν�ui + uj ∂v

i

∂xj
− α2

[
∂uj

∂xi

]
�uj = − ∂p

∂xi
,

which are the averaged Navier-Stokes equations, or the
Navier-Stokes-α equations.

• Same equations as those for a second-grade fluid, but the physics
is quite different!

� Main Result B: Limit of Zero Viscosity

• Theorem: The solutions for the corresponding viscous prob-
lem converge to those for the ideal problem, as the viscosity
goes to zero (the infinite Reynolds number limit), even
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in the presence of boundaries on uniform time intervals [0, T ],
for T > 0, independent of the viscosity. The size of the inter-
val [0, T ] is governed by the time of existence for the averaged
Euler equations with the initial data fixed.

• The inclusion of boundaries is a major difference from the sit-
uation with the usual Navier-Stokes equations and the Euler equa-
tions, where convergence is believed to not hold because of the
generation of vorticity at the boundary.

• This provides a context in which one sees that on the average one
gets convergence to the averaged Euler flow in the infinite Reynolds
number limit, (conjectured by Ebin–Marsden–Fischer & Chorin–
Barenblatt).

• This result may be relevant to the role of viscosity in turbulence
theory, a subject going back to Onsager.
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• Product Formulas. The smoothness of the spray leads to in-
teresting representation formulas; e.g.,

Et = lim
n→∞

(
Pα ◦Gt/n

)n
,

◦ Et is the flow on the space of divergence free velocity fields
u of the averaged Euler equations (with, say, zero boundary
conditions),

◦ Pα is the H2-orthogonal projection onto the divergence free
vector fields zero on the boundary

◦ Gt is the unconstrained H1 spray—that is, the problem with
the incompressibility condition dropped.

• In the case of the viscous version of the equations, one does not
require the vorticity creation operator to correct the boundary
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term. The form of this product formula is

Ft = lim
n→∞

(
St/n ◦ Et/n

)n
= lim
n→∞

(
St/n ◦ Pα ◦Gt/n

)n
where St is the Stokes-α flow.

NUMERICAL SIMULATIONS

� 3D LES Model–Flow in a Periodic Box

Allows one to compute with much higher Reynolds numbers than
is possible with the usual NSE and still get the features of interest
computed correctly.



27

k–5/3

10 100
10-6

10-5

10-4

10-3

10-2

10-1

100

k

E
(k

)

increasing α

Navier Stokes

Averaged Navier Stokes

Figure 3: Energy spectrum for Navier-Stokes-α: from Chen et al. [1999].

Treating flows with boundary layers in the context of recent work
on transient instabilities (Farell, Trefethen, Bamieh, Dhaleh, etc)
and HOT systems (robust yet fragile) (Doyle, Carleson) is under
investigation.
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� Vortex Merger

• Simulations done with a fully-dealiased pseudospectral scheme
using 170 modes consisting of 85 sines and cosines on a 2π× 2π
periodic square. (Embedded Runge-Kutta Cash-Karp discretiza-
tion in time; Nadiga and Shkoller [1999]).

• Initial conditions:

ω0 =
(
sin(x1) + sin(2x1)

)
∗

(
sin(x2) + sin(2x2)

)
.
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Figure 4: The Initial Conditions.
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• Simulation of the Euler equations:

Figure 5: Euler equation simulation.

• Energy and enstrophy are conserved. Fragmentation occurs.
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• Simulation of the Navier-Stokes Equations:

◦ ν = 1.e−5

Figure 6: Navier Stokes simulation.
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• Energy Spectrum for ν = 1.e−7 (dashed line); 1.e−6 (dot-dashed
line); 1.e−5 (dot-dot-dot-dashed line); 5.e−5 (solid line).

Figure 7: The instantaneous energy spectrum at time 92 (92 eddy turnover times) for the

Navier-Stokes simulation with four different values of the viscosity.
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• ‖ω‖L2 for ν = 1.e−7 (dashed line); 1.e−6 (dot-dashed line); 1.e−5

(dot-dot-dot-dashed line); 5.e−5 (solid line).

Figure 8: Evolution of enstrophy for the Navier-Stokes simulations with four different values

of the viscosity.
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• The drop in enstrophy during vertex merger is one of the key
features of 2D turbulence.

• NSE does a nice job modeling the vortex merger, but requires
ν = 1.e−5 for which there is a 10% drop in energy. In many
applications, such as geophysics, this is not acceptable. Usually
one fudges one’s way out of this.

• For longtime simulations, too much dissipation can destroy
relevant features (structures) of the solution.

• But the averaged Euler equations provide a simple and elegant
solution to this, not requiring viscosity!
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• Simulation of the Euler-α Equations:

◦ α = .1; filters-out scales smaller than 1.6% of 2π

Figure 9: Vortex merger using the Euler-alpha equations.
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• ‖ωα‖L2 for α = 0, .1, .2, .4.

Figure 10: Evolution of norms of enstrophies for the averaged Euler equations (the H1 norm is

conserved, but the L2 norm is not); the solid line is α = 0, the dashed line is α = 0.1, the dot-dashed

line is α = 0.2 and the dot-dot-dot-dashed line is α = 0.4.

• The conservative Euler-α simulation captures the vortex merger
phenomenon without the addition of any artificial viscosity.
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Figure 11: Evolution of energies. The H1 energy is conserved, but the L2 energy is not. The solid

line is α = 0, the dashed line is α = 0.1, the dot-dashed line is α = 0.2 and the dot-dot-dot-dashed

line is α = 0.4.

• Remarkably, while H1
α energy is conserved, the L2 kinetic energy

increases – fluctuations are adding energy into the system.

• Averaged equations behave like a statistical theory. Enstrophy
decay appears to be built in. More work needed here.
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Variational Integrators

� Multisymplectic Integrators

• Integration schemes used above, eg, the spectral truncation, do
not preserve the mechanical structure. Structure preserving
discretization schemes can improve the numerical simulation
by keeping the conservation laws inherent in the physics.

• Much more needs to be done with variational multisymplectic in-
tegrators as in Marsden, Patrick and Shkoller [1998] on the long
time integration of soliton equations, for example.

• We are developing extensions of these techniques to the context
of classical field theory (electromagnetism, fluids, elasticity)
using multisymplectic geometry.

• Should also work for the averaged Euler equations.



39

0 

Time

0
Space

0.  
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Figure 12: Collision of solitons in the sine-Gordon equation.
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� Variational Integrators for ODE’s.

• There has been much recent progress in the area of variational
integrators which build integrators out of the variational struc-
ture. This is based on the Veselov method for discrete mechanics.
When designed this way, the integrators are automatically symplec-
tic, momentum preserving and have excellent energy behavior.

• Idea is to update pairs of points

(qk, qk+1) → (qk+1, qk+2)

rather than position-velocity information. This leads to a discrete
form of Hamilton’s principle and associated discrete Euler-
Lagrange equations.

• Such integration algorithms are automatically symplectic.
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q(a)

q(b)

δq(t)
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q(t)
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qN

δqi

Q

qi

varied curve

varied point

Figure 13: Discrete form of the variational principle.

• One of the most widely used time stepping algorithms in structural
mechanics is the Newmark scheme—it is variational (and
hence symplectic; Kane, Marsden, Ortiz, West [1999]).
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• It has also been understood how to properly incorporate dissipative
and forcing into the algorithm via a discrete Lagrange d’Alembert
type principle—it gets the changes in energy correct!
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Figure 14: Energy behavior of integrators for a dissipative system. The variational integrators

accurately simulate energy decay, unlike standard methods such as Runge-Kutta.
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• These algorithms can also be extended to the context of collisions of
rigid and elastic bodies—again the variational structure is critical
as are the techniques of nonsmooth analysis (eg, as in Clarke). This
is recent and ongoing work of Kane, Ortiz, Marsden and Pandolfi.
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A BIASED GLIMPSE AT THE LITERATURE

� Era of Poincaré
• Clebsch, A. [1859] Über die Integration der hydrodynamischen Gleichungen, Z. Reine Angew.

Math. 56, 1–10. Typifies many of the references before Poincaré.

• Poincaré, H. [1890] Théorie des tourbillons, Reprinted by Éditions Jacques Gabay, Paris.

• Poincaré, H. [1892] Les formes d’équilibre d’une masse fluide en rotation, Revue Générale des

Sciences 3, 809–815 and Philosophical Transactions A 198, 333–373, 1901.

• Poincaré, H. [1901] Sur une forme nouvelle des équations de la méchanique, C.R. Acad. Sci.

132, 369–371. (Discovery of the Euler–Poincaré equations.)

• Poincaré, H. [1910] Sur la precession des corps deformables. Bull Astron 27, 321–356.

• Ehrenfest, P. [circa 1904] PhD thesis showing that solutions of the fluid equations satisfy a Gauss

principle of least curvature. See Klein, M. [1970] Paul Ehrenfest. North-Holland.
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� Post Poincaré
• Arnold, V.I., Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses appli-

cations a l’hydrodynamique des fluids parfaits, Ann. Inst. Grenoble, 16, (1966), 319–361.

• Ebin, D and J. Marsden [1970] Groups of diffeomorphisms and the motion of an incompressible

fluid, Ann. of Math., 92, 102–163.

� Energy-Casimir Method for Hydrodynamical Stability

• Arnold, V.I. [1966] On an a priori estimate in the theory of hydrodynamical stability. Izv.

Vyssh. Uchebn. Zaved. Mat. Nauk 54, 3–5; English Translation: Amer. Math. Soc.

Transl. 79 [1969], 267–269.

• Holm, D.D., J.E. Marsden, T.S. Ratiu, and A. Weinstein [1985] Nonlinear stability of fluid and

plasma equilibria, Phys. Rep. 123, 1–116.

• Simo, J.C., D.R. Lewis, and J.E. Marsden [1991] Stability of relative equilibria I: The reduced

energy momentum method, Arch. Rat. Mech. Anal. 115, 15-59.
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� Shallow Water Equation
• Fuchsteiner, B. and A.S. Fokas [1981], Physica , 4D, 47–66.

• Camassa, R. and D.D. Holm [1993] An integrable shallow water equation with peaked solitons,

Phys. Rev. Lett., 71, 1661-1664 and (with Hyman) Adv. Appl. Mech., 31, 1–33.

• Alber, M.S., R. Camassa, D.D. Holm and J.E. Marsden [1994], The geometry of peaked solitons

and billiard solutions of a class of integrable pde’s, Lett. Math. Phys. 32, 137–151 and Proc.

Roy. Soc 450, 677–692, 1995.

• Misiolek, G., [1998] A shallow water equation as a geodesic flow on the Bott-Virasoro group. J.

Geom. Phys., 24, 203–208.

• Kouranbaeva, S. [1999], The Camassa-Holm equation as a geodesic flow on the diffeomorphism

group, J. Math. Phys. 40, 857–868.

• Shkoller, S., Geometry and curvature of diffeomorphism groups with H1 metric and mean

hydrodynamics, J. Func. Anal., 160, (1998), 337–365.
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� Averaged Euler and Navier–Stokes Equations
• Holm, D. D., J. E. Marsden and T. S. Ratiu, [1998] Euler-Poincaré models of ideal fluids with

nonlinear dispersion, Phys. Rev. Lett. 349, 4173-4177.

• Holm, D.D., J. E. Marsden and T. S. Ratiu, [1998] The Euler–Poincaré equations and semidirect

products with applications to continuum theories, Adv. in Math., 137, 1-81.

• Shkoller, S., Geometry and curvature of diffeomorphism groups with H1 metric and mean

hydrodynamics, J. Func. Anal., 160, (1998), 337–365.

• Marsden, J.E., T.S. Ratiu, and S. Shkoller, [1999] The geometry and analysis of the averaged

Euler equations with normal boundary conditions, Geom. Func. Anal., (to appear).

• Chen, S.Y., C. Foias, D.D. Holm, E.J. Olson, E.S. Titi and S. Wynne, [1999] The Camassa-

Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81,

5338–5341.

• Foias, C., D.D. Holm and E.S. Titi [1999], in preparation (Well-posedness of the averaged

Navier-Stokes equations and attractor estimates).
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� Second Grade Fluids
• Cioranescu, D. and E.H. Ouazar, Existence and uniqueness for fluids of second grade, In Non-

linear Partial Differential Equations, 109, pp. 178–197. Collège de France Seminar, Pitman

(1984).

• Cioranescu, D. and V. Girault [1997], Weak and classical solutions of a family of second grade

fluids, Inter. J. Non-Linear Mech., 32, 317–335.

• Dunn, J.E. and R.L. Fosdick [1974], Thermodynamics, stability and boundedness of fluids of

complexity 2 and fluids of second grade, Arch. Rat. Mech. Anal., 56, 191–252.

� Limit of Zero Viscosity
• Onsager, L. [1945] The distribution of energy in turbulence. Phys. Rev., 68, 286.

• Marsden, J.E., D.G. Ebin, and A. Fischer [1972] Diffeomorphism groups, hydrodynamics and

relativity. Proceedings 13th Biennial Seminar on Canadian Mathematics Congress , 135–

279.

• Barenblatt, G.I. and A.J. Chorin [1998], New Perspectives in turbulence: scaling laws, asymp-

totics, and intermittency, SIAM Rev., 40, (1998), 265–291.
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� Numerical Simulations
• Nadiga, B. and S. Shkoller [1999], On a conservative numerical scheme for vortex merger

(preprint.)

• Chen, S.Y., C. D.D. Holm, L. Margolin, and R. Zhang [1999] Direct numerical simulations of

the Navier-Stokes alpha model (preprint.)

� Variational Integrators & Discrete Mechanics
• Moser, J. and A.P. Veselov [1991] Discrete versions of some classical integrable systems and

factorization of matrix polynomials. Comm. Math. Phys. 139, 217–243.

• Wendlandt, J.M. and J.E. Marsden [1997] Mechanical integrators derived from a discrete varia-

tional principle, Physica D 106, 223–246.

• Marsden, J.E. S. Pekarsky, and S. Shkoller [1999] Discrete Euler-Poincaré and Lie Poisson equa-

tions (preprint.)

• Kane, C, J.E. Marsden, and M. Ortiz [1999] Symplectic energy momentum integrators, J. Math.

Phys., 40, 3353–3371.

• Kane, C, J.E. Marsden, M. Ortiz and M. West [1999] Variational Integrators and the Newmark
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