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Abstract. We derive the equations of motion for a planar rigid body of cir-

cular shape moving in a 2D perfect fluid with point vortices using symplectic
reduction by stages. After formulating the theory as a mechanical system

on a configuration space which is the product of a space of embeddings and

the special Euclidian group in two dimensions, we divide out by the particle
relabeling symmetry and then by the residual rotational and translational sym-

metry. The result of the first stage reduction is that the system is described

by a non-standard magnetic symplectic form encoding the effects of the fluid,
while at the second stage, a careful analysis of the momentum map shows

the existence of two equivalent Poisson structures for this problem. For the

solid-fluid system, we hence recover the ad hoc Poisson structures calculated
by Shashikanth, Marsden, Burdick and Kelly on the one hand, and Borisov,

Mamaev, and Ramodanov on the other hand. As a side result, we obtain

a convenient expression for the symplectic leaves of the reduced system and
we shed further light on the interplay between curvatures and cocycles in the

description of the dynamics.

1. Introduction. In this paper, we use symplectic reduction to derive the equa-
tions of motion for a rigid body moving in a two-dimensional fluid with point
vortices. Despite the fact that this setup is easily described, it may come as a
surprise that these equations were derived (using straightforward calculations) only
recently by Shashikanth, Marsden, Burdick and Kelly [43] and Borisov, Mamaev
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and Ramodanov [7]. We also mention here the pioneering work of Koiller [23],
where these equations were obtained in the limit case where the cylinder radius
goes to zero.

In order to see why this problem remained open for so long, and to set the stage
for our approach, let us trace some of the history of fluid-rigid body interaction
problems.

1.1. Rigid bodies in potential flow. The equations of motion for a rigid body
of mass mb and inertia tensor Ib in potential flow were first described by Kirchhoff
[20] and are given by

L̇ = A×V and Ȧ = A×Ω, (1)

where V and Ω are the linear and angular velocity of the body, while L and A
are the linear and angular momentum, related by L = mV and A = IΩ. Here,
m = mb +mf is the total mass of the rigid body, consisting of the mass mb and the
virtual mass mf induced by the fluid. Similarly, I = Ib + If , where If is the virtual
inertia tensor due to the fluid.

The main difference between these equations and the Euler equations governing
the motion of a rigid body in vacuum is the appearance of the non-zero term A×V
on the right-hand side of the equation for L. In other words, the center of mass no
longer describes a uniform straight trajectory and is a non-trivial degree of freedom.
From a geometric point of view, the motion of a rigid body in a potential flow can
therefore be considered as a curve on the special Euclidian group SE(3) consisting
of all translations and rotations in R3, where the latter describe the orientation of
the body while the former encode the location of the center of mass.

The kinetic energy for the rigid body in a potential flow is a quadratic function
and hence determines a metric on SE(3). The physical motions of the rigid body
are geodesics with respect to this metric. By noting that the dynamics is invariant
under the action of SE(3) on itself, the system can be reduced from the phase space
T ∗ SE(3) down to one on the dual Lie algebra se(3)∗: in this way, one derives the
Kirchhoff equations (1). The situation is similar for a planar rigid body moving in
a two-dimensional flow: the motion is then a geodesic flow on SE(2), the Euclidian
group of the plane, and reduces to a dynamical system on se(2)∗. The dynamics
of the reduced system is still described by the Kirchhoff equations, but additional
simplifications occur: since both A and Ω are directed along the z-axis, the right-
hand side of the equation for A is zero. Throughout this paper, we will deal with
the case of planar bodies and two-dimensional flows only.

The procedure of reducing a mechanical system on a Lie group G whose dynamics
are invariant under the action of G on itself is known as Lie-Poisson reduction .
It was pointed out by Arnold [4] that both the Euler equations for a rigid body as
well as the Euler equations for a perfect fluid can be derived using this approach.
For more about the history of these and related reduction procedures, we refer
to [31]. The geometric outlook on the Kirchhoff equations, developed by Leonard
[26], turned out to be crucial in the study of stability results for bottom-heavy
underwater vehicles; see also [38].

1.2. Point vortices. Another development in fluid dynamics to which the name of
Kirchhoff is associated, is the motion of point vortices in an inviscid flow. A point
vortex is defined as a singularity in the vorticity field of a two-dimensional flow:
ω = Γδ(x−x0(t)), where the constant Γ is referred to as the strength of the point
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vortex. By substituting a superposition of N point vortices into the Euler equations
for a perfect fluid, one obtains the following set of ODEs for the evolution of the
vortex locations xi, i = 1, . . . , N :

Γk
dxk

dt
= J

∂H

∂xk
, (2)

where H = −WG(x1, . . . ,xN ) and WG is the so-called Kirchhoff-Routh func-
tion , which is derived using the Green’s function for the Laplacian with appropri-
ate boundary conditions. We will return to the explicit form for WG later. For
point vortices moving in an unbounded domain, WG was derived by Routh and
Kirchhoff, whereas Lin [28] studied the case of vortices in a bounded container with
fixed boundaries.

It is useful to recall here how the point vortex system is related to the dynamics
of an inviscid fluid. In order to do so, we recall the deep insight of Arnold [4],
who recognized that the motion of a perfect fluid in a container F is a geodesic
on the group Diffvol(F) of volume-preserving diffeomorphisms of F , in much the
same way as the motion of a rigid body is a geodesic on the rotation group SO(3).
The group Diffvol(F) acts on itself from the right and leaves the fluid kinetic energy
invariant, a result known as particle relabeling symmetry . Hence, by Lie-Poisson
reduction, the system can be reduced to one on the dual X∗

vol(F) of the Lie algebra
of Diffvol(F), and the resulting equations are precisely Euler’s equations.

Moreover, any group acts on its dual Lie algebra through the co-adjoint action,
and a trajectory of the reduced mechanical system starting on one particular orbit
of that action is constrained to remain on that particular orbit. Marsden and
Weinstein [29] showed that for a perfect fluid, the co-adjoint orbits are labelled by
vorticity and, when specified to the co-adjoint orbit corresponding to the vorticity
of N point vortices, Euler’s equations become precisely the vortex equations (2).

For a detailed overview of the geometric approach to fluid dynamics, we refer to
[5]. The dynamics of point vortices is treated by different authors, see [40, 36, 3].

1.3. The rigid body interacting with point vortices. Given the interest in
both rigid bodies and point vortices, it is natural to study the dynamics of a planar
rigid body interacting with N point vortices. After pioneering work by Koiller [23],
it wasn’t until the recent work of Shashikanth, Marsden, Burdick and Kelly [43]
(SMBK) and Borisov, Mamaev and Ramodanov [7] (BMR) that the equations of
motion for this dynamical system were established in their full generality. Both
groups proceeded through an ad-hoc calculation to derive the equations of motion,
and showed that the resulting equations are in fact Hamiltonian (see theorems 2.1
and 2.2 below). However, both sets of equations are different at first sight.

The SMBK equations are formally identical to the Kirchhoff equations (1) to-
gether with the point vortex equations (2), but the definitions of the momenta L,A
and the Hamiltonian H are modified to include the effect of the rigid body (through
the ambient fluid) on the point vortices, and vice versa. The configuration space
is se(2)∗ × R2N and the Poisson structure is the sum of the Poisson structures on
the individual factors. From the BMR point of view, the dynamic variables are the
velocity V and angular velocity A, together with the locations of the vortices. The
Hamiltonian is simply the sum of the kinetic energies for both subsystems, and to
account for the interaction between the point vortices and the rigid body, BMR
introduce a non-standard Poisson structure involving the stream functions of the
fluid.
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Somewhat miraculously, the equations of motion obtained by SMBK and BMR
turn out to be equivalent: Shashikanth [41] establishes the existence of a Poisson
map taking the canonical SMBK Poisson structure into the BMR Poisson structure;
this is recalled in theorem 2.3 below. However, a number of questions remain. Most
importantly, it is not obvious why one mechanical problem should be governed by
two Poisson structures, which are at first sight very different but turn out to be
related by a certain Poisson map. Moreover, it is not entirely clear why this system
is Hamiltonian in the first place: in the work of SMBK and BMR, the Hamiltonian
structure is derived only afterwards by direct inspection.

1.4. Main contributions and outline of this paper. We shed more light on
the issues addressed above by uncovering the geometric structures that govern this
problem. We begin this paper by giving an overview of rigid body dynamics and
aspects of fluid mechanics in section 2. This material is mostly well-known and
serves to set the tone for the rest of the paper. In section 3 we then introduce the
so-called Neumann connection, giving the response of the fluid to an infinitesimal
motion of the rigid body. This connection has been described before, but a detailed
overview of its properties seems to be lacking. In particular, we derive an expression
for the curvature of this connection when the fluid space is an arbitrary Riemannian
manifold, generalizing a result of Montgomery [34].

The remainder of the paper is then devoted to using reduction theory to obtain
the equations of motion for the fluid-solid system in a systematic way. We will
derive the equations of motion for this system by reformulating it first as a geodesic
flow on the Cartesian product of the group SE(2) of translations and rotations in
2D, and a space of embeddings describing the fluid configurations. Two symmetry
groups act on this space: the particle relabeling symmetry group Diffvol(F0) acts
on the right, and the group SE(2) itself acts on the left, making the system into a
left-right system . Here F0 is the reference configuration for the fluid, i.e. it is
the exterior of the disc in the reference configuration (see figure 1). Dividing out
by the combined action of these symmetries is therefore an example of reduction
by stages.

Figure 1. The two symmetry groups in the problem of a cylinder
interacting with N point vortices are the particle relabeling group
Diffvol(F0) and the Euclidian group SE(2).

After symplectic reduction with respect to Diffvol(F) in section 4, we obtain a
dynamical system on the product space T ∗ SE(2) × R2N , where the first factor is
the phase space of the rigid body, while the second factor describes the locations of
the point vortices. The dynamics is governed by a magnetic symplectic form :
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it is the sum of the canonical symplectic forms on both factors, together with a
non-canonical interaction term. From a physical point of view, the interaction term
embodies the interaction between the point vortices and the rigid body through the
ambient fluid. Mathematically speaking, the map associating to each rigid body
motion the corresponding motion of the fluid can be viewed as a connection, and
the magnetic term is closely related to its curvature.

Note that it is essential here to do symplectic reduction with respect to the
particle relabeling symmetry rather than Poisson reduction, even though the latter
might be conceptually simpler. Recall that symplectic reduction reduces the system
to a co-adjoint orbit; as we shall see below, in the case of fluids interacting with
solids these co-adjoint orbits are precisely labelled by the vorticity of the fluid.
Symplectic reduction — in particular the selection of one particular level set of the
momentum map — therefore amounts to imposing a specific form for the vorticity
field. In our case, this is where we introduce the assumption that the vorticity is
concentrated in N point vortices.

If instead we had performed Poisson reduction, we would have obtained the Euler
equations for the fluid (in spatial representation) coupled to the equations of motion
for the rigid body. In two dimensions, one particular feature of this set of equations
is that the vorticity of a perfect fluid is advected with the fluid flow but remains
otherwise unchanged. From a geometrical point of view, this “advection property”
of the classical Euler equations corresponds to the fact that the co-adjoint orbits
for the fluid-solid system are precisely the spaces of constant vorticity. This will be
made more precise in section 2.1 below.

After factoring out the particle relabeling symmetry, the resulting dynamical
system is invariant under translations and rotations in the plane and can then
be reduced with respect to the group SE(2). This is the subject of section 5.
Physically, this corresponds to rewriting the equations of motion obtained after
the first reduction in body coordinates. However, because of the presence of the
magnetic term in the symplectic form and the fact that SE(2) acts diagonally on
T ∗ SE(2)× R2N , this is not a straightforward task.

First, we derive the reduced Poisson structure on the reduced space se(2)∗×R2N .
Because of the magnetic contributions to the symplectic form, the reduced Poisson
structure is not just the sum of the Poisson structures on the individual factors,
but includes certain non-canonical contributions as well. We then show that the
momentum map for the SE(2)-symmetry naturally defines a Poisson map taking
this Poisson structure into the product Poisson structure, possibly with a cocycle
if the momentum map is not equivariant (this happens when the total strength
of the point vortices is nonzero). We do the computations for a general product
T ∗H×P first, where H is a Lie group, P is a symplectic manifold, and the product is
equipped with a magnetic symplectic form. In this way, we generalize the “coupling
to a Lie group” scenario (see [24]) to the case where magnetic terms are present.

In this way, the results of SMBK and BMR are put on a firm geometric footing:
the BMR Poisson structure is the one obtained through reduction and involves the
interaction terms, while the SMBK Poisson structure is simply the product Poisson
structure. The Poisson map induced by the SE(2)-momentum map described above
turns out to be precisely Shashikanth’s Poisson map. As a consequence, we also
obtain an explicit prescription for the symplectic leaves of this system.

1.5. Relation with other approaches. Our method consists of rederiving the
SMBK and BMR equations by reformulating the motion of a rigid body in a fluid
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as a geodesic problem on the combined fluid-solid configuration space. By imposing
the assumption that the vorticity is concentrated in N point vortices, and dividing
out the symmetry, we obtain first of all the BMR equations, and secondly (after
doing a momentum shift) the SMBK equations. This procedure is worked out in
the body of the paper — here we would like to reflect on the similarities with other
dynamical systems.

Recall that the dynamics of a particle of charge e in a magnetic field B = ∇×A
can be described in two ways. One is by using canonical variables (q,p) and the
Hamiltonian

H(q,p) =
1

2m
‖p− eA‖2

, (3)

while for the other one we use the kinetic energy Hamiltonian Hkin = ‖p‖2
/2m but

now we modify the symplectic form to be

ΩB = Ωcan + eB. (4)

A simple calculation shows that both systems ultimately give rise to the familiar
Lorentz equations. From a mathematical point of view, this can be seen by noting
that the momentum shift map S : p 7→ p−eA maps the dynamics of the former
system into that of the latter:

S∗ΩB = Ωcan and S∗Hkin = H.

In other words, both formulations are related by a symplectic isomorphism, thus
making them equivalent.

An over-arching way of looking at the dynamics of a charged particle in a mag-
netic field is as a geodesic problem (with respect to a certain metric) on a higher-
dimensional space: this is part of the famed Kaluza-Klein approach . In this
case, spacetime is replaced by the product manifold R4 × U(1) and charged parti-
cles trace out geodesics on this augmented space. The standard, four-dimensional
formulation of the dynamics can then be obtained by dividing out by the internal
U(1)-symmetry, resulting in the familiar Lorentz equations on R4. More information
about these constructions can be found in [45], [48] and [31].

Our approach to the fluid-structure problem is similar but more involved be-
cause of the presence of two different symmetry groups. However, the underlying
philosophy is the same: by reformulating the motion of a rigid body and the fluid
as a geodesic problem on an infinite-dimensional manifold, we follow the philosophy
of Kaluza-Klein of trading in the complexities in the equations of motion for an
increase in the number of dimensions of the configuration space. Then, by dividing
out the Diffvol-symmetry, we obtain a reduced dynamical system governed by a
magnetic symplectic form (the analogue of (4)), which is mapped after a suitable
momentum shift S into an equivalent dynamical system governed by the canonical
symplectic form but with a modified Hamiltonian. After reducing by the resid-
ual SE(2)-symmetry, the former gives rise to the BMR bracket, while the latter is
nothing but the SMBK system.

1.6. A note on integrability. The case of a circular cylinder is distinguished
because of the existence of an additional conservation law, associated with the
symmetry that rotates the cylinder around its axis. When the circular cylinder
interacts with one external point vortex, a simple count of dimensions and first
integrals suggests that this problem is integrable, a fact first proved by Borisov
and Mamaev [6]. Indeed, for a single vortex the phase space is a symplectic leaf
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of se∗(2) × R2, which is generically four-dimensional. On the other hand, for the
circular cylinder there are two conservation laws: the total energy and the material
symmetry associated with rotations around the axis of the cylinder, which hints at
Liouville integrability.

In the case of an ellipsoidal cylinder with nonzero eccentricity, Borisov, Mamaev
and Ramodanov [8] gather numerical evidence to show that the interaction with
one vortex is chaotic. This is to be contrasted with the motion of point vortices in
an unbounded domain (see [36]), which is integrable for three vortices or less.

2. The fluid-solid problem. This section is subdivided into two parts. In the
first, and longest, part we describe the general setup for a planar rigid body inter-
acting with a 2D flow. The second part is then devoted to discussing a number of
simplifying assumptions that will make the subsequent developments clearer. By
separating these assumptions from the main problem setting, we hope to convince
the reader that the method outlined in this paper does not depend on any specific
assumptions on the rigid body or the fluid, and can be generalized to more com-
plex problems. At the end of this paper, we discuss how these assumptions can be
relaxed.

2.1. General geometric setting.

2.1.1. Kinematics of a Rigid Body. Throughout this paper, we consider the motion
of a planar rigid body interacting with a 2D flow . We introduce an inertial
frame e1,2,3, where e1,2 span the plane of motion and e3 is perpendicular to it. The
configuration of the rigid body is then described by a rotation with angle β around
e3 and a vector x0 = x0e1 + y0e2 describing the location of a fixed point of the
body, which we take to be the center of mass.

x

(x0, y0)

X

y
Y

Γ1

Γ2

Γ3

β

Figure 2. The configuration of the rigid body and the point vortices.

The orientation and position (β;x0, y0) determine an element g of the Euclidian
group SE(2) given by

g =
(

R x0

0 1

)
, where R =

(
cos β − sinβ
sinβ cos β

)
. (5)

Written in this way, the group composition and inversion in SE(2) are given by
matrix multiplication and inversion. The Lie algebra of SE(2) is denoted by se(2)
and essentially consists of infinitesimal rotations and translations. Its elements are
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matrices of the form 0 −Ω Vx

Ω 0 Vy

0 0 0

 .

It follows that se(2) can be identified with R3 by mapping such a matrix to the
triple (Ω, Vx, Vy). We define a basis of se(2) given by

eΩ =

0 −1 0
1 0 0
0 0 0

 , ex =

0 0 1
0 0 0
0 0 0

 , ey =

0 0 0
0 0 1
0 0 0

 . (6)

For future reference, we also introduce a moving frame fixed to the rigid body,
denoted by b1,2,3. The transformation from body to inertial frame is given by
x = RX + x0, where x = xe1 + ye2 and X = Xb1 + Y b2.

The angular and translational velocities of the rigid body relative to the
inertial frame are defined as

ω = β̇e3 and v = ẋ◦e1 + ẏ◦e2, (7)

where dots denote derivatives with respect to time. These quantities can be ex-
pressed in the body frame: the body angular velocity Ω and the body translational
velocity V are related to the corresponding inertial quantities by

Ω = ω and V = RT v. (8)

For the case of a planar rigid body, the angular velocity is oriented along the axis
perpendicular to the plane and so determines a scalar quantity: ω = ωe3 and
Ω = Ωb3. From a group-theoretic point of view, if the motion of a rigid body is
given by a curve t 7→ g(t) in SE(2), then we may define an element ξ(t) ∈ se(2) by
putting

ξ(t) =
d

dε
g(t)−1g(t + ε)

∣∣∣
ε=0

,

and it can easily be checked that ξ coincides with the body angular and translational
velocities (Ω,V).

The kinetic energy of the rigid body is given by the following expression:

Tbody(Ω,V) =
I
2
Ω2 +

m

2
V2 (9)

where I is the moment of inertia of the body and m is its mass. The kinetic energy
defines an inner product on se(2), given by

〈〈(Ω1,V1), (Ω2,V2)〉〉se(2) =
(
Ω1 V1

)
Mm

(
Ω2

V2

)
, (10)

for (Ω1,V1) and (Ω2,V2) in se(2), and where Mm is given by

Mm =
(

I 0
0 mI

)
. (11)

Here, I is the 2-by-2 identity matrix. By left extension, this inner product induces
a left-invariant metric on the whole of SE(2):

〈〈(g, ġ1), (g, ġ2)〉〉SE(2) :=
〈〈

g−1ġ1, g
−1ġ2

〉〉
se(2)

, (12)

for (g, ġ1) and (g, ġ2) in T SE(2).
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2.1.2. Incompressible Fluid Dynamics. The geometric description of an incompress-
ible fluid goes back to the work of Arnold [4], who described the motion of an in-
compressible fluid in a fixed container F as a geodesic on the diffeomorphism group
of F . In the case of a fluid interacting with a rigid body, the fluid container may
change over time, reflecting the fact that the rigid body moves.

Arnold’s formulation can be extended to cover this case by considering the space
of embeddings of the reference configuration of the fluid (denoted by F0) into R2.
Recall that an embedding ϕ : F0 ↪→ R2 maps each reference point X ∈ F0 to its
current configuration x = ϕ(X). In order to reflect the fact that the fluid is taken to
be incompressible, we require that any fluid embedding ϕ is volume preserving :
if dx is the Euclidian area element on R2 and dx0 is a fixed area element on F0,
then we require

ϕ∗(dx) = dx0. (13)
The space of all such volume-preserving embeddings is denoted by Emb(F0, R2). In
the sequel, we will specify additional boundary conditions on the fluid configura-
tions, stating for example that the fluid is free to slide along the boundary of the
solid, but this does not make any difference for the current expository treatment.

A motion of a fluid is described by a curve t 7→ ϕ(t) in Emb(F0, R2). The
material velocity field is the tangent vector field (ϕt, ϕ̇t) along the curve. Here,
ϕ̇t is a map from F0 to TR2, whose value at a point x ∈ F0 is given by

ϕ̇t(x) =
d

dt
ϕt(x) ∈ Tϕ(x)R2.

Note that ϕ̇t is not a vector field in the traditional sense; rather, it is a vector
field along the map ϕt. In contrast, the spatial velocity field ut, defined as

ut = ϕ̇t ◦ ϕ−1
t (14)

is a proper vector field, defined on ϕt(F0).
The motion of a fluid can be described using the kinetic-energy Lagrangian:

Tfluid(ϕ, ϕ̇) =
ρ

2

∫
Ft

‖u‖2
dx, (15)

where u is the Eulerian velocity field (14) and the integration domain is the spatial
domain of the fluid at time t: Ft = ϕt(F0). Just as in the case of the rigid body,
this kinetic energy induces a metric on the space Emb(F0, R2), given by

〈〈ϕ̇1, ϕ̇2〉〉Emb = ρ

∫
F0

ϕ̇1 · ϕ̇2 dx0. (16)

By changing variables, this metric can be rewritten in spatial form as follows:

〈〈ϕ̇1, ϕ̇2〉〉Emb = ρ

∫
Ft

u1 · u2 dx,

where ui is the Eulerian velocity associated to ϕ̇i: ui = ϕ̇i ◦ ϕ−1
i , for i = 1, 2, and

the integration is again over the spatial domain Ft := ϕt(F0) of the fluid.

2.1.3. The Configuration Space of the Fluid-Solid System. The motion of a rigid
body in an incompressible fluid combines aspects of both rigid-body and fluid dy-
namics. We assume that the body occupies a circular region B0 in the reference
configuration, and that the remainder of the domain, denoted by F0, is taken up
by the fluid. The configuration space for the fluid-solid system is made up of pairs
(g, ϕ) ∈ SE(2)× Emb(F0, R2) satisfying the following conditions.
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1. The embedding ϕ represents the configuration of the fluid. In particular, ϕ
is volume-preserving, i.e. (13) is satisfied. In addition, we assume that ϕ
approaches the identity at infinity suitably fast.1

2. The element g ∈ SE(2) describes the configuration of the rigid body.
3. The fluid satisfies a “slip” boundary condition: the normal velocity of the fluid

coincides with the normal velocity of the solid, while the tangent velocity
can be arbitrary, reflecting the fact that there is no viscosity in the fluid.
Mathematically, this boundary condition is imposed by requiring that, as
sets, ϕ(∂F0) is equal to g(∂B0), where g ∈ SE(2) is interpreted as a affine
embedding taking the body reference configuration B0 into its current location
in R2.

We denote the space of all such pairs as Q; this is a submanifold of SE(2) ×
Emb(F0, R2). The kinetic energy of the fluid-solid system is given by the sum of
the rigid-body energy Tbody and the kinetic energy Tfluid of the fluid:

T = Tfluid + Tbody

=
ρ

2

∫
Ft

‖u‖2
dx +

I
2
Ω2 +

m

2
V2. (17)

Similarly, there exists a metric on Q given by the sum of the metrics (12) and (16):

〈〈(ϕ̇1, ġ1), (ϕ̇2, ġ2)〉〉 = 〈〈ϕ̇1, ϕ̇2〉〉Emb + 〈〈ġ1, ġ2〉〉SE(2) . (18)

The dynamics of rigid bodies moving in perfect fluids was studied before by Kelly
[18], Radford [39], and Kanso et al. [16, 17]. A similar configuration space, but with
the SE(2)-factor replaced by a suitable set of smooth manifolds, was studied in [27]
for the dynamics of a liquid drop.

2.1.4. Particle Relabelling Symmetry. The kinetic energy Tfluid of the fluid is invari-
ant if we replace ϕ̇ by ϕ̇ ◦ φ, where φ is a volume-preserving diffeomorphism from
F0 to itself. This represents the particle relabeling symmetry referred to in the
introduction. Note that these symmetries act on the right on Q.

Recall that a diffeomorphism φ : F0 → F0 is volume-preserving if φ∗dx0 =
dx0, where dx0 is the volume element on F0. The group of all volume-preserving
diffeomorphisms is denoted by Diffvol. This group acts on the right on Emb(F0, R2)
by putting ϕ · φ = ϕ ◦ φ, and hence also on Q. The action of Diffvol on Q makes
Q into the total space of a principal fiber bundle over SE(2). In other words, if we
define the projection π : Q → SE(2) as being the projection onto the first factor:
π(g, ϕ) = g, then the fibers of π coincide precisely with the orbits of Diffvol in Q.

2.1.5. Vorticity and Circulation. In classical fluid dynamics, the vorticity µ is
defined as the curl of the velocity field: µ = ∇ × u, and the circulation around
the rigid body is the line integral of u along any curve encircling the rigid body. In
two dimensions, µ can be written as µ = µe3, where µ is called the scalar vorticity.

According to Noether’s theorem, there is a conserved quantity associated to the
particle relabeling symmetry. This conserved quantity turns out to be precisely the
circulation of the fluid:

d

dt

∮
C
u · dl = 0,

1We will not be concerned with any functional-analytic issues concerning these infinite-
dimensional manifolds of mappings. Instead, the reader is referred to [12] for more information.
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and Noether’s theorem hence becomes Kelvin’s theorem, which states that circula-
tion is materially constant. As a consequence of Green’s theorem, the circulation
of the fluid is related to the vorticity:∮

C
u · dl =

∫
S
∇× u · dS,

where S is any surface whose boundary is C. It would lead us too far to explore the
geometry of vorticity and circulation in detail (for this, we refer to [5]) but at this
stage we just note that the conservation of vorticity is closely linked to the particle
relabeling symmetry.

2.1.6. The Helmholtz-Hodge Decomposition. If (in addition to being incompressible)
the fluid is irrotational, meaning that ∇×u = 0, and has no circulation, then there
exists a velocity potential Φ such that u = ∇Φ. In the presence of point vortices,
the fluid is not irrotational but the velocity field u can be uniquely decomposed
in an irrotational part and a vector field uv representing the “rotational” contri-
butions (see for instance [40] or [36]). This is the well-known Helmholtz-Hodge
decomposition:

u = ∇Φ + uv. (19)
Here, uv is a divergence-free vector field which is tangent to the boundary of F ,

while the potential Φ is the solution to Laplace’s equation ∇2Φ = 0, subject to the
boundary conditions that the normal derivative of Φ equals the normal velocity of
the rigid body, and that the velocity vanishes at infinity. In other words, one has

∇2Φ = 0 and
∂Φ
∂n

∣∣∣
∂F

= (ω × (x− x0) + v) · n (for x ∈ ∂F), (20)

and Φ goes to zero as |x| goes to infinity. Here ω and v are the angular and trans-
lational velocity of the rigid body, expressed in a spatial frame, while x0 represents
the location of the center of mass.

Since Φ depends on ω and v in a linear way, we may decompose Φ, following
Kirchhoff, as

Φ(g, ġ;x) = vxΦx(g,x) + vyΦy(g,x) + ωΦω(g,x). (21)

Here Φx, Φy, and Φω are elementary velocity potentials corresponding to infinites-
imal translations in the x- and y-direction and to a rotation, respectively. They
satisfy the Laplace equation with the following boundary conditions:

∂Φω

∂n
= (e3 × x) · n,

∂Φx

∂n
= e1 · n, and

∂Φy

∂n
= e2 · n.

Note that the elementary potentials depend on the location of the rigid body
(encoded by g) only. For the sake of clarity, we will suppress these arguments when
no confusion is possible. The elementary velocity potentials for a circular body are
given below: the reader can check that they indeed depend on the location of the
rigid body.

The Helmholtz-Hodge decomposition defines a connection on the principal fiber
bundle Q → SE(2). To see this, note that any tangent vector to Q is of the form
(g, ġ;ϕ, ϕ̇). We define its horizontal and vertical part by applying the Helmholtz-
Hodge decomposition to u = ϕ̇ ◦ ϕ−1, and we put

(g, ġ;ϕ, ϕ̇)H = (g, ġ;ϕ,∇Φ ◦ ϕ) and (g, ġ;ϕ, ϕ̇)V = (g, 0;ϕ,uv ◦ ϕ)

We will verify in section 3 below that this prescription indeed defines a connection,
which we term the Neumann connection , since its horizontal subspaces are found
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by solving the Neumann problem (20). This connection was used in a variety of
contexts, ranging from the dynamics of fluid drops [27, 35] to problems in optimal
transport [19].

2.1.7. The Lie Algebra of Divergence-free Vector Fields and its Dual. At least on a
formal level, Diffvol is a Lie group with associated to it a Lie algebra, denoted by Xvol

and consisting of divergence-free vector fields which are parallel to the boundary
of F0. The bracket on Xvol is the Jacobi-Lie bracket of vector fields (which is the
negative of the usual bracket of vector fields) and its dual, denoted by X∗

vol, is the
set of linear functionals on Xvol.

In the interest of making the paper self-contained, we now recall briefly the
explicit realization of this dual space. Note first of all that each one-form α on F0

induces a linear functional on Xvol by putting

〈u, α〉 =
∫
F0

α(u) dx0,

with exact one-forms giving rise, through Stokes’ theorem, to the zero functional:
〈u,df〉 = 0 for all u ∈ Xvol. In this way, the dual space X∗

vol can be identified with
the set of one-forms on F0 modulo exact forms:

X∗
vol(F0) = Ω1(F0)/dΩ0(F0),

(see [5]) while the duality pairing between elements of Xvol and X∗
vol is given by

〈u, [α]〉 =
∫
F0

α(u) dx0,

where u ∈ Xvol and [α] ∈ X∗
vol. Note that the right-hand side does not depend on

the choice of representative α.
A more convenient interpretation of the dual Lie algebra X∗

vol is as the set of
exact two-forms on F0. Any class [α] in X∗

vol is uniquely determined by the exterior
differential dα and by the value of α on the generators of the first homology of F0.

Intuitively speaking, this isomorphism can be understood as follows. Let us first
consider the case where the domain is simply connected. In this case, we may
reconstruct α by integration from dα, and the resulting α is determined up to an
exact one-form. Hence, we obtain a one-to-one mapping from Ω1(F0)/dΩ1(F0) to
dΩ1(F0). If the domain is multiply-connected, as is the case for the solid-fluid
problem, the integration used to reconstruct α from dα will also depend on the
homology class of the path along which the integration is performed. In this case,
there is a one-to-one mapping from Ω1(F0)/dΩ1(F0) to dΩ1(F0)× Rn, where n is
the rank of the first homology of F0.

In our case, the first homology group of F0 is generated by any closed curve C
encircling the rigid body, and its pairing with α is given by

Γ =
∫
C

α.

Under this identification, dα represents the vorticity , while Γ represents the cir-
culation . Since in our case the circulation is assumed to be zero, it follows that
[α] is completely determined by dα. The implications of non-zero circulation have
been explored in [47].

From a geometric point of view, the vorticity field can be interpreted as an
element of X∗

vol: if we assume that the fluid is moving on an arbitrary Riemannian
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manifold, then the vorticity can be defined by

µ = d(ϕ∗u[). (22)

Here [ is the flat operator associated to the metric. In the case of Euclidian spaces,
this definition reduces to the one involving the curl of u. Indeed, in this case, u[ is
given by uidxi, where ui denotes the ith component of the velocity. The exterior
derivative du[ then corresponds to the z-component of the curl of the vector field
u:

du[ = ∂iu
jdxi ∧ dxj = ε0ij∂iu

jdx1 ∧ dx2 = ez · (∇× u)dx1 ∧ dx2.

The definition (22) is slightly different from the one in [5], where vorticity is de-
fined as a two-form on the inertial space R2, whereas in our interpretation, vorticity
lives on the material space F0. Both definitions are related by push-forward and
pull-back by ϕ, and hence carry the same amount of information. Our definition
has the advantage that µ is naturally an element of X∗

vol, which is preferable from
a geometric point of view.

We finish this section by noting that any Lie group acts on its Lie algebra and
its dual Lie algebra through the adjoint and the co-adjoint action, respectively. For
the group of volume-preserving diffeomorphisms, both are given by push-forward: if
φ is an element of Diffvol, and u and dα are elements of Xvol and X∗

vol, respectively,
then

Adφ(u) = φ∗u and CoAdφ(dα) = d(φ∗α).

2.2. Point vortices interacting with a circular cylinder. In this section, we
impose some specific assumptions on the rigid body and the fluid. It should be
pointed out that while these assumptions greatly simplify the exposition, the general
reduction procedure can be carried out under far less stringent assumptions. Later
on, we will discuss how some of these assumptions may be removed.

2.2.1. The Rigid Body. In order to tie in this work with previous research efforts,
we assume the rigid body to be circular with radius R and neutrally buoyant (i.e.
its body weight m is balanced by the force of buoyancy). If the density of the fluid
is set to ρ = 1, this implies that the body has mass m = πR2. The moment of
inertia of the body around the axis of symmetry is denoted by I.

For a rigid planar body of circular shape, the elementary velocity potentials Φx,
Φy, and Φω occurring in (21) can be calculated analytically (see [25]) and are given
by

Φx = −R2 x− x0

(x− x0)2 + (y − y0)2
, and Φy = −R2 y − y0

(x− x0)2 + (y − y0)2
, (23)

while Φω = 0, reflecting the rotational symmetry of the body. Here (x0, y0) are the
coordinates of the center of the disc.

In some cases, it will be more convenient to express Φ in body coordinates. In
analogy with (21), we may write

Φ(g, ġ,X) = VxΦX(X) + VyΦY (X) + ΩΦΩ(X),

where (Vx, Vy) and Ω are the translational and angular velocity in the body frame,
respectively. For the circular cylinder, the elementary potentials in body frame are
given by

ΦX = −R2 X

X2 + Y 2
, ΦY = −R2 Y

X2 + Y 2
and ΦΩ = 0. (24)
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Note that ΦX ,ΦY and ΦΩ do not depend on the location of the rigid body, in
contrast to Φx,Φy and Φω.

2.2.2. Point Vortices. As for the fluid, we make the fundamental assumption that
the vorticity is concentrated in N point vortices of strengths Γi, i = 1, . . . , N ,
and that there is no circulation. Considered as a two-form on F0, the former means
that the vorticity is given by

µ =
N∑

i=1

Γiδ(x̄− x̄i)dx̄ ∧ dȳ, (25)

where (x̄, ȳ) are coordinates on F0, and x̄i is the reference location of the ith vortex,
i = 1, . . . , N . As pointed out above, µ is an element of X∗

vol.

2.2.3. The Kirchhoff-Routh Function. Shashikanth et al. [43] showed that the ki-
netic energy for the vortex system is the negative of the Kirchhoff-Routh function
WG for a system of N point vortices moving in a domain with moving boundaries:

Tvortex(X1, . . . ,XN ) = −WG(X1, . . . ,XN ). (26)

The precise form of WG is given by

WG(X1, . . . ,XN ) =
∑

i,j(i>j)

ΓiΓjG(Xi,Xj) +
1
2

∑
i

Γig(Xi,Xi), (27)

where G(X0,X1) is a Green’s function for the Laplace operator of the form

G(X0,X1) = g(X0,X1) +
1
4π

log ‖X0 −X1‖2
. (28)

The function g is harmonic in the fluid domain and is the stream function of uI . As
pointed out in [43], in the case of a circular cylinder, g can be calculated explicitly
using Milne-Thomson’s circle theorem [33], and is given by

g(X,Y) =
1
4π

log ‖X‖2 − 1
4π

log

∥∥∥∥∥X− R2

‖Y‖2 Y

∥∥∥∥∥
2

.

The general form of the Green’s function was obtained by Lin [28]; see also [10].
From a geometrical point of view, Marsden and Weinstein [29] showed that the

vortex energy can be obtained (up to some “self-energy” terms) by inverting the
relation µ = ∇×u, where µ is the scalar part of (25), and substituting the resulting
velocity field u generated by N vortices into the expression for the kinetic energy of
the fluid. Although their analysis was for an unbounded fluid domain, their result
can easily be extended to the case considered here, yielding again the negative of
the Kirchhoff-Routh function as in (26).

In the case of a solid interacting with point vortices, the total kinetic energy
will be the sum of the kinetic energy of the vortices, given by the Kirchhoff-Routh
function, and that of the rigid body. The explicit expression is listed below in (47).

2.2.4. Dynamics of the Fluid-Solid System. As stated in the introduction, SMBK
[43] were the first to derive the equations of motion for a rigid cylinder interacting
with N point vortices. See also [42]. These equations generalize both the Kirchhoff
equations for a rigid body in a potential flow and the equations for N point vortices
in a bounded flow. Rather remarkably, SMBK established by direct inspection that
these equations are Hamiltonian with respect to the canonical Poisson structure
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on se(2)∗ × R2N (i.e. the sum of the Poisson structures on both factors), and a
Hamiltonian given below involving the kinetic energy and interaction terms.

The SMBK equations are given by

dL
dt

= 0,
dA
dt

+ V × L = 0, and Γk
dXk

dt
= −J

∂H

∂Xk
, (29)

where L and A = Ae3 are the translational and angular momenta of the system,
defined by

L = cV +
N∑

k=1

ΓkXk × e3 +
N∑

k=1

Γke3 ×
Xk

‖Xk‖2 (30)

A = IΩ− 1
2

N∑
i=1

Γi ‖Xi‖2
,

and H is the Hamiltonian:

H(L,Xk) = −W (L,Xk) +
1
2c
‖L‖2 − 1

c

(∑
Γk(L×Xk) · e3

− 1
2

∑
Γ2

k ‖Xk‖2 −
∑
j>k

ΓkΓjXk ·Xj (31)

+
1
2

〈∑
Γk

Xk

‖Xk‖2 ,
∑

Γk
Xk

‖Xk‖2

〉)
.

Here, c is the total mass of the cylinder, consisting of the intrinsic mass m and
the added mass πR2 (due to the presence of the fluid): c = m + πR2 = 2πR2.

Theorem 2.1. The SMBK equations are Hamiltonian on the space se(2)∗ × R2N

equipped with the Poisson bracket

{F,G}se(2)∗×R2N = {F|se(2)∗ , G|se(2)∗}l.p + {F|R2N , G|R2N }vortex. (32)

Here, F and G are functions on se(2)∗ × R2N .

In the theorem above, {·, ·}l.p is the Lie-Poisson bracket on se(2)∗:

{f1, f2}se(2)∗ = (∇f1)T Λ∇f2, where Λ =

 0 −Py Px

Py 0 0
−Px 0 0

 , (33)

for arbitrary functions f1, f2 on se(2)∗. Similarly, {·, ·}vortex is the vortex bracket,
given by:

{g1, g2}vortex =
N∑

i=1

1
Γi

(
∂g1

∂Xi

∂g2

∂Yi
− ∂g2

∂Xi

∂g1

∂Yi

)
, (34)

where g1, g2 are arbitrary functions on R2N .

2.2.5. The BMR Equations. A completely different perspective on the rigid body
interacting with N point vortices is offered by BMR [7]. From their point of view,
the equations of motion are again written in Hamiltonian form on se(2)∗ × R2N ,
but now with a noncanonical Poisson bracket:

Ḟ = {F,H}BMR
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for all functions F on se(2)∗ × R2N . The Hamiltonian is the sum of the kinetic
energies of the subsystems, without interaction terms:

H =
c

2
〈V,V〉 −WG(V,Xk), (35)

whereas the Poisson bracket is determined by its value on the coordinate functions:

{V1, V2}BMR =
Γ
c2
−
∑ Γ

c2

R4
i −R4

R4
i

, {V1, Xi}BMR =
1
c

R4
i −R2(X2

i − Y 2
i )

R4
i

,

{V1, Yi}BMR = −2R2

c

XiYi

R4
i

, {V2, Xi}BMR = −2R2

c

XiYi

R4
i

, (36)

{V2, Yi}BMR =
1
c

R4
i + R2(X2

i − Y 2
i )

R4
i

, {Xi, Yi}BMR = − 1
Γi

,

where R2
i = ‖Xi‖2, V = (V1, V2), Xi = (Xi, Yi), and Γ is the total vortex strength:

Γ =
N∑

i=1

Γi.

We summarize the situation so far in the following theorem.

Theorem 2.2. The BMR equations, specified by the Hamiltonian (35) and the
Poisson brackets (36), form a non-canonical Hamiltonian system describing the
interaction between a circular rigid body and N point vortices.

Note that the version of the BMR Poisson bracket listed here differs from the
one in [7] by an overall factor of 2π. Shashikanth [41] showed that this discrepancy
can be attributed to the way in which BMR define the fluid density.

2.2.6. The Link between the SMBK and the BMR Equations. By explicit calcula-
tion, Shashikanth [41] constructed a Poisson map taking the SMBK equations into
the BMR equations. His result is listed below.

Theorem 2.3. The map S : (L, A;X1, . . . ,XN ) 7→ (V,Ω;X1, . . . ,XN ), where L
and A are given by (30), is a Poisson map from se(2)∗ × R2N equipped with the
bracket {·, ·}se(2)∗×R2N to se(2)∗ × R2N with the bracket {·, ·}BMR.

Even though this result asserts that both sets of equations are equivalent, it leaves
open the question as to why this is so. By re-deriving the equations of motion using
symplectic reduction, not only do we obtain both sets of equations, but the map S
also follows naturally.

3. The Neumann connection. The bundle π : Q → SE(2) is equipped with
a principal fibre bundle connection, called the Neumann connection by Mont-
gomery [34]. There are many ways of describing this connection, but from a physical
point of view, the definition using the horizontal lift operator is perhaps most ap-
pealing. From this point of view, the Neumann connection is a map

h : Q× T SE(2) → TQ, h(ϕ, g, ġ) = ∇Φ ◦ ϕ, (37)

where Φ is the solution of the Neumann problem (20) associated to (g, ġ). In other
words, the Neumann connection associates to each motion (g, ġ) the corresponding
induced velocity field of the fluid, and hence encodes the effect of the body on the
fluid. It is important to note that the Neumann connection does not depend on the
point vortex model and is valid for any vorticity field.
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Similar connections as this one have been described before (see for example [27,
23, 19]) but a complete overview of its definition and properties seems to be lacking.
In this section, we give an outline of the properties of the Neumann connection
which are relevant for the developments in this paper, leaving detailed proofs for
the appendix.

3.1. Invariance of the Kirchhoff decomposition. Before introducing the Neu-
mann connection, we prove that the velocity potential Φ(g, ġ;x) is left SE(2)-
invariant, expressing the fact that the dynamics is invariant under translations and
rotations of the combined solid-fluid system.

Proposition 1. The velocity potential Φ is left SE(2)-invariant in the sense that

Φ(hg, TLh(ġ);hx) = Φ(g, ġ;x) (38)

for all h ∈ SE(2) and (g, ġ;x) ∈ T SE(2)× R2.

Proof. This assertion can be proved in a number of different ways. The easiest
is to use the assumption that the body is circular and solve the equation for the
elementary potentials explicitly. Recall that these elementary potentials are given
by (23). It is then straightforward to check that (38) holds, using the transformation
properties of the velocity in the inertial frame.

3.2. The connection one-form. For our purposes, it is convenient to define the
Neumann connection through its connection one-form A : TQ → Xvol given by

A(ϕ,g)(ġ, ϕ̇) = ϕ∗uv, (39)

where uv is the divergence-free part in the Helmholtz-Hodge decomposition (19)
of the Eulerian velocity u = ϕ̇ ◦ ϕ−1. A proof that this prescription determines a
well-defined connection form can be found in the appendix, proposition 9, where it
is also shown that this prescription agrees with the horizontal lift operator (37).

3.3. The curvature of the Neumann connection. It will be convenient in what
follows to have an expression for the µ-component of the curvature of the Neumann
connection, where for now µ is an arbitrary element of X∗

vol. Later on, µ will be the
vorticity (25) associated to N point vortices.

The curvature of a principal fiber bundle connection is a two-form B whose
definition is listed in the appendix. For the Neumann connection we have

B(g,ϕ)((ġ1, ϕ̇1), (ġ2, ϕ̇2)) = −A(g,ϕ)([XH , Y H ]), (40)

where XH and Y H are horizontal vector fields on Q such that XH(g, ϕ) = (ġ1, ϕ̇1)
and Y H(g, ϕ) = (ġ2, ϕ̇2). Here A is the connection one-form of the Neumann
connection, given by (39).

Proposition 2. Let (ġ1, ϕ̇1) and (ġ2, ϕ̇2) be elements of T(g,ϕ)Q and denote the
solutions of the Neumann problem (20) associated to (g, ġ1) resp. (g, ġ2) by Φ1 and
Φ2. Then the µ-component of the curvature B is given by〈

µ,B(g,ϕ)((ġ1, ϕ̇1), (ġ2, ϕ̇2))
〉

= 〈〈µ,dΦ1 ∧ dΦ2〉〉F −
∫

∂F
α ∧ ∗(dΦ1 ∧ dΦ2), (41)

where 〈〈·, ·〉〉F is the metric on the space of forms on F , induced by the Euclidian
metric on F .
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Proof. Let µ be equal to ϕ∗dα, and pick α such that α = u[
v, where uv is a

divergence-free vector field on F tangent to ∂F . For example, in the case of the
vorticity due to N point vortices, uv is the velocity field due to the vortices and
their images (see [40]). The calculation of the curvature involves computing the
Jacobi-Lie bracket of two horizontal vector fields and taking the divergence-free
part of the result. Because of the special form of α we can dispense with the latter
step, since α is chosen to be L2-orthogonal to gradient vector fields. Therefore, the
µ-component of the curvature is given by〈

µ,B(g,ϕ)((ġ1, ϕ̇1), (ġ2, ϕ̇2))
〉

= −
〈
µ,A(g,ϕ)([XH , Y H ])

〉
= −

∫
F0

(ϕ∗α)([XH , Y H ]) dx0,

where the bracket on the left-hand side is the Jacobi-Lie bracket, which is the
negative of the usual commutator of vector fields.

The bracket can be made more explicit by noting that (as vector fields on Q)

[XH , Y H ](g, ϕ) = ([(dΦ1)[, (dΦ2)[] ◦ ϕ, · · · ),
where the dots denote a term in Tg SE(2) whose explicit form doesn’t matter. The
curvature then becomes〈

µ,B(g,ϕ)((ġ1, ϕ̇1), (ġ2, ϕ̇2))
〉

= −
∫
F

α([(dΦ1)[, (dΦ2)[]) dx.

The remainder of the proof relies on the following formula for the codifferential
of a wedge product [46, formula 1.34]:

δ(α ∧ β) = δα ∧ β + (−1)pα ∧ δβ − [α[, β[]], (42)

where p = deg α. Applying (42) with α = dΦ1 and β = dΦ2 gives

[(dΦ1)[, (dΦ2)[]] = ∆Φ1dΦ2 −∆Φ2dΦ1 − δ(dΦ1 ∧ dΦ2),

where ∆ is the Laplace-Beltrami operator on differential forms. Since both Φ1 and
Φ2 are harmonic, the first two terms of the right-hand side vanish. Consequently,
the µ-component of the curvature becomes〈

µ,B(g,ϕ)((ġ1, ϕ̇1), (ġ2, ϕ̇2))
〉

= 〈〈α, δ(dΦ1 ∧ dΦ2)〉〉F

= 〈〈dα,dΦ1 ∧ dΦ2〉〉F −
∫

∂F
α ∧ ∗(dΦ1 ∧ dΦ2),

using the adjointness of d and δ for manifolds with boundary (this is a simple
consequence of Stokes’ theorem).

In traditional fluid mechanics notation, formula (41) becomes

〈µ,B〉 =
∫
F

(∇× uV ) · (∇Φ1 ×∇Φ2)dx−
∫

∂F
uV · (n× (∇Φ1 ×∇Φ2))dA,

a formula first derived in [34].

4. Reduction with respect to the diffeomorphism group. As mentioned in
the introduction, the fluid-solid system on the space Q ⊂ SE(2) × Emb(F0, R2) is
invariant under the particle relabeling group Diffvol. We now perform symplectic
reduction to eliminate that symmetry. In order to do so, we need to fix a value of
the momentum map associated to the Diffvol-symmetry. From a physical point of
view, this boils down to fixing the vorticity of the system; it is at this point that
the assumption is used that the vorticity is concentrated in N point vortices.



RIGID BODIES AND POINT VORTICES 241

Before tackling symplectic reduction in the context of the fluid-solid system, we
first give a general overview of cotangent bundle reduction following [30]. Roughly
speaking, applying symplectic reduction to a cotangent bundle yields a space which
is diffeomorphic to the product of a reduced cotangent bundle and a co-adjoint
orbit of the group. The dynamics on the reduced space is governed by a reduced
Hamiltonian and a magnetic symplectic form: the reduced symplectic form is the
sum of the canonical symplectic forms on the individual factors and an additional
magnetic term.

As we shall see below, in the case of the fluid-solid system, the reduced phase
space is equal to T ∗ SE(2) × R2N , where the first factor describes the rigid body,
while the second factor determines the configuration of the vortices. At first sight,
it may therefore appear that the intermediate fluid is completely gone. Yet, the
vortices act on the rigid body, and vice versa, through the surrounding fluid. The
answer to this apparent contradiction is that the effect of the fluid is concentrated
in the magnetic symplectic form, for which we derive a convenient expression below.

4.1. Cotangent bundle reduction: Review. In this section, we collect some
relevant results from [30]. We consider a manifold Q on which a Lie group G, with
Lie algebra g, acts from the right and we denote the action by σ : Q × G → Q.
In addition, we assume that we are given a connection one-form A : TQ → g
with curvature two-form B. In the rest of this paper, Q will be the configuration
space of the solid-fluid system, while the structure group G will be Diffvol, and the
connection A the Neumann connection.

4.1.1. The Curvature as a Two-form on the Reduced Space. Let µ be an element of
g∗, and denote its isotropy subgroup under the co-adjoint action by Gµ:

Gµ = {g ∈ G : CoAdgµ = µ} .

Consider the contraction 〈µ,B〉 of µ with the curvature B: due to the G-equivariance
and the fact that B vanishes on vertical vectors (see (70)), we may show that 〈µ,B〉
is a Gµ-invariant form.

Proposition 3. The µ-component of the curvature B is a Gµ-invariant two-form:
1. σ∗g 〈µ,B〉 = 〈µ,B〉, for all g ∈ Gµ;
2. iξQ

〈µ,B〉 = 0 for all ξ ∈ gµ.
Hence, 〈µ,B〉 induces a two-form B̄µ on Q/Gµ such that

π∗Q,Gµ
B̄µ = 〈µ,B〉 ,

where πQ,Gµ
: Q → Q/Gµ is the quotient map.

Proof. For the first property, we have

σ∗g 〈µ,B〉 =
〈
µ, σ∗gB

〉
=
〈
µ, Adg−1B

〉
= 〈CoAdg(µ),B〉 = 〈µ,B〉

if g ∈ Gµ. The second item follows from the corresponding property for B. Actually,
more is true: iξQ

〈µ,B〉 = 0 for all ξ ∈ g, not just in gµ.

4.1.2. Cotangent Bundle Reduction. The first stage in reducing the phase space
consists of dividing out the particle relabeling symmetry. To this end, we use the
framework of cotangent bundle reduction to construct the reduced phase space.
The framework for cotangent bundle reduction outlined in [30] allows us to write
down the reduced phase space and the modified symplectic form. We quote:
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Theorem 4.1. (Marsden et al. [theorem 2.2.1])

1. There exists a symplectic imbedding ϕµ of the reduced phase space (T ∗Q)µ into
the cotangent bundle T ∗(Q/Gµ) with the shifted symplectic structure ΩB :=
Ωcan −Bµ.

2. The image of ϕµ is the vector subbundle [TπQ,Gµ(V )]◦ of T ∗(Q/Gµ), where
V ⊂ TQ is the vector subbundle consisting of vectors tangent to the G-orbits
in Q, and ◦ denotes the annihilator relative to the natural duality pairing
between T (Q/Gµ) and T ∗(Q/Gµ).

Here (T ∗Q)µ is the reduced phase space J−1(µ)/Gµ, where Gµ is the isotropy
subgroup of µ. The two-form Bµ is called the magnetic two-form , and is defined
as Bµ = π∗Q/Gµ

βµ, where πQ/Gµ
: T ∗(Q/Gµ) → Q/Gµ is the cotangent bundle

projection and βµ is a two-form on Q/Gµ.
To define βµ, consider the one-form αµ := 〈µ,A〉 on Q. One can show that dαµ

(but not αµ itself) is Gµ-invariant, and the induced two-form on Q/Gµ is precisely
βµ, or in other words

π∗Q,Gµ
βµ = dαµ,

where πQ,Gµ
: Q → Q/Gµ is the quotient map. The calculation of dαµ is greatly

facilitated by using the Cartan structure equation [21], which allows us to rewrite
dαµ as

dαµ = 〈µ,B〉 − 〈µ, [A,A]〉 . (43)

Observe the sign difference on the right-hand side with [30], which is due to the fact
that we take G to be acting on Q from the right.

4.2. The reduced phase space. Theorem 4.1 provides us with an explicit pre-
scription for the reduced phase space. Recall that the diffeomorphism group Diffvol

acts on the dual Lie algebra dΩ1(F0) through push-forward. In particular, if µ
represents the vorticity due to N point vortices as in (25), then

φ∗µ =
N∑

i=1

Γiδ(x̄− φ(x̄i))dx̄ ∧ dȳ.

In other words, the diffeomorphism group acts on the space of point vortices by
simply moving the vortices. It also follows that the isotropy subgroup of µ consists of
all diffeomorphisms φ for which the vortex reference locations are fixed: φ(x̄i) = x̄i,
for i = 1, . . . , N . We denote the group of all such diffeomorphisms as Diffvol,µ.

The group Diffvol,µ acts on Q and moreover, the quotient of Q by this action
is diffeomorphic to SE(2) × R2N . To see this, note that Diffvol,µ acts on the
Emb(F0, R2) factor only, and that there exists a diffeomorphism of the quotient
space Emb(F0, R2)/Diffvol,µ with R2N , given by

[ϕ] 7→ (ϕ(x̄1), . . . , ϕ(x̄N )).

Similarly, the projection of Q onto the quotient space Q/Diffvol,µ = SE(2)×R2N

is given by
πQ,Gµ

: (g, ϕ) 7→ (g;ϕ(x̄1), . . . , ϕ(x̄N )).

Proposition 4. After reducing by the group of volume preserving diffeomorphisms,
the reduced phase is given by T ∗ SE(2)× R2N .
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Proof. The vertical bundle V on Q consists of vectors (g, 0;ϕ, ϕ̇). Projecting this
bundle down under TπQ,Gµ shows that TπQ,Gµ(V ) is spanned by elements of the
form

TπQ,Gµ
(g, 0;ϕ, ϕ̇) = (g, 0;ϕ(x̄1), ϕ̇(x̄1); . . . ;ϕ(x̄N ), ϕ̇(x̄N ))

and as each of the N vectors on the right hand side can range over the whole of
TR2, TπQ,Gµ(V ) is equal to SE(2)× TR2N . Its annihilator is therefore T ∗ SE(2)×
R2N .

The reduced symplectic structure on T ∗ SE(2)×R2N is described in theorem 4.1.
Explicitly, it is given by

ΩB = Ωcan −Bµ, (44)

where Ωcan is the canonical symplectic structure on T ∗ SE(2) and Bµ is the pullback
to T ∗ SE(2)×R2N of the form βµ on SE(2)×R2N . From now on, we will no longer
make any notational distinction between βµ and its pull-back Bµ and denote both
by βµ.

Apart from the reduced symplectic form, which will be determined explicitly
later on, the dynamics on the reduced space is also governed by a reduced version
of the Hamiltonian (17). The calculation of this Hamiltonian is the subject of the
next section.

4.3. The reduced Hamiltonian. The kinetic energy (10) is invariant under the
action of Diffvol,µ on Q and hence determines a reduced kinetic energy function on
the quotient space SE(2) × R2N . Parts of the computation of the explicit form of
the reduced kinetic energy can be found throughout the literature, but since no
single reference has a complete picture, we briefly recall these results here.

Using the Helmholtz-Hodge decomposition (19), the kinetic energy (10) of the
combined solid-fluid system can be written as

T (ġ, ϕ̇) =
1
2
〈〈ġ, ġ〉〉SE(2) +

1
2

∫
F

u · u dx

=
1
2
〈〈ġ, ġ〉〉SE(2) +

1
2

∫
F

uV · uV dx +
1
2

∫
F
∇Φ · ∇Φ dx, (45)

where we have used the fact that uV and ∇Φ are L2-orthogonal.
Following a reasoning similar to [29], it can be shown that the kinetic energy of

the vortex system is nothing but the negative of the Kirchhoff-Routh function WG

(see (27)):
1
2

∫
F

uV · uV dx = −WG(X1, . . . ,XN ),

The gradient term in (45) can be rewritten using a standard procedure, going
back to Kirchhoff and Lamb, and yields the familiar added masses and moments
of inertia for a rigid body in potential flow. By using Green’s theorem to rewrite
the gradient term as an integral over the boundary, and substituting the Kirchhoff
expansion (21), one can show that (see [25, 16])

1
2

∫
F
∇Φ · ∇Φ dx =

1
2
(
Ω V

)
Ma

(
Ω
V

)
, (46)

where Ma is a 3-by-3 matrix of added masses and inertia whose entries depend only
on the geometry of the rigid body. For the circular cylinder, Ma can be evaluated
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explicitly:

Ma =
(

0 0
0 πR2I

)
.

The important point is to note that the gradient term (46) has the same form
as the kinetic energy of the rigid body. By introducing the matrix M = Mm + Ma,
where Mm is the mass matrix (11), the kinetic energy of the rigid body, together
with the gradient term, can be written as

T =
1
2
(
Ω V

)
M
(

Ω
V

)
,

which determines by left extension a function, also denoted by T , on T SE(2).
Putting everything together, we conclude that the total reduced kinetic energy on
T SE(2)× R2N is given by

Tred(Ω,V;X1, . . . ,XN ) =
1
2
(
Ω V

)
M
(

Ω
V

)
−WG(X1, . . . ,XN ), (47)

where WG is given by (27) and (28).
Two issues are noteworthy here. First of all, we follow Marsden and Weinstein

[29] and SMBK [43] in “regularizing” WG by subtracting infinite contributions that
arise when putting X0 = X1 in the expression for the Green’s function G in (28).
Secondly, we have chosen to express the kinetic energy in the body frame, which
will be more convenient later on.

4.4. The magnetic two-form βµ. Recall that βµ is a two-form on R2N × SE(2)
defined as

βµ(x1, . . . ,xN ; g)((v1, . . . ,vN , ġ1), (w1, . . . ,wN , ġ2)) = dαµ(ϕ, g)((ϕ̇1, ġ1), (ϕ̇2, ġ2)),

where vi,wi ∈ Txi
R2 (i = 1, . . . , N), and ġ1 and ġ2 are elements of Tg SE(2). The

embedding ϕ has to satisfy ϕ(x̄i) = xi for i = 1, . . . , N , while ϕ̇1 and ϕ̇2 should
satisfy

ϕ̇1(x̄i) = vi and ϕ̇2(x̄i) = wi (for i = 1, . . . , N).

Using Cartan’s structure equation (43), dαµ can be rewritten as the difference
of a curvature term and a “Lie-Poisson” term: if we introduce two-forms βcurv and
βl.p on R2N × SE(2), determined by

π∗Q,Gµ
βcurv = 〈µ,B〉 , and π∗Q,Gµ

βl.p = 〈µ, [A,A]〉 ,

then βµ = βcurv − βl.p.
In the computation of these terms, we will frequently encounter expressions in-

volving the vertical part of (ϕ̇1, ġ1) and (ϕ̇2, ġ2), evaluated at the vortex locations.
We now derive a convenient expression for these terms.

Let Φ1 be the solution of the Neumann problem (20) with boundary data ġ1 and
denote by u the Eulerian velocity field associated to ϕ̇1. From the Helmholtz-Hodge
decomposition u = uv + ∇Φ1, it follows the divergence-free part uv satisfies (for
i = 1, . . . , N)

uv(xi) = u(xi)−∇Φ1(xi)

= vi −∇Φ1(xi),
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since u(xi) = ϕ̇1(x̄i) = vi. From the definition of A it then follows that we have
proved the following fact about the vertical part of ϕ̇1:

(A(ϕ,g)(ϕ̇1, ġ1))(x̄i) = (ϕ∗uv)(x̄i)

= Tϕ−1(vi −∇Φ1(xi)) (48)

for i = 1, . . . , N . A similar property holds for ϕ̇2, with vi replaced by wi and
involving Φ2, the solution of (20) with boundary data ġ2.

As an aside, we note that the Neumann connection induces a connection on the
trivial bundle R2 × SE(2) → SE(2), and the expression between brackets on the
right-hand side of (48) is the vertical component of the vector vi. This connection
is important in the theory of Routh reduction (see [32]).

4.4.1. The Curvature Term. The curvature term βcurv is given by

βcurv(x1, . . . ,xN ; g)((v1, . . . ,vN , ġ1), (w1, . . . ,wN , ġ2))

= 〈µ,B(ϕ, g)((ϕ̇1, ġ1), (ϕ̇2, ġ2))〉 ,

where B is the curvature of the Neumann connection. It follows from (41) that βcurv

does not depend on the value of vi and wi, but only on ġ1 and ġ2. From now on,
we will therefore suppress these arguments.

Proposition 5. For the rigid body interacting with N point vortices, the curvature
term is given by

βcurv(x1, . . . ,xN ; g)(ġ1, ġ2) =
N∑

i=1

Γi dx (∇Φ1(xi),∇Φ2(xi)), (49)

where Φ1 and Φ2 are the solutions of (20) associated to ġ1 and ġ2, respectively, and
dx is the volume element on F .

Proof. We use the explicit form for the elementary velocity potentials derived in
proposition 1. Note that βcurv depends on ġ1 and ġ2 through g−1ġ1 and g−1ġ2,
so we can calculate its expression on the basis {eΩ, ex, ey} of se(2) given in (6) by
assuming that g = e and ġ1, ġ2 ∈ Te SE(2) = se(2).

First, we prove that the boundary term in (41) is zero. This is obvious if either
ġ1 or ġ2 is proportional to eΩ, since Φω = 0. We may therefore assume that ġ1 = ex

and ġ2 = ey. In this case, the two-form dΦx ∧dΦy restricted to the boundary of F
(the curve (x − x0)2 + (y − y0)2 = 1) is given by dΦx ∧ dΦy = dx. Since ∗dx = 1
in two dimensions, the boundary term reduces to∫

∂F
α = Γ, (50)

which is zero, since by assumption there is no circulation around the rigid body.
This leaves us with the integral over the fluid domain in (41). Plugging in the

explicit form (25) of the vorticity, we have

βcurv(x1, . . . ,xN ; g)(ġ1, ġ2) = 〈〈µ,dΦ1 ∧ dΦ2〉〉F

=
N∑

i=1

Γi dx (∇Φ1(xi),∇Φ2(xi)).

We do not work out this expression any further, since it will be cancelled out by a
similar term in the computation of βl.p.
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It is remarkable that the contribution from the curvature to the magnetic term
will be cancelled in its entirety by a similar term in the expression for Lie-Poisson
term, which is computed below. However, in the case of non-zero circulation, the
curvature generates an additional term (50) proportional to the circulation. The
effect of this term is studied in [47]. We currently do not know whether this can-
cellation reflects an underlying fundamental property of the system, or if this is
merely a coincidence. Shedding more light on the nature of the terms that arise in
the magnetic term is an interesting project: we hope to return to this in the future
when we study the interaction of solids with more intricate vortical structures.

4.4.2. The Lie-Poisson Term. The Lie-Poisson term βl.p is given by

βl.p(x1, . . . ,xN ; g)((v1, . . . ,vN , ġ1), (w1, . . . ,wN , ġ2))

=
〈
µ, [A(ϕ,g)(ϕ̇1, ġ1),A(ϕ,g)(ϕ̇2, ġ2)]

〉
,

where (ϕ̇1, ġ1) and (ϕ̇2, ġ2) have similar interpretations as before. The right-hand
side can be made more explicit by noting that, for divergence-free vector fields u1

and u2 tangent to ∂F and arbitrary one-forms α, the following holds:∫
F

α([u1,u2]) dx =
∫
F

dα(u1,u2) dx. (51)

The proof of this assertion is a straightforward application of Cartan’s magic formula
and parallels the proof of theorem 4.2 in [29].

Using this formula, we have〈
µ, [A(ϕ,g)(ϕ̇1, ġ1),A(ϕ,g)(ϕ̇2, ġ2)]

〉
=
∫
F

(ϕ∗α)([A(ϕ,g)(ϕ̇1, ġ1),A(ϕ,g)(ϕ̇2, ġ2)]) dx

=
∫
F

µ(A(ϕ,g)(ϕ̇1, ġ1),A(ϕ,g)(ϕ̇2, ġ2)) dx

=
N∑

i=1

Γi (ϕ∗dx)
(
(A(ϕ,g)(ϕ̇1, ġ1))(x̄i), (A(ϕ,g)(ϕ̇2, ġ2))(x̄i)

)
.

By substituting (48) in this expression, we conclude that the Lie-Poisson term is
given by

βl.p(x1, . . . ,xN ; g)((v1, . . . ,vN , ġ1), (w1, . . . ,wN , ġ2))

=
N∑

i=1

Γi dx(vi −∇Φ1(xi),wi −∇Φ2(xi)).

4.4.3. The Magnetic Two-form: Putting Everything Together. Using the previously
derived results, we may conclude that βµ is given by (suppressing its arguments for
the sake of clarity)

βµ = βcurv − βl.p

=
N∑

i=1

Γi

(
dx(∇Φ1(xi),∇Φ2(xi))− dx(vi −∇Φ1(xi),wi −∇Φ2(xi)

)
=

N∑
i=1

Γi

(
− dx(vi,wi) + dx(vi,∇Φ2(xi)) + dx(∇Φ1(xi),wi)

)
.
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Introducing stream functions Ψ′
i(g, ġ;x) (i = 1, 2) as harmonic conjugates to

Φi(g, ġ;x), i.e. such that

∇Φi dx = dΨ′
i i = 1, 2 (52)

we may rewrite the expression for βµ as

βµ =
N∑

i=1

Γi

(
− dx(vi,wi)− dΨ′

2(vi) + dΨ′
1(wi)

)
.

The stream function can be written in Lamb form by introducing the elementary
stream functions Ψx, Ψy, and Ψω as harmonic conjugates to Φx, Φy, and Φω,
respectively. For i = 1, 2, we then have

Ψ′
i(g, ġ;x) = vx,iΨx(g,x) + vy,iΨy(g,x) + vω,iΨω(g,x)

= dx0(ġi)Ψx(g,x) + dy0(ġi)Ψy(g,x) + dβ(ġi)Ψω(g,x),

and so the magnetic two-form becomes

βµ =
N∑

i=1

Γi

(
− dx(vi,wi)− dξA(ġ2)dΨ′

A(vi) + dξA(ġ1)dΨ′
1(wi)

)
,

where the coordinates on SE(2) are denoted by ξA = {x0, y0, β}, and Ψ′
A =

{Ψ′
x,Ψ′

y,Ψ′
ω}.

Theorem 4.2. The magnetic two-form βµ is a two-form on R2N × SE(2) and can
be written as

βµ(x1, . . . ,xN ; g)((v1, . . . ,vN , ġ1), (w1, . . . ,wN , ġ2))

=
N∑

i=1

Γi

(
− dx(vi,wi) + dΘ(g,xi)(ġ1,vi; ġ2,wi)

)
. (53)

where Θ is the one-form on R2 × SE(2) given by

Θ(g,x)(ġ,v) = Ψ′
A(g,x)dξA(ġ). (54)

Proof. Note that the exterior derivative on the right-hand side of (53) is the exterior
derivative on R2N × SE(2). Expanding the second term, we have

d(Ψ′
A(g,x)dξA) = dΨ′

A ∧ dξA

= dΨ′
x ∧ dx0 + dΨ′

y ∧ dy0

= dR2Ψ′
x ∧ dx0 + dR2Ψ′

y ∧ dy0 +
(

∂Ψ′
y

∂x0
− ∂Ψ′

x

∂y0

)
dx0 ∧ dy0,

where the subscript ‘R2’ indicates that the derivative should be taken with respect
to the spatial variables only, i.e. that the SE(2)-variable should be kept fixed. Also,
we rely on the fact that Ψ′

ω = 0 (since Φω = 0), and that Ψ′
x,y does not depend on

β.
The theorem is proved once we show that the term in brackets vanishes. To show

this, we need the explicit form for the elementary stream functions:

Ψ′
x = R2 y − y0

(x− x0)2 + (y − y0)2
and Ψ′

y = −R2 x− x0

(x− x0)2 + (y − y0)2
, (55)

where R is the radius of the cylinder, and it is then easily shown that this is indeed
the case.
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Putting everything together, we conclude that the symplectic structure ΩB on
R2N × T ∗ SE(2) (see (44)) is given by

ΩB = Ωcan − βµ, (56)

where βµ is given in the theorem above. The first term is the canonical symplectic
form on T ∗ SE(2) while the magnetic consists of two parts, one (proportional to
dx) being the symplectic form on R2N , while the other one encodes the effects of
the ambient fluid through the stream functions Ψ′

x and Ψ′
y. Note that R2N is a

co-adjoint orbit of the diffeomorphism group, and that its symplectic structure is
nothing but the Konstant-Kirillov-Souriau form.

Koiller [23] considers the symplectic structure for the point vortex-solid system
in the limit where the radius R of the circle goes to zero. These results can be
obtained as a special case of theorem 4.2: in this limit, the term Θ vanishes and
the total symplectic form is given by

ΩB = Ωcan +
N∑

i=1

Γidxi.

This is precisely the symplectic form obtained directly in [23] (see Eq. 13).

5. Reduction with respect to SE(2). After reducing the fluid-solid system with
respect to the Diffvol-symmetry, we are left with a system on T ∗ SE(2)×R2N with
a magnetic symplectic form. The group SE(2) acts diagonally on the reduced phase
space. What remains is to carry out the reduction with respect to the group SE(2)
and then to make the connection with the equations of motion in [43] and [6].

Two factors complicate this strategy, however: first of all, there is the presence
of the magnetic term in the symplectic structure, which precludes using standard
Euler-Poincaré theory, for instance. Secondly, the phase space is a Cartesian prod-
uct on which the symmetry group acts diagonally. Even in the absence of magnetic
terms, this would lead to the appearance of certain interaction terms in the
Poisson structure (see [24]).

In order to do Poisson reduction for this kind of manifold, we begin this section
by considering the product of a cotangent bundle T ∗H, where H is a Lie group, and
a symplectic manifold P , and we assume that the symplectic structure on T ∗H×P
is the sum of the canonical symplectic structures on both factors plus an additional
magnetic term. This case extends both magnetic Lie-Poisson reduction in [30], for
which the P -factor is absent, as well as the “coupling to a Lie group” scenario of
[24], for which there is no magnetic term. Since the proofs in this section are rather
lengthy, we have relegated them to Appendix B and we simply quote the relevant
expressions here.

The bulk of this section is then devoted to making these results explicit for the
case where H = SE(2), P = R2N and the symplectic form is the magnetic symplectic
form derived in the previous section; see equations (53) and (56). The induced
Poisson structure with interaction terms will turn out to be nothing but the BMR
Poisson structure (36). Secondly, the Poisson map induced by the momentum map
J is just the Shashikanth map described in Theorem 2.3, so that the transformed
Poisson structure is the SMBK Poisson structure (32).

5.1. Coupling to a Lie group. As mentioned above, the purpose of this section
is to generalize the reduction of phase spaces of the form T ∗H×P , where H is a Lie
group acting on the symplectic manifold P . This is more general than results in the
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literature, since the symplectic structure on T ∗H ×P may contain magnetic terms.
We shall need this generalization in our application. The proofs of the theorems in
this section can be found in appendix B.

Specifically, if ωP denotes the symplectic form on P , we assume that the sym-
plectic structure Ω on T ∗H × P is given by

Ω = ωcan −B, (57)

where ωcan is the canonical symplectic structure on T ∗H and B is a closed two-form
on H × P such that B|{e}×P = −ωP , i.e. the restriction of B to {e} × P is just
−ωP . The latter ensures that Ω is a well-defined symplectic form on T ∗H × P .

We assume furthermore that H acts on P and we denote the action of h ∈ H on
p ∈ P by h · p. Furthermore, we assume that this action leaves invariant ωP . The
group H then acts diagonally on T ∗H × P : if h ∈ H and (αg, p) ∈ T ∗H × P , then

h · (αg, p) = (T ∗Lh−1(αg), h · p). (58)

5.1.1. The Momentum Map. Consider an element ξ of h. We denote the fundamen-
tal vector field associated to ξ on T ∗H × P by

ξT∗H×P (αg, p) :=
d

dt
exp(tξ) · (αg, p)

∣∣∣
t=0

,

and similar for the fundamental vector field ξH×P on H × P . Under certain topo-
logical assumptions (which are satisfied for the solid-fluid system), there exists a
momentum map J : T ∗H × P → h∗ for the action of H, defined by

iξT∗H×P
Ω = dJξ,

where Jξ = 〈J, ξ〉. It follows from the explicit form for the symplectic form (57)
that J can be written as J = Jcan − φ, where Jcan : T ∗H → h∗ is the momentum
map associated to the canonical symplectic form on T ∗H:

iξT∗H
ωcan = d 〈Jcan, ξ〉 (59)

while φ : H × P → h∗ is the so-called Bg-potential (borrowing the terminology of
[30]):

iξH×P
B = d 〈φ, ξ〉 . (60)

The theory of Bg-potentials and Poisson reduction for cotangent bundles T ∗H
endowed with a magnetic symplectic form is further developed in [30]. Here, we
are dealing with a product T ∗H ×P , for which no such theory can be found in the
current literature.

5.1.2. Infinitesimal Equivariance of the Momentum Map. Whereas the canonical
momentum map Jcan is equivariant, the same does not necessarily hold for the
Bg-potential. To measure non-equivariance, we introduce a one-cocycle σ : H →
L(h, C(H×P )) by defining first a family of functions Γη,g (where η ∈ h and g ∈ H):

Γη,g(h, p) = −〈φ(gh, gp), η〉+
〈
Ad∗gφ(h, p), η

〉
,

for all (h, p) ∈ H × P , and then putting σ(g) · η = Γη,g. This definition follows the
usual introduction of cocycles for momentum maps; see for instance [15, 31].

The one-cocycle σ induces a two-cocycle Σ : h× h → C∞(H × P ) given by

Σ(ξ, η) = Teση(ξ),
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where ση : H → C∞(H × P ) is defined by ση(g) = σ(g) · η. It is not hard to verify
that Σ is explicitly given by

Σ(ξ, η) = −〈φ, [ξ, η]〉+ B(ξH×P , ηH×P ). (61)

5.1.3. The Poisson Structure on h∗×P . The canonical Poisson structure on T ∗H×
P associated to the symplectic structure (57) gives rise to a Poisson structure on
the quotient space h∗ × P , which we denote by {·, ·}int.

The explicit form of this Poisson structure is derived in Appendix B. Before
quoting this result, we first introduce an operation ? : h× h → C∞(H ×P ) defined
by

ξ ? η :=
{
φξ|P , φη|P

}
P

,

where {·, ·}P is the Poisson structure associated to ωP , and an operation C : h ×
C∞(P ) → C∞(H × P ) by putting

ξ C F := {φξ|P , F}P .

Using these two operations, the reduced Poisson structure is given in the following
theorem. Note the interaction term due to curvature and the last two terms which
are due to the coupling of the Lie group H with the symplectic manifold P .

Theorem 5.1. The reduced Poisson structure on h∗ × P is given by

{f, k}int =
δf

δµ
?

δk

δµ
− {f|P , k|P }P −B

((
δf

δµ

)
H×P

,

(
δk

δµ

)
H×P

)

− δf

δµ
C k +

δk

δµ
C f, (62)

for functions f = f(µ, x) and k = k(µ, x) on h∗ × P .

5.1.4. Shifting Away the Interaction Terms. The reduced Poisson structure {·, ·}int

described in theorem 5.1 is not canonical, i.e. it is not the sum of the Lie-Poisson
structure on h∗ and the canonical Poisson structure on R2N , but rather contains a
number of interaction terms. However, using the Bg-potential φ, we can define
a shift map Ŝ from h∗ × R2N to itself, taking {·, ·}int into the canonical Poisson
structure. The price we have to pay for getting rid of interaction terms is the
introduction of the non-equivariance cocycle Σ of φ, as in the following definition.

Definition 5.2. The natural Poisson structure on h∗ × P is given by

{f, k}Σ = {f|h∗ , k|h∗}l.p − {f|P , k|P }P − Σ
(

δf

δµ
,
δk

δµ

)
(63)

for functions f = f(µ, x) and k = k(µ, x) on h∗ × P .

The main result of this section is then given in the following theorem. It relates
the Poisson structure with interaction terms with the natural one (possibly with a
cocycle). The former will turn out the BMR Poisson structure, while the latter is
nothing but the SMBK structure. The cocycle will encode the effects of nonzero
circulation on the rigid body.

Theorem 5.3. The map Ŝ : h∗ × P → h∗ × P given by

Ŝ(µ, x) = (µ− φ(e, x), x). (64)
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is a Poisson isomorphism taking the Poisson structure {·, ·}int with interaction terms
into the Poisson structure {·, ·}Σ:

{f ◦ Ŝ, k ◦ Ŝ}int = {f, k}Σ ◦ Ŝ. (65)

5.1.5. The Symplectic Leaves. The shifted Poisson structure {·, ·}Σ is the sum of the
Lie-Poisson structure on h∗, the canonical Poisson structure on P , and a cocycle
term. If Σ = 0, this allows us to write down a convenient expression for the
symplectic leaves in h∗ × P :

Proposition 6. For Σ = 0, the symplectic leaves in h∗×P of the Poisson structure
{·, ·}Σ=0 are of the form Oµ × P , where Oµ is the co-adjoint orbit of an element
µ ∈ h∗.

The proof follows that of proposition 10.3.3 in [30] and relies on the fact that
the symplectic leaves are precisely the symplectic reduced spaces. But since the
Poisson structure on the reduced space is simply the sum of the Lie-Poisson and
the canonical Poisson structure, the reduced space at µ is Oµ ×P , as above. When
Σ 6= 0, we expect the co-adjoint orbit Oµ to be replaced by an orbit OΣ

µ of a suitable
affine action of H on h∗.

5.2. The fluid-solid system. Now we are ready to specialize the theory in the
previous sections to the case of a solid interacting dynamically with point vortices.
Recall that our goal is to find the Hamiltonian structure for this problem using
reduction techniques and to use the shifting map developed in the preceding section
to relate the two Hamiltonian structures in the literature.

Recall that the reduced phase space for the solid-fluid system is T ∗ SE(2)×R2N .
Now, the group SE(2) acts on SE(2)×R2N by the diagonal left action, denoted by
Φ and given in inertial coordinates by

Φh(g;x1, . . . ,xN ) = (hg;hx1, . . . , hxN ).

Hence, SE(2) acts from the left on T ∗ SE(2) × R2N using the cotangent lift in the
first factor, and thus, this action leaves the Hamiltonian (47) invariant.

This system is of the form T ∗H × P , as discussed in the previous section, where
H = SE(2) and P = R2N . We now apply the results of that section to divide out
the SE(2)-symmetry and obtain a system on se(2)∗ × R2N .

This reduction is similar to the passage from inertial to body coordinates for the
rigid body (see for example [31]). To see this, notice that the space se(2)∗×R2N is
obtained from T ∗ SE(2) × R2N by dividing out by the diagonal SE(2)-action: the
quotient mapping is given by

ρ : T ∗ SE(2)× R2N → se(2)∗ × R2N ,

defined as
ρ(g, αg;x1, . . . ,xN ) = (T ∗Lg(αg);X1, . . . ,XN ),

where, if g = (R,x0), then xi and Xi are related by

xi = RXi + x0. (66)

In other words, if xi describes the location of the ith vortex in inertial coordinates,
then Xi is its location in a frame fixed to the body.

Proposition 7. The magnetic symplectic structure (56) is invariant under the
action of SE(2) on T ∗ SE(2)× R2N described above.
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Proof. Recall the expression (56) for ΩB, where βµ is given by (53). It is a standard
result (see for instance [11]) that the canonical symplectic form Ωcan on T ∗ SE(2)
is invariant under the left action of SE(2), and a similar result holds for the form∑N

i=1 Γiµ(vi,wi). The only thing that remains to be shown is that Θ is SE(2)-
invariant, but this follows from the SE(2)-invariance of Ψ, which is itself a conse-
quence of proposition 1 and the fact that Φ and Ψ are harmonic conjugates.

5.2.1. The Momentum Map. Recall from section 5.1 that the momentum map J
for the action of SE(2) on T ∗ SE(2) × R2N is the difference of two separate parts:
J = Jcan − φ, where Jcan is the momentum map (59) defined by the canonical
symplectic form on T ∗ SE(2), while φ is the so-called Bg-potential (60).

The momentum map J is a map from T ∗ SE(2) × R2N to se(2)∗. It will be
convenient to identify T ∗ SE(2) with SE(2) × se(2)∗ through left translations, and
to use the fact that se(2)∗ is isomorphic to R3, so that J is a collection of three
functions (Jx, Jy, JΩ) on R2N ×SE(2)×se(2)∗. A typical element of that space will
be denoted as (x1, . . . ,xN ; g,Π), where g = (R,x0) and Π = (Πx,Πy,Πω), but for
the sake of clarity we will usually suppress the argument of J .

Proposition 8. The momentum map J associated to the SE(2)-symmmetry repre-
sents the spatial momentum of the solid-fluid system, and is given by J = (Jx, Jy, JΩ),
where (

Jx

Jy

)
= R

(
Πx

Πy

)
+

N∑
i=1

Γixi × e3 −
N∑

i=1

Γi

(
Ψx(xi)
Ψy(xi)

)
+ Γx0 × e3 (67)

JΩ = ΠΩ −
N∑

i=1

Γi

2
(x2

i + y2
i )−

N∑
i=1

ΓiΨω(xi),

where Γ =
∑N

i=1 Γi is the total vortex strength.

Proof. The canonical part Jcan can be obtained through a standard calculation for
cotangent lifted actions (see [31]). The result is(

Jx

Jy

)
= R

(
Πx

Πy

)
and JΩ = ΠΩ,

for g = (R,x0) and Π = (Πx,Πy,ΠΩ).
For the Bg-potential, note that the form βµ is the sum of a “pure vortex” part

(i.e. not involving the fluid) and a part involving the stream functions (i.e. the
form Θ).

The Bg-potential corresponding to the pure-vortex part is given by(
φx

vortex

φy
vortex

)
= −

N∑
i=1

xi × e3 and φΩ
vortex =

N∑
i=1

Γi

2
(x2

i + y2
i ).

These expressions coincide up to sign with those in [2], which is a consequence of
the fact that our symplectic structure is the negative of theirs.

Finally, for the stream function term dΘ in βµ, observe that Θ is an SE(2)-
invariant one-form on SE(2) × R2N . The Bg-potential associated to dΘ is hence
given by (see the remark following Theorem 7.1.1 in [30])

〈φstream, ξ〉 = iξSE(2)×R2N
Θ for all ξ ∈ se(2).
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Explicitly,(
φx

stream

φy
stream

)
=

(∑N
i=1 ΓiΨx(g,xi)∑N
i=1 ΓiΨy(g,xi)

)
and φΩ

stream =
N∑

i=1

ΓiΨω(g,xi),

where the elementary stream functions are given by (55).
The full momentum map J is then the sum of these three contributions:

J = Jcan − φvortex − φstream,

and this is precisely (67).

The expression for the momentum map can be rewritten by introducing the
momentum map of the solid-fluid system in body coordinates [41, 17]:(

JX

JY

)
=
(

Πx

Πy

)
+

N∑
i=1

ΓiXi × e3 −
N∑

i=1

Γi

(
ΨX(Xi)
ΨY (Xi)

)

JΩ = ΠΩ −
N∑

i=1

Γi

2
‖Xi‖2 −

N∑
i=1

ΓiΨΩ(Xi),

where ΨX ,ΨY ,ΨΩ are the expression for the elementary stream functions in body
coordinates. By using the relation (66) between inertial and body coordinates, one
can show that the spatial and body momentum are related by(

Jx

Jy

)
= R

(
JX

JY

)
+ Γx0 × e3 and Jω = JΩ + (x0 × Jx) · e3, (68)

where Jx = (Jx, Jy)T . Note that the spatial momentum is a function on SE(2) ×
R2N , whereas the body momentum is a function on R2N , and that the SE(2)-
dependence of J is determined by the relation above. In particular, if we evaluate
J at the identity, putting R = 1 and x0 = 0 in (68), then we obtain just the body
momentum:

J(e,x) = J(X).

5.2.2. Non-equivariance of the Momentum Map. Using the definition (61), the non-
equivariance two-cocycle of the momentum map is a map Σ : se(2) × se(2) →
C∞(SE(2)×R2N ). To compute Σ, we recall the basis {eΩ, ex, ey} of se(2) given in
(6) and let {e∗Ω, e∗x, e∗y} be the corresponding dual basis of se(2)∗.

Theorem 5.4. The non-equivariance two-cocycle Σ of the momentum map J is
given by

Σ = −Γe∗x ∧ e∗y,

where Γ =
∑N

i=1 Γi is the total vortex strength.

Proof. In order to use (61) to compute Σ, we need the infinitesimal generators
corresponding to the basis elements ex, ey and eΩ. The infinitesimal generator of
any element ξ ∈ se(2), evaluated at (e;x1, . . . ,xN ), will be denoted by ξ̃ and is
given by

ξ̃ := ξSE(2)×R2N (e;x1, . . . ,xN ) = (ξ; ξR2N (x1), . . . , ξR2N (xN )),

where ξR2N is the infinitesimal generator of ξ for the fundamental action of SE(2)
on R2. Explicitly,

(eΩ)R2 = −y
∂

∂x
+ x

∂

∂y
, (ex)R2 =

∂

∂x
, and (ey)R2 =

∂

∂y
.
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Evaluating βµ on these vectors, we obtain

βµ(ẽx, ẽy) = −Γ,

βµ(ẽx, ẽΩ) =
N∑

i=1

Γi

(
−Xi +

1
‖Xi‖2

)
,

βµ(ẽy, ẽΩ) =
N∑

i=1

Γi

(
−Yi +

1
‖Yi‖2

)
.

Remarkably, when calculating Σ, the last two expressions are cancelled entirely
by opposite contributions from the remaining terms:

Σ(ex, eΩ) = −〈φ, [ex, eΩ]〉+ βµ(ẽx, ẽΩ)

= φy + βµ(ẽx, ẽΩ)
= 0,

and similar for Σ(ey, eΩ). The only non-zero term is given by Σ(ex, ey) = −Γ.

In its current form, Σ has the same form as the non-equivariance two-cocycle for
the N -vortex problem in an unbounded fluid (see [2]).

5.3. Poisson structures. Now we come to the conclusion of this paper. Using the
theory developed in the previous sections, we derive an explicit form for the reduced
Poisson bracket on se(2)∗ × R2N associated to the magnetic symplectic form (56):
this will turn out to be the BMR bracket. In the terminology of section 5.1, this
is the bracket {·, ·}int with interaction terms. Secondly, we then use the shift map
Ŝ (see (64)) associated to the momentum map (67) to obtain the Poisson structure
{·, ·}Σ where the interaction terms are absent, at the expense of a non-equivariance
cocycle. When made more explicit, the latter bracket turns out to be the SMBK
bracket.

5.3.1. The BMR Poisson Structure. The bracket obtained by Poisson reduction of
the magnetic symplectic structure on T ∗ SE(2)×R2N was described in theorem 5.1.
The explicit computation of this Poisson bracket boils down to substituting the
explicit expresssion (67) for the momentum map into the Poisson bracket {·, ·} in
theorem 5.1. After a long, but straightforward calculation, one obtains the BMR
bracket (36). As an illustration, we compute one bracket element, leaving the others
to the reader.

We consider the functions F = Πx and G = Πy on se(2)∗ × R2N and compute
{Πx,Πy}int. Note that, considered as elements of se(2),

δF

δµ
= ex and

δG

δµ
= ey.

Computing (36) term by term, we have first of all that

Πx ? Πy = {φx, φy}vortex = −
N∑

i=1

Γi
‖Xi‖4 −R4

‖Xi‖4 ,

where {·, ·}vortex is the vortex bracket defined in (34). Secondly,

βµ(ẽx, ẽy) = −Γ,
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while the other terms are zero. Finally, it follows that

{Πx,Πy}int = Γ−
N∑

i=1

Γi
‖Xi‖4 −R4

‖Xi‖4 ,

which is precisely the first bracket element of (36). The computation of the other
elements is similar.

5.3.2. The SMBK Poisson Structure. By subjecting the BMR Poisson structure to
the shift map Ŝ, we can eliminate the interaction terms from the Poisson structure,
at the expense of introducing a non-equivariance cocycle. As shown in Theorem B.3,
the result is a Poisson structure consisting of the sum of the Lie-Poisson and the
vortex Poisson structure on the individual factors, together with a cocycle term:

{F,G}Σ = {F|se(2)∗ , G|se(2)∗}l.p + {F|R2N , G|R2N }vortex − Σ
(

δF

δµ
,
δF

δµ

)
.

The last term is explicitly given by

Σ
(

δF

δµ
,
δF

δµ

)
= −Γ

(
∂F

∂Πx

∂G

∂Πy
− ∂G

∂Πx

∂F

∂Πy

)
.

In the case where the total vorticity Γ is zero, this term vanishes and the bracket
reduces to the SMBK bracket (B.3).

5.3.3. The Symplectic Leaves. In the case where the two-cocycle Σ vanishes, or
equivalently, when the total circulation Γ is zero, a convenient expression for the
symplectic leaves in se(2)∗ × R2N can be read off from proposition 6.

Recall that the symplectic leaves for the Lie-Poisson structure in se(2)∗ ∼= R3

come in two varieties. One class consists of cylinders whose axis is the Ω-axis:

O = {(Πx,Πy,Ω) : Π2
x + Π2

y = constant},

while the other class consists of the individual points (0, 0,Ω) of the Ω-axis. The
symplectic leaves in se(2)∗ × R2N are then the product of the symplectic leaves of
the Lie-Poisson structure with R2N .

6. Conclusions and future work. In this paper, we have used reduction theory
to give a systematic derivation of the equations of motion for a circular rigid body in
a perfect fluid with point vortices. Among other things, we have derived the Poisson
structures that govern this problem, and related them to the Poisson structures in
the literature. However, the usefulness of our geometric method is not limited
to merely reproducing the correct Poisson structure for one specific problem: by
uncovering fundamental geometric structures such as the Neumann connection, we
have shed new light on the precise nature of the solid-fluid interaction. Moreover,
even though a number of simplifying assumptions were made in the beginning, it
is expected that the present method can be extended without too much trouble to
cover more general cases. Below, we have listed a number of open questions for
which our method seems especially suited.
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6.1. Non-zero circulation. As we have seen in this paper, if the total strength of
the point vortices is non-zero, a cocycle term appears in the equations of motion. In
a previous paper (see [47]), we studied the case of a rigid body moving in a potential
flow with circulation and found that the circulation manifests itself through the
curvature of the Neumann connection.

From a physical point of view, both phenomena are very similar. Indeed, having a
non-zero circulation around the rigid body amounts to placing a vortex at the center
of the rigid body. Hence, mathematically speaking, there appears to be a duality
between the description in terms of cocycles and in terms of curvatures. Having
a better mathematical understanding of this duality would prove to be useful for
other physical theories as well, for example the dynamics of spin glasses in [9]. In
addition, it would be interesting to investigate the link between this theory with
the work of Gay-Balmaz and Ratiu [14].

6.2. Arbitrary body shapes. The pioneering work of SMBK was extended to
cover the case of rigid bodies with arbitrary shapes by Shashikanth [41], and studied
further by Kanso and Oskouei [17] with a view towards stability and bio-locomotion.

By using methods of complex analysis, the methods of the present paper can
easily be extended to cover the case of rigid bodies of arbitrary shape as well: any
closed curve enclosing a simply-connected area of the plane can be mapped to the
unit circle by a suitable conformal transformation and by pulling back the geometric
objects in this paper along that map, arbitrary body shapes can be treated. For
the case of multiple rigid bodies, one can use the conformal techniques in [10].

Moreover, the objects defined in this paper transform naturally under conformal
transformations. The magnetic form βµ, for instance, will be mapped into a form
β′µ which has the same appearance as before, but with now ΨA the elementary
stream functions for a body of that shape. As is known from the classical fluid dy-
namics literature, these stream functions also transform naturally under conformal
mappings.

6.3. Three-dimensional bodies. In contrast to calculations using only standard,
ad-hoc methods, our setup naturally generalizes to the case of three-dimensional
flows interacting with rigid bodies. Shashikanth et al. [44] consider a rigid body
interacting with vortex rings. The space of point vortices R2N then is replaced
by the space M of N vortex rings, and much of the analysis in the 2D case carries
through, at the expense of significant computational work.

From a geometric point of view, however, M plays a similar role as R2N : both are
coadjoint orbits of the group Diffvol of volume-preserving diffeomorphisms. Hence,
M is equipped with a natural symplectic structure (see [5]), which is of importance
for the calculation of βµ in this case. Also, the definition of the Neumann con-
nection remains valid in three dimensions. We therefore expect that the geometric
approach can be extended without too much difficulty to this case, and will lead to
a conceptually much clearer picture.

6.4. Elastic bodies. From a physical perspective, our attention goes out fore-
most to the case of elastic, three-dimensional bodies interacting with a perfect fluid.
However, in contrast with the issues outlined before, this will most likely involve
a number of significant new developments. One problem is the definition of the
Neumann connection, which explicitly relies on the decomposition (21) of the ve-
locity potential into translational and rotational parts. Secondly, the clarity of the
reduced equations of motion in this paper ultimately hinges on the concise form for
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the curvature of the Neumann connection. It remains to be seen whether similar
expressions exist for deformable bodies. A special case that deserves close attention
is the motion of an elastic body in potential flow rather than arbitrary vortical flow.
This would entail doing reduction at zero momentum, which would obviate the need
to compute the curvature of the Neumann connection.

In general, we expect the literature on swimmers in Stokes flow (see [22] and the
references therein) to be useful. Furthermore, we mention here the work of Galper
and Miloh [13], who study the motion of a deformable body in an ideal fluid. It
would be interesting, as a starting point for further investigations, to identify the
geometric structures in their work.

6.5. Routhian reduction by stages and Dirac reduction. It has been known
for some time that the Lagrangian analogue of symplectic reduction is Routhian
reduction [32]. By starting from the Lagrangian of an incompressible fluid to-
gether with the rigid body Lagrangian, one could perform reduction on the La-
grangian side using this theory. The advantage would be that Routhian reduction
preserves the variational nature of the system. However, as the reduction proce-
dure for the fluid-solid system consists of two succesive reductions, one would need
a theory of Routhian reduction by stages. Developing such a theory would be
of considerable interest.

A related approach consists of using Dirac structures. Through the Hamilton-
Pontryagin principle, Dirac structures offer a way of incorporating both the La-
grangian and Hamiltonian formalisms making them ideally suited for systems with
degenerate Lagrangians; see [49]. Since the point vortex Lagrangian is degenerate,
Dirac structures are likely to be useful here.
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Appendix A. Further properties of the Neumann connection. Even though
the Neumann connection is used in many problems from geometric fluid dynamics
or differential geometry, a systematic presentation of its properties seems to be
lacking. In this appendix we prove some basic theorems related to the Neumann
connection.

A.1. Fiber bundles and connections. Recall that if π : Q → Q/G is a principal
fibre bundle with structure group G, then a connection one-form on Q is a g-valued
one-form A on Q satisfying the following two properties:

1. A is G-equivariant : σ∗gA = Adg−1 ◦ A, where σg : Q → Q denotes the
G-action, and Ad is the adjoint action on g.
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2. Let ξQ be the infinitesimal generator associated to an element ξ ∈ g, i.e.

ξQ(q) =
d

dt
σ(exp tξ, q)

∣∣∣
t=0

, where σ(g, q) = σg(q).

Then A(ξQ) = ξ.
At each point q ∈ Q, the connection A induces complementary projection oper-

ators PV , PH : TQ → TQ, given by

PV (vq) = [A(vq)]Q(q), and PH = 1− PV ,

and referred to as the vertical and horizontal projection operators, respectively.
More information on principal fiber bundles and connections can be found in [21].

A.1.1. The Curvature. The curvature of a principal fiber bundle connection A is
the g-valued two-form B defined as follows. Let uq, vq ∈ TqQ and consider vector
fields Xu and Xv extending uq and vq, i.e. such that Xu(q) = uq and Xv(q) = vq.
Denote the horizontal part of Xu as XH

u := PH ◦Xu, and similar for XH
v . Then, B

can be conveniently expressed as

Bq(uq, vq) = −Aq([XH
u , Y H

v ]). (69)

With this definition, B is G-equivariant and vanishes on vertical vector fields:

σ∗gB = Adg−1B and iξQ
B = 0, (70)

for all g ∈ G and ξ ∈ g.

A.2. The Neumann connection.

A.2.1. The Connection One-form. We recall from section 3 that the connection
one-form for the Neumann connection is given by

A(ϕ,g)(ġ, ϕ̇) = ϕ∗uv,

where uv is the divergence-free part in the Helmholtz-Hodge decomposition (19) of
the Eulerian velocity u; see (39).

Before showing that this prescription indeed yields a well-defined connection
form, we note that each divergence-free vector field u ∈ Xvol defines a vertical
vector field on Q, denoted by uQ and given by

uQ(g, ϕ) = (0, Tϕ ◦ u).

The vector field uQ is the infinitesimal generator associated to u under the action
of Diffvol on Q.

Proposition 9. The one-form A defined in (39) is a connection one-form. In other
words,

1. A is Diffvol-equivariant: for all φ ∈ Diffvol and (g, ġ;ϕ, ϕ̇) ∈ TQ,

A(g,ϕ◦φ)(ġ, ϕ̇ ◦ φ) = φ∗A(g,ϕ)(ġ, ϕ̇);

2. If u is an element of Xvol with associated fundamental vector field uQ, then
A(uQ) = u.

Proof. To prove equivariance, note that the Eulerian velocity associated to ϕ̇ ◦ φ is
equal to that associated to ϕ̇:

u′ = (ϕ̇ ◦ φ) ◦ (ϕ ◦ φ)−1 = ϕ̇ ◦ ϕ−1 = u.

Hence,

A(g,ϕ◦φ)(ġ, ϕ̇ ◦ φ) = (ϕ ◦ φ)∗uv = φ∗(ϕ∗uv) = φ∗A(g,ϕ)(ġ, ϕ̇).
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To prove the second property, note that the push-forward X = ϕ∗u is divergence-
free and tangent to the boundary of F since u is divergence-free and tangent to ∂F0

and ϕ is volume-preserving.
Evaluating the connection one-form on u therefore gives

A(g,ϕ)(uQ(g, ϕ)) = ϕ∗X = u,

which concludes the proof that A is a well-defined connection one-form.

A.2.2. The Horizontal Lift. The horizontal lift operator associates to each (g, ϕ) a
linear map h(g,ϕ) : Tg SE(2) → T(g,ϕ)Q with the following properties:

1. The composition T(g,ϕ)π ◦ h(g,ϕ) is the identity in Tg SE(2);
2. The image of h(g,ϕ) consists of horizontal vectors: A(g,ϕ) ◦ h(g,ϕ) = 0.
For the Neumann connection, the horizontal lift is given by

h(g,ϕ)(ġ) = (ġ,∇Φ ◦ ϕ) ,

where Φ is the solution of the Neumann problem (20) associated to (g, ġ); i.e.
(ω,v) = ġg−1. It is easy to show that h satisfies both properties of the horizontal
lift, and hence that h is indeed the horizontal lift of the Neumann connection as we
claimed in section 3.

A.2.3. The Neumann Connection as a Mechanical Connection. When given a group-
invariant metric on the total space of a principal fiber bundle, the mechanical
connection is defined by declaring its horizontal subspaces to be orthogonal to the
vertical bundle. The terminology stems from the fact that the underlying metric is
usually the kinetic-energy metric of a mechanical system.

Since there exists a natural metric (18) on Q, it should therefore come as no sur-
prise that the Neumann connection can also be viewed as a mechanical connection.

The horizontal subspace of the Neumann connection at an element (g, ϕ) ∈ Q
is given by the kernel of A(g,ϕ). Explicitly, a tangent vector (g, ġ;ϕ, ϕ̇) is in the
kernel of A(g,ϕ) if and only if ϕ̇ = ∇Φ ◦ ϕ, where Φ is the solution of the Neumann
problem (20) associated to (g, ġ).

On the other hand, the vertical subspace at (g, ϕ) is generated by elements of the
form uQ(g, ϕ). Verifying that the Neumann connection is indeed the mechanical
connection now boils down to checking that the vertical and horizontal subspaces
are orthogonal with respect to the metric (18).

Let (g, ġ;ϕ,∇Φ ◦ ϕ) and uQ(g, ϕ) be horizontal and vertical tangent vectors,
respectively. Then we have

〈〈(g, ġ;ϕ,∇Φ ◦ ϕ),uQ(g, ϕ)〉〉 = 〈∇Φ ◦ ϕ, Tϕ ◦ u〉Emb

=
∫
F0

(∇Φ ◦ ϕ) · (Tϕ ◦ u) dx0 =
∫
F
∇Φ · (ϕ∗u) η = 0,

where the last equality follows from the L2-orthogonality between gradient vector
fields and divergence-free vector fields tangent to the boundary of F .

Appendix B. Proofs of the Theorems in section 5.1. In this technical ap-
pendix, we provide proofs for the theorems in section 5.1 regarding the reduced
Poisson structures with or without interaction terms. We do so by using the diffeo-
morphism of T ∗H ×P with H × h∗×P given by left translation. More specifically,
we introduce a diffeomorphism Λ : T ∗H × P → H × h∗ × P by

Λ(g, αg; p) = (g, T ∗Lg(αg), g−1 · p),
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and a diffeomorphism λ : H × P → H × P by λ(g, p) = (g, g−1 · p) such that the
following diagram commutes:

T ∗H × P
Λ //

πH

��

H × h∗ × P

pr

��
H × P

λ
// H × P

Here, πH : T ∗H × P → H × P is given by πH(g, αg; p) = (g, p), while pr simply
forgets the second factor: pr(g, µ, x) = (g, x).

The advantage of this construction is that under Λ the action (58) becomes left
translation on the first factor. That is, if Λ(αg; p) = (g, µ, x), then Λ(h · (αg; p)) =
(hg, µ, x). The fact that the diagonal action (58) reduces in this way greatly sim-
plifies Poisson reduction.

B.1. Symplectic forms in body coordinates. We start by deriving in lemma B.1
an explicit expression for the push-forward Λ∗Ω of the symplectic form. We then
define a natural shift map S from H × h∗ × P to itself, given by

S(g, µ, x) = (g, µ− φ(e, x), x),

where φ : H×P → h∗ is the Bg-potential associated to the action of H on H×P , i.e.
the solution of (60). This map takes the symplectic structure (72) with interaction
terms of lemma B.1 into one where the interaction terms are absent. The explicit
form of the resulting symplectic form is derived in lemma B.2.

For future reference, we will refer to the push-forwards Λ∗ωcan and Λ∗Ω as ωbody

and Ωbody, respectively:

ωbody = Λ∗ωcan and Ωbody = Λ∗Ω. (71)

Lemma B.1. The push-forward Λ∗Ω of the symplectic form Ω to H × h∗ × P is
given by

(Λ∗Ω)(g, µ, x)((g · ξ, ρ, vx), (g · η, σ, wx)) =

− 〈ρ, η〉+ 〈σ, ξ〉+ 〈µ, [ξ, η]〉
−B(e, x)(ξH×P (e, x), ηH×P (e, x))−B(e, x)((0, vx), (0, wx))

− 〈dφξ(e, x), (0, wx)〉+ 〈dφη(e, x), (0, vx)〉 , (72)

where (g, µ, x) is an element of H×h∗×P and (g ·ξ, ρ, vx), (g ·η, σ, wx) are elements
of T(g,µ,x)(H × h∗ × P ) ∼= TgH × h∗ × TxP .

Proof. Notice first that Λ∗Ω = Λ∗ωcan− pr∗(λ∗B). The first term is the expression
for the canonical symplectic form in body coordinates calculated by R. Cushman
(quoted in [1], proposition 4.4.1) and is given by

(Λ∗ωcan)(g, µ, x)((g · ξ, ρ, vx), (g · η, σ, wx)) = −〈ρ, η〉+ 〈σ, ξ〉+ 〈µ, [ξ, η]〉 .
For the second term, we have

(λ∗B)(g, x)((g · ξ, vx), (g · η, wx))

= B(λ−1(g, x))(Tλ−1(g · ξ, vx), Tλ−1(g · η, wx))

= B(g, g · x)
(
(g · ξ, TΨg(vx) + T Ψ̂x(g · ξ)), (g · η, TΨg(wx) + T Ψ̂x(g · η))

)
,

where Ψg : P → P denotes the action of H on P : Ψg(x) = g ·x, and Ψ̂x : G → P is
the map defined by Ψ̂x(g) = g ·x. Note that T Ψ̂x(g · ξ) = g · ξP (p). Taking this into
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account, as well as the H-invariance of B, allows us to rewrite the above expression
as

B(e, x)
(
(ξ, vx + ξP (x)), (η, wx + ηP (x))

)
= B(e, x)((0, vx), (0, wx)) + B(e, x)((ξ, ξP (x)), (η, ηP (x)))

+ B(e, x)((0, vx), (η, ηP (x))) + B(e, x)((ξ, ξP (x)), (0, wx)).

The third term can be rewritten as

B(e, x)((0, vx), (η, ηP (x))) = −dφη(e, x)(0, vx),

and similar for the last term. Putting everything together, we obtain (72).

Lemma B.2. The push-forward S∗Ωbody on H×h∗×P is again a symplectic form,
given by

(S∗Ωbody)(g, µ, x)((g · ξ, ρ, vx), (g · η, σ, wx)) =

ωbody(g, µ)((g · ξ, ρ), (g · η, σ))− ωP (vx, wx)− Σ(ξ, η). (73)

Here, the arguments of S∗Ωbody have the same meaning as in lemma B.1, and Σ is
the non-equivariance two-cocycle (61) of φ.

Proof. The pushforward of ωbody under S is given by

(S∗ωbody)(g, µ, x)((g · ξ, ρ, vx), (g · η, σ, wx)) =

ωbody(g, µ′, x)((g · ξ, ρ′, vx), (g · η, σ′, wx)) =

− 〈ρ′, η〉+ 〈σ′, ξ〉+ 〈µ′, [ξ, η]〉 , (74)

where

µ′ = µ + φ(e, p), ρ′ = ρ + Tφ(0, vx) and σ′ = σ + Tφ(0, wx).

Substituting this into (74), we get

〈ρ′, η〉 = 〈ρ, η〉+ 〈Tφ(0, vx), η〉
= 〈ρ, η〉+ dφη(0, vx),

and similar for 〈σ′, ξ〉. For the term involving µ′, we obtain

〈µ′, [ξ, η]〉 = 〈µ, [ξ, η]〉+ 〈φ(e, x), [ξ, η]〉
= 〈µ, [ξ, η]〉 − Σ(ξ, η) + B(e, x)(ξH×P (e, x), ηH×P (e, x)),

where we have used the definition of Σ. Hence,

(S∗ωbody)(g, µ, x)((g · ξ, ρ, vx), (g · η, σ, wx)) =

ωbody(g, µ, x)((g · ξ, ρ, vx), (g · η, σ, wx))− Σ(ξ, η)

− dφη(0, vx) + dφξ(0, wx) + B(e, x)(ξH×P (e, x), ηH×P (e, x)).

The last three terms are just the interaction terms. Hence, by substituting this
expression into the expression for S∗Ωbody, these terms cancel out, leaving (73).

In other words, by applying S we effectively get rid of the interaction terms in
the symplectic form.
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B.2. The reduced Poisson structures.

B.2.1. The Poisson Structure on H × h∗ × P . Now that we have established the
different symplectic structures on H × h∗ ×P , we can also find an explicit form for
the associated Poisson structures.

Proposition 10. The Poisson structure on H×h∗×P associated to the symplectic
structure (72) is given by

{F,K}0
int = −δF

δµ
?

δK

δµ
− {F|P ,K|P }P + B

((
δF

δµ

)
H×P

,

(
δK

δµ

)
H×P

)

− δF

δµ
C K +

δK

δµ
C F (75)

+
〈
dgF, g · δK

δµ

〉
−
〈
dgK, g · δF

δµ

〉
for functions F = F (g, µ, x) and K = K(g, µ, x) on H × h∗ × P .

Proof. The Poisson bracket of two functions F,K on H × h∗ × P is defined as
{F,K}0

int = XK(F ), where XK is the Hamiltonian vector field associated to K,
defined by iXK

Ωbody = dK.
Let (g, µ, x) be an element of H×h∗×P and write XK(g, µ, x) ∈ TgG×h∗×TxP

as XK(g, µ, x) = (g · ξ, ρ, vx), where ξ ∈ h, ρ ∈ h∗, and vx ∈ TxP . Note also that
dK is of the form

dK =
(
dgK,

δK

δµ
,dxK

)
,

where dxK denotes the differential of K(g, µ, x) keeping g and µ fixed, and similar
for dgK.

A long but straightforward calculation shows that

ξ =
δK

δµ
and vx = −(dxK + dxφξ)], (76)

where the map ] : T ∗P → TP is given by ](αx) = wx iff iwxωP = αx, while

ρ = −iwB ◦ Teσ̂(e,x) − T ∗Lg(dgK), where w = ξH×P (e, x) + vx,

and vx and ξ are given by (76). Here, σ̂(g,x) : H → H × P is the map defined by
σ̂(g,x)(h) = (hg, h · x), for all g, h ∈ H and x ∈ P . Note that

Teσ̂(g,x)(ξ) = ξH×P (g, x).

The Poisson bracket is then given by

{F,K}0
int = XK(F ) = 〈g · ξ,dgF 〉+ 〈vx,dxF 〉+

〈
ρ,

δF

δµ

〉
.

The first term is equal to

〈g · ξ,dgF 〉 =
〈

δK

δµ
, T ∗Lg(dgF )

〉
,

while for the second term, we have

〈vx,dxF 〉 = −
〈
(dxK + dxφξ)],dxF

〉
= −{F|P ,K|P }P +

δK

δµ
C F,
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using the definition of the induced Poisson structure in terms of the original sym-
plectic structure: {F|P ,K|P }P = (dxK)] · dxF . Writing out the last term requires
a little more work. Denote

η :=
δF

δµ
;

the last term then becomes〈
ρ,

δF

δµ

〉
= −iwB (ηH×P )− 〈T ∗Lg(dgK), η〉 .

The first term on the right-hand side can be rewritten as

−iwB (ηH×P ) = dφη(w)

= dφη(ξH×P ) + dφη(vx)

= B(ηH×P , ξH×P )− dxφη · (dxK)] − dxφη · (dxφξ)]

= B(ηH×P , ξH×P )− η C K − η ? ξ.

Putting everything together, we obtain (75).

B.2.2. The Reduced Poisson Structure with Interaction Terms. Having established
the explicit form for the interaction Poisson structure {·, ·}0

int on H × h∗ × P , we
can at last show that the reduced Poisson structure on h∗×P is given by expression
(62) in theorem 5.1.

Proof of theorem 5.1. According to the Poisson reduction theorem (see [37]), the
reduced Poisson structure {·, ·}int on h∗ × P is defined by the prescription

{f, h}int ◦ π = {f ◦ π, h ◦ π}0
int,

where {·, ·}0
int is the Poisson structure on H × h∗ × P described in proposition 10

and π : H × h∗ × P → h∗ × P forgets the first factor: π(g, µ, x) = (µ, x).
In other words, the reduced Poisson structure is the original Poisson structure

(75) evaluated on functions f = f(µ, x) and k = k(µ, x) which do not depend on
g ∈ H. This yields the expression (62) for {·, ·}int.

B.2.3. Shifting Away the Interaction Terms. The symplectic form Ωbody and the
Poisson structure {·, ·}int are characterized by the presence of interaction terms.
By this, we mean that the symplectic structure on H × h∗ × P is not simply the
sum of the symplectic form ωbody on H × h∗ and the symplectic form ωP on P , but
contains terms involving the curvature B and the Bg-potentials φξ, and similar for
{·, ·}int. As shown in lemma B.2, one can remove the interaction terms from Ωbody

at the expense of introducing a cocycle Σ by using the shift map Ŝ. The resulting
symplectic structure then induces a reduced Poisson structure on h∗ × P , which is
just the natural Poisson structure of definition 5.2.

Theorem B.3. The symplectic form S∗Ωbody on H × h∗ × P is H-invariant. The
Poisson structure on h∗ × P induced by S∗Ωbody is the natural Poisson structure
{·, ·}Σ of definition 5.2.

Proof. This is an immediate consequence of the fact that the Lie-Poisson structure
{·, ·}l.p is induced by ωbody, while {·, ·}P is induced by ωP .

The map S shifts away the interacting terms in the symplectic form, and induces
a map on the Lie algebra level. It is easy to see that this map is just the map
Ŝ defined in (64). Using this observation, the proof of theorem 5.3 now follows
immediately.



264 JORIS VANKERSCHAVER, EVA KANSO AND JERROLD MARSDEN

Proof of theorem 5.3. The map Ŝ is the quotient space map induced by S, which
is a symplectic map taking the symplectic form (72) with interaction terms into
the symplectic form (73) without interaction terms. Hence, the induced map is a
Poisson map with respect to the induced Poisson structures, i.e. (65) holds.
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