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This article is concerned with the theory of quasivelocities for non-holonomic
systems. The equations of non-holonomic mechanics are derived using the
Lagrange–d’Alembert principle written in an arbitrary configuration-dependent
frame. The article also shows how quasivelocities may be used in the formulation
of non-holonomic systems with symmetry. In particular, the use of quasivelocities
in the analysis of symmetry that leads to unusual momentum conservation
laws is investigated, as is the applications of these conservation laws and
discrete symmetries to the qualitative analysis of non-holonomic dynamics.
The relationship between asymptotic dynamics and discrete symmetries of the
system is also elucidated.
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1. Introduction

Quasivelocities are the velocities of a mechanical system expressed relative to
a configuration-dependent frame. The mathematical underpinnings of quasivelocities in
texts such as [1] and [2] have not been as developed as is desirable, although their
usefulness was clearly demonstrated. The additional clarity provided by the present article
should expand the scope of applications and uses of this important concept.

The goal of this article is to develop the use of quasivelocities in the dynamics of
non-holonomic systems with symmetry. Key forms of the equations of dynamics including
the Hamel equations and the Euler–Lagrange–Poincaré equations are derived, and their
relationship to quasivelocities is spelled out. The equations of motion for non-holonomic
systems are obtained, and conditions under which an appropriate choice of frame evokes
otherwise hidden momentum conservation laws are found. The resulting formalism is
utilized in the analysis of the dynamics of some instructive non-holonomic systems
including the Chaplygin sleigh and the sleigh coupled to an oscillator.

Said from a slightly different perspective, quasivelocities are the components of
a mechanical system’s velocity relative to a set of vector fields that span the fibres
of the tangent bundle of the configuration space. These vector fields need not be
associated with (local) configuration coordinates, so in fact, this article does not

*Corresponding author. Email: dvzenkov@ncsu.edu

ISSN 1468–9367 print/ISSN 1468–9375 online

� 2009 Taylor & Francis

DOI: 10.1080/14689360802609344

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
l
i
f
o
r
n
i
a
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
]
 
A
t
:
 
0
4
:
1
0
 
2
8
 
A
p
r
i
l
 
2
0
0
9



mention ‘quasicoordinates’, a vacuous concept that has led to some confusion in the
literature. A good example of quasivelocities is the set of components of the body angular
velocity of a rigid body rotating about a fixed point.

One of the reasons for using quasivelocities is that the Euler–Lagrange equations
written in generalized coordinates are not always effective for analyzing the dynamics of
a mechanical system of interest. For example, it is difficult to study the motion of the Euler
top if the Euler–Lagrange equations (either intrinsically or in generalized coordinates) are
used to represent the dynamics. On the other hand, the use of the angular velocity
components relative to a body frame pioneered by Euler [3] results in a much simpler
representation of dynamics. Euler’s approach was further developed by Lagrange [4] for
reasonably general Lagrangians on the rotation group and by Poincaré [5] for arbitrary
Lie groups (see [6] for details and history). Other examples include the use of velocity and
angular velocity components relative to a moving frame in the study of dynamics of a rigid
body moving on a surface as discussed in [7,8].

Quasivelocities used in [4] and [5] are associated with a group action. Hamel [9]
obtained the equations of motion in terms of quasivelocities that were unrelated to a group
action on the configuration space. The Hamel equations include both the Euler–Lagrange
and Euler–Poincaré equations (e.g. for the rigid body) as special cases.

This article derives the Hamel equations from a variational point of view; that is, it
develops the form of the principle of critical action that is equivalent to the Hamel
equations. It is then shown how the quasivelocity approach is useful in the treatment
of non-holonomic systems with symmetry. In particular, the selection of suitable
quasivelocies appropriate to the presence of discrete symmetries is developed along with
the application to the qualitative analysis of dynamics.

Non-holonomic systems with symmetry are studied in [10,33] and improved in related
references, such as [11]. According to these papers, symmetry and constraints define
certain sub-bundles of the tangent bundle of the configuration manifold. As will be shown,
it is beneficial to select frames that respect this sub-bundle structure, that is, frames
obtained by concatenation of the bases of these sub-bundles. These frames elucidate the
momentum equations and conservation laws in the system.

The dynamics of a non-holonomic system with symmetry on the sub-bundle whose
fibres are tangent to the group orbits is governed by the momentum equation, an equation
that was introduced in [10]. As shown in [12], the momentum equation is important in the
energy-based analysis of stability of relative equilibria. In the absence of external
dissipation these relative equilibria are often orbitally asymptotically stable in certain
directions in the phase system. Related work on this subject includes [13–15]. Additional
background and references may be found in [16].

The definition of non-holonomic momentum and the derivation of the momentum
equation in [10] relies on the formalism that uses spatial frames. This article utilizes the
flexibility of Hamel equations and gives a derivation of the momentum equation in a body
frame. In a sense, this is a more natural and straightforward approach since the spatial
momentum is almost never conserved in the non-holonomic setting.

The structure of the momentum equation is then used to find conditions under which
one has frames that reveal otherwise hidden momentum conservation laws. In some
instances the construction of such a frame is algorithmic, although it often leads to
implicitly defined frames. In other instances a frame that depends on the group variables in
a non-trivial way is necessary for uncovering momentum conservation laws. An example
of this latter case is the unbalanced Chaplygin sleigh.
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It is not unusual to have points in the configuration space where the fields that define

these frames become linearly dependent. This feature is studied and its utilization in the

qualitative analysis of a system’s dynamics is discussed.
This article is organized as follows. In Section 2 we review the Hamel equations.

In Section 3 non-holonomic systems are briefly discussed and their dynamics is written in

the form of constrained Hamel equations. In Section 4 the equations of motion of systems

with symmetry are derived using quasivelocities. This derivation differs from that in [10]

and in [11] in interesting ways and illustrates the influence of symmetry on the structure of

qusivelocities. The non-holonomic momentum conservation and the corresponding frame

selection are discussed. In Section 5 non-holonomic systems on Lie groups and their

measure-preserving properties are treated. Examples are given in Section 6, where, in

particular, momentum conservation in the unbalanced Chaplygin sleigh and integrability

of the coupled sleigh-oscillator system are established. Finally, the asymptotic behaviour

of momentum conservation laws is studied.

2. Lagrangian mechanics

In this section, we review the equations of motion for holonomic systems from the

Lagrangian viewpoint.

2.1. Equations of motion

2.1.1. The Euler–Lagrange equations

A Lagrangian mechanical system is specified by a smooth manifold Q called the

configuration space and a function L :TQ!R called the Lagrangian. In many cases, the

Lagrangian is the kinetic minus potential energy of the system with the kinetic energy

defined by a Riemannian metric on the configuration manifold and the potential energy

being a smooth function on Q. If necessary, non-conservative forces can be introduced

(e.g. gyroscopic forces that are represented by terms in L that are linear in the velocity),

but this is not discussed in this article.
In local coordinates q¼ (q1, . . . , qn) on the configuration space Q we write L ¼ Lðq, _qÞ.

The dynamics is given by the Euler–Lagrange equations:

d

dt

@L

@ _qi
¼
@L

@qi
, i ¼ 1, . . . , n: ð2:1Þ

These equations were originally derived by Lagrange in 1788 by requiring that simple

force balance F¼ma be covariant, i.e. expressible in arbitrary generalized coordinates.

A variational derivation of the Euler–Lagrange equations, namely Hamilton’s principle

(also called the principle of critical action), came later in the work of Hamilton in 1834/35.

For more details see [6,16].

2.1.2. The Hamel equations

In this paragraph we introduce the Hamel’s equations. In Section 2.3 we derive these

equations from a global variational principle, generalizing the reduced principle of critical

action for systems with symmetry.
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In many cases the Lagrangian and the equations of motion have a simpler structure

when written using so-called non-commuting variables. An example of such a system is

the rigid body. Below we develop a general approach that allows one to obtain the

Euler–Lagrange equations in such non-commuting variables.
Let q¼ (q1, . . . , qn) be local coordinates on the configuration space Q and ui2TQ,

i¼ 1, . . . , n, be smooth independent local vector fields defined in the same coordinate

neighbourhood.1 The components of ui relative to the basis @/@q
jwill be denoted j

i; that is,

uiðqÞ ¼  
j
iðqÞ

@

@q j
, i, j ¼ 1, . . . , n, ð2:2Þ

where a sum on j is understood.
Let v¼ (v1, . . . , vn)2R

n be the components of the velocity vector _q 2 TQ relative to the

basis u1, . . . , un, i.e.

_q ¼ viuiðqÞ; ð2:3Þ

then

lðq, vÞ :¼ Lðq, viuiðqÞÞ ð2:4Þ

is the Lagrangian of the system written in the local coordinates (q, v) on the tangent bundle

TQ. The coordinates (q, v) are the Lagrangian analogues of non-canonical variables in

Hamiltonian dynamics.
Given two elements v, w2R

n, define the antisymmetric bracket operation

[�, �]q :R
n
�R

n
!R

n by

½v,w�q ¼ ½v
iui,w

juj�ðqÞ

where [�, �] is the Jacobi–Lie bracket of vector fields on Q. Therefore, each tangent space

TqQ is isomorphic to the Lie algebra Vq :¼ (Rn, [�, �]q). Thus, if the fields u1, . . . , un are

independent in U�Q, the tangent bundle TU is diffeomorphic to a Lie algebra bundle

over U.
The dual of [�, �]q is, by definition, the operation ½� , ���q : Vq � V�q ! V�q given by

h½v,���q,wi � had
�
v�,wi :¼ h�, ½v,w�qi:

Here ad* is the dual of the usual ad operator in a Lie algebra; note that in general this

operation need not be associated with a Lie group.
Let u¼ (u1, . . . , un)2TQ� � � � �TQ. For a function f :Q!R, define u½ f � 2 V�q by

u[f ]¼ (u1[f ], . . . , un[ f ]), where ui½ f � ¼  
j
i@jf is the usual directional derivative of f along the

vector field ui. Viewing ui as vector fields on TQ whose fibre components equal 0 (that is,

taking the vertical lift of these vector fields), one defines the directional derivatives ui[l]

for a function l :TQ!R by the formula

ui½l � ¼  
j
i

@l

@qj
:

The evolution of the variables (q, v) is governed by the Hamel equations

d

dt

@l

@v
¼ v,

@l

@v

� ��
q

þ u½l� � ad�v
@l

@v
þ u½l� ð2:5Þ

190 A.M. Bloch et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
l
i
f
o
r
n
i
a
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
]
 
A
t
:
 
0
4
:
1
0
 
2
8
 
A
p
r
i
l
 
2
0
0
9



coupled with (2.3). In (2.5), u[l]¼ (u1[l], . . . , un[l]). If ui¼ @/@q
i, Equations (2.5) become

the Euler–Lagrange Equations (2.1). Below, we will derive Equations (2.5) using the

principle of critical action. A different approach that makes connections with algebroids is

studied in [17].

2.2. The virtual displacement principle

A virtual displacement at q2Q is an element of the tangent space TqQ denoted

�q¼ (�q1, . . . , �qn). The principle of virtual displacements states that the equations of

motion are determined by the requirement

d

dt

@L

@ _qi
�
@L

@qi

� �
�qi ¼ 0: ð2:6Þ

The quantities �q1, . . . , �qn for a Lagrangian system are independent. Therefore,

Equation (2.6) is equivalent to the Euler–Lagrange Equations (2.1)
We now rewrite the virtual displacement principle using the frame ui, i¼ 1, . . . , n. From

Equations (2.2)–(2.4) we obtain

ui½l� ¼ uiðLðq
k, v j k

j ÞÞ ¼
@L

@q j
 j
i þ

@L

@ _qk
@ðvl k

l Þ

@q j
 j
i,

@l

@vk
¼

@

@vk
Lðqi, vj i

jÞ ¼
@L

@ _qi
 i
k:

Denote the components of the virtual displacement �q relative to the basis

u1(q), . . . , un(q) by wi and define the quantities cmil ðqÞ by

½ui, ul� ¼ cmil um: ð2:7Þ

One finds that

cmil ¼ ð 
�1Þ

m
k

@ k
l

@q j
 j

i �
@ k

i

@q j
 j
l

� �
:

Thus, from (2.7),

½v1, v2�q
� �m

¼ cmij v
i
1v

j
2 and ½v,���q

� 	
j
¼ cmij v

i�m:

The principle of virtual displacements becomes

d

dt

@L

@ _q j
�
@L

@q j

� �
�q j ¼

d

dt

@L

@ _q j

� �
 j

i �
@L

@q j
 j
i

� �
wi

¼
d

dt

@L

@ _q j
 j
i

� �
�
@L

@ _q j

d j
i

dt
� ui½l� þ

@L

@ _qk
@ðvl k

l Þ

@q j
 j
i

 !
wi

¼
d

dt

@l

@vi
� ui½l� þ

@L

@ _qk
@ k

l

@qj
 j
i �

@ k
i

@qj
 j
l

� �
vl

� �
wi

¼
d

dt

@l

@vi
� ui½l� þ

@l

@vm
ð �1Þmk

@ k
l

@qj
 j
i �

@ k
i

@qj
 j
l

� �
vl

� �
wi

¼
d

dt

@l

@vi
� ui½l� þ

@l

@vm
cmil v

l

� �
wi:
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Since the components wi of �q are independent, we conclude that the equations of

motion are

d

dt

@l

@vi
¼ cmji

@l

@vm
vj þ ui½l�, ð2:8Þ

which is the coordinate form of Equations (2.5).
Equations (2.8) were introduced in [9] (see also [1] for details and some history).

2.3. The principle of critical action

Let � : [a, b]!Q be a smooth curve in the configuration space. A variation of the curve

�(t) is a smooth map � : [a, b]� [�", "]!Q that satisfies the condition �(t, 0)¼ �(t).
This variation defines the vector field

��ðtÞ ¼
@�ðt, sÞ

@s






s¼0

along the curve �(t).

Theorem 2.1: Let L :TQ!R be a Lagrangian and l :TQ!R be its representation in local

coordinates (q, v). Then, the following statements are equivalent:

(i) The curve q(t), where a	 t	 b, is a critical point of the action functional

ðb
a

Lðq, _qÞ dt ð2:9Þ

on the space of curves �(Q; qa, qb) in Q connecting qa to qb on the interval [a, b],

where we choose variations of the curve q(t) that satisfy �q(a)¼ �q(b)¼ 0.
(ii) The curve q(t) satisfies the Euler–Lagrange equations

d

dt

@L

@ _q
¼
@L

@q
:

(iii) The curve (q(t), v(t)) is a critical point of the functional

ðb
a

lðq, vÞ dt ð2:10Þ

with respect to variations �v, induced by the variations �q¼wiui(q), and given by

�v ¼ _wþ ½v,w�q:

(iv) The curve (q(t), v(t)) satisfies the Hamel equations

d

dt

@l

@v
¼ v,

@l

@v

� ��
q

þ u½l�

coupled with the equations _q ¼ huðqÞ, vi � viuiðqÞ:

For the early development of these equations see [5] and [9].
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Proof: The equivalence of (i) and (ii) is proved by computing the variational derivative of

the action functional (2.9),

�

ðb
a

Lðq, _qÞ dt ¼

ðb
a

@L

@q
�qþ

@L

@ _q
� _q

� �
dt ¼

ðb
a

@L

@q
�

d

dt

@L

@ _q

� �
�q dt:

Denote the components of �q(t) relative to the basis u1(q(t)), . . . , un(q(t)) by

w(t)¼ (w1(t), . . . ,wn(t)), that is,

�qðtÞ ¼ hu,wi � wiðtÞuiðqðtÞÞ:

To prove the equivalence of (i) and (iii), we first compute the quantities � _q and d(�q)/dt:

� _q ¼ � viðtÞuiðqðtÞÞ
� �

¼ �viðtÞuiðqðtÞÞ þ viðtÞ
@ui
@qj
�qj,

dð�qÞ

dt
¼

d

dt
wiðtÞuiðqðtÞÞ
� �

¼ _wiðtÞuiðqðtÞÞ þ wiðtÞ
@ui
@qj

_qj:

Since � _q ¼ dð�qÞ=dt, we obtain

�viðtÞuiðqðtÞÞ ¼ _wiðtÞuiðqðtÞÞ þ vkðtÞwlðtÞ
@ul
@qj
 j
k �

@uk
@qj

 j
l

� �
ðqðtÞÞ

¼ _wiðtÞ þ ciklðqðtÞÞv
kðtÞwlðtÞ

� �
uiðqðtÞÞ;

that is,2

�vðtÞ ¼ _wðtÞ þ ½vðtÞ,wðtÞ�qðtÞ:

To prove the equivalence of (iii) and (iv), we use the above formula and compute the

variational derivative of the functional (2.10):

�

ðb
a

lðq, vÞ dt ¼

ðb
a

@l

@q
�qþ

@l

@v
�v

� �
dt

¼

ðb
a

@l

@q
wiui þ

@l

@v
_wþ ½v,w�qðtÞ
� �� �

dt

¼

ðb
a

u½l�wþ
@l

@v
½v,w�qðtÞ �

d

dt

@l

@v

� �
w

� �
dt

¼

ðb
a

u½l� þ v,
@l

@v

� ��
qðtÞ

�
d

dt

@l

@v

 !
w dt:

This variational derivative vanishes if and only if the Hamel equations are satisfied. œ

2.4. Systems with symmetry

Assume now that a Lie group G acts on the configuration space Q. This action is denoted

q � gq¼�g(q). Throughout this article we make the assumption that the action of G on Q

is free and proper. The quotient space Q/G, whose points are the group orbits, is called the

shape space. It is known that if the group action is free and proper then shape space is

a smooth manifold and the projection map � :Q!Q/G is a smooth surjective map with
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a surjective derivative Tq� at each point. The configuration space thus has the structure of
a principal fiber bundle. We denote the bundle coordinates (r, g) where r is a local
coordinate in the base, or shape space Q/G, and g is a group coordinate. Such a local
trivialization is characterized by the fact that in such coordinates the group does not act on
the factor r but acts on the group coordinate by left translations. Thus, locally in the base,
the space Q is isomorphic to the product Q/G�G and in this local trivialization, the map �
becomes the projection onto the first factor.

Let h denote the Lie algebra of the group G. When the configuration space is
a principal fiber bundle, some of the vector fields u1, . . . , un can be defined globally, as
shown below.

Definition 2.2: We say that the Lagrangian is G-invariant if L is invariant under the
induced action of G on TQ.

2.5. The Euler–Lagrange–Poincaré equations

Assuming that the vectors ea(r), a¼ 1, . . . , k, form a basis of h ¼ TeG for each r2Q/G, we
define the frame e(r) by

eðrÞ ¼ ðe1ðrÞ, . . . , ekðrÞÞ 2 h
k: ð2:11Þ

Let As be a principal connection on the bundle � :Q!Q/G (see [16] for a review of
principal connections). Below, we will discuss how the structure of the Lagrangian can be
used for selecting a connection. Tangent vectors in a local trivialization Q¼Q/G�G at
the point (r, g) are denoted (v,w). We write the action of As on this vector as As(v,w).
Using this notation, we can write the connection form in the local trivialization as
As(v,w)¼Adg(wbþAv), where wb is the left translation of w to the identity and, since we
are working locally in shape space, we can regard A as a h-valued one-form on Q/G.
The connection components Aa

� are defined by writing Av ¼ Aa
�v
�ea.

Define the vector fields ui by

u� ¼
@

@r�
�A

a
�ðrÞLg�eaðrÞ, u�þa ¼ Lg�eaðrÞ, � ¼ 1, . . . , �, a ¼ 1, . . . , k: ð2:12Þ

Thus the fields u� span the horizontal space and the remaining fields u�þa span the vertical
space (tangent space to the group orbit) at q2Q. The components of the velocity vector _q
relative to basis (2.12) are

_r � and �a ¼ �a þAa
� _r �,

where the �a are Lie algebra variables. The Lie algebra element �¼ �aea(r) and the group
element g are related by the equation �¼Lg�1 *g_� g�1g_.

Theorem 2.3: The equations of motion of a system with a G-invariant Lagrangian
L :TQ!R are

d

dt

@l

@_r
�
@l

@r
¼ �

@l

@�
, i_rB þ hi_r�,Ai � h�, i_rAi þ hE,�i

 �
, ð2:13Þ

d

dt

@l

@�
¼ ad��

@l

@�
þ

@l

@�
, i_rE

 �
, ð2:14Þ

_g ¼ gð�� i_rAÞ: ð2:15Þ

194 A.M. Bloch et al.
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Equations (2.13) and (2.14) are independent of the group element g and govern the

reduced dynamics. The reconstruction equation (2.15) is used to obtain the group

dynamics. The terms that appear on the right-hand sides of Equations (2.13)–(2.15) are

defined below.

Proof: Using Equation (2.11), we see that

de ¼ h�ðrÞ, ei, ð2:16Þ

where � is a h
 h
�-valued one-form on Q/G. In coordinates we have

@ea
@r�
¼ �ba�ðrÞebðrÞ:

Let Cc
ab be the structure constants of the Lie algebra h and let Bs be the curvature of the

connection As; that is Bs(X,Y)¼ dAs(hor X, hor Y), where X and Y are two vector fields.

The curvature can be written in the local representation as

Bsððv1,w1Þ, ðv2,w2ÞÞ ¼ AdgðBðv1, v2ÞÞ: ð2:17Þ

The coordinate representation of B is Bðv1, v2Þ ¼ B
a
��v

�
1v
�
2 , with B

a
�� given by the formula

B
c
�� ¼

@Ac
�

@r�
�
@Ac

�

@r�
� C c

abA
a
�A

b
�:

Define the form E by

E ¼ � � adA, ð2:18Þ

which, in coordinates, reads Ec�b ¼ �
c
b� � Cc

abA
a
�. Straightforward calculation shows that

½u�, u�� ¼ B
c
�� þ �

c
b�A

b
� � �

c
b�A

b
�

� 	
u�þc, ð2:19Þ

½u�, u�þb� ¼ E
c
�bu�þc, ð2:20Þ

½u�þa, u�þb� ¼ Cc
abu�þc: ð2:21Þ

Thus, from the definitions of B, E and formulae (2.19)–(2.21) one obtains

½ð_r1, 0Þ, ð_r2, 0Þ�q ¼ Bð_r1, _r2Þ � hi_r1�, i_r2Ai þ hi_r2�, i_r1Ai,

½ð_r, 0Þ, ð0,�Þ�q ¼ hi_rE,�i, ½ð0,�1Þ, ð0,�2Þ�q ¼ ad�1
�2: ð2:22Þ

Using (2.22) and evaluating ½� , ���q, Equations (2.5) become (2.13)–(2.15). œ

Now assume that the G-invariant Lagrangian equals the kinetic minus potential energy

of the system and that the kinetic energy is given by a Riemannian metric hh�, �ii on the

configuration space Q.

Definition 2.4: The mechanical connection Amech is, by definition, the connection on Q

regarded as a bundle over shape space Q/G that is defined by declaring its horizontal space

at a point q2Q to be the subspace that is the orthogonal complement to the tangent space

to the group orbit through q2Q using the kinetic energy metric. The locked inertia tensor

IðqÞ : h! h
� is defined by hI(q)�, 	i¼ hh�Q(q), 	Q(q)ii, where �Q is the infinitesimal

generator of � 2 h and where hh�, �ii is the kinetic energy inner product.

Dynamical Systems 195

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
l
i
f
o
r
n
i
a
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
]
 
A
t
:
 
0
4
:
1
0
 
2
8
 
A
p
r
i
l
 
2
0
0
9



Given a system with symmetry, one may use the mechanical connection to set up

Equations (2.13) and (2.14). This choice of connection changes the Lie algebra variables

from � to the local version of the locked angular velocity �, which has the physical

interpretation of the body angular velocity. This choice also is such that the kinetic energy

metric becomes block-diagonal, that is,

hh _q, _qii ¼ hh_r, _rii þ hh�,�ii:

When the momentum p¼ @�l is used as an independent variable, Equations (2.13)

and (2.14) are called the Euler–Lagrange–Poincaré equations. In coordinates, these

equations read:

d

dt

@l

@_r�
�
@l

@r�
¼ � B

c
�� þ

�
�cb�A

b
� � �

c
b�A

b
�

�� 	
pc _r� � Ec�bpc�

b,

_pb ¼ Cc
abpc�

a þ E
c
�bpc _r�

(see also [11]).

Example: The generalized rigid body. If the configuration space is a Lie group G and the

Lagrangian is G-invariant, Equations (2.13) and (2.14) become

d

dt

@l

@�
¼ ad��

@l

@�
: ð2:23Þ

These equations are called the Euler–Poincaré equations (see [3]3 and [4], Vol. II, for the

case G¼ SO(3), and [5] for the general case); they describe the momentum dynamics of

a generalized rigid body. For more on the history of these equations see [6].

3. Non-holonomic systems

3.1. The Lagrange–d’Alembert principle

Assume now that there are velocity constraints imposed on the system. We confine our

attention to constraints that are homogeneous in the velocity. Accordingly, we consider

a configuration space Q and a distribution D on Q that describes these constraints. Recall

that a distribution D is a collection of linear subspaces of the tangent spaces of Q; we

denote these spaces by Dq�TqQ, one for each q2Q. A curve q(t)2Q will be said to satisfy

the constraints if _qðtÞ 2 DqðtÞ for all t. This distribution will, in general, be non-integrable;

i.e. the constraints are, in general, non-holonomic.4

Consider a Lagrangian L :TQ!R. In coordinates qi, i¼ 1, . . . , n, on Q with induced

coordinates ðqi, _qiÞ for the tangent bundle, we write Lðqi, _qiÞ. The equations of motion are

given by the following Lagrange–d’Alembert principle.

Definition 3.1: The Lagrange–d’Alembert equations of motion for the system are those

determined by

�

ðb
a

Lðq, _qÞ dt ¼ 0,

where we choose variations �q(t) of the curve q(t) that satisfy �q(a)¼ �q(b)¼ 0 and

�q(t)2Dq(t) for each t where a	 t	 b.
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This principle is supplemented by the condition that the curve q(t) itself satisfies the

constraints. Note that we take the variation before imposing the constraints; that is,

we do not impose the constraints on the family of curves defining the variation. This is

well-known to be important to obtain the correct mechanical equations (see [10] for

a discussion and references).
One way to write the dynamics is to make use of the Euler–Lagrange equations

with multipliers. This is done below in coordinates.
The distribution D can be locally written as

D ¼ f _q 2 TQ jAs
i ðqÞ _q

i ¼ 0, s ¼ 1, . . . , pg:

The constrained variations �q(t)2TQ satisfy the equations

As
i ðqÞ�q

i ¼ 0, s ¼ 1, . . . , p: ð3:1Þ

Using (2.6) and (3.1), one writes the equations of motion with Lagrange multipliers as

d

dt

@L

@ _qi
¼
@L

@qi
þ 
sA

s
i ðqÞ, As

i ðqÞ _q
i ¼ 0:

3.2. The constrained Hamel equations

Given a non-holonomic system, that is, a Lagrangian L :TQ!R and constraint

distribution D, select the independent (local) vector fields

ui : Q! TQ, i ¼ 1, . . . , n,

such that Dq¼ span{u1(q), . . . , un�p(q)}. Each _q 2 TQ can be uniquely written as

_q ¼ huðqÞ, vDi þ huðqÞ, vUi, where huðqÞ, vDi 2 Dq, ð3:2Þ

i.e., hu(q), vDi is the component of _q along Dq. Similarly, each a2T*Q can be uniquely

decomposed as

a ¼ haD, u
�ðqÞi þ haU , u

�ðqÞi,

where haD, u*(q)i is the component of a along the dual of Dq, and where

u*(q)2T*Q� � � � �T*Q denotes the dual frame of u(q). Using (3.2), the constraints read

v ¼ vD or vU ¼ 0:

This implies

�v ¼ �vD or �vU ¼ 0: ð3:3Þ

Using the principle of critical action and (3.3) proves the following theorem.

Theorem 3.2: The dynamics of a non-holonomic system is represented by the constrained

Hamel equations�
d

dt

@l

@v
�

�
vD,

@l

@v

��
q

� u½l�

�
D

¼ 0, vU ¼ 0, _q ¼ huðqÞ, vDi: ð3:4Þ
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In coordinate notation, equations in (3.4) read as follows:

d

dt

@l

@vi
¼ cmji

@l

@vm
vj þ ui½l�, _q ¼ viuiðqÞ, i, j ¼ 1, . . . , n� p:

3.3. The Hamel equations with Lagrange multipliers

Assuming that the distribution D is locally written as

Dq ¼ fv 2 R
n
j hasðqÞ, vi ¼ asi ðqÞv

i ¼ 0, s ¼ 1, . . . , pg,

and taking into account that variations are written as �q(t)¼hw(t), u(q(t))i, we obtain

hAðqðtÞÞ, �qðtÞi ¼ haðqðtÞÞ,wðtÞi: ð3:5Þ

In the above, aðqÞ ¼ ða1ðqÞ, . . . , apðqÞÞ 2 T�qQ� � � � � T�qQ. Equation (3.5) implies that

the constrained variations of the curve v(t)2R
n are given by

�vðtÞ ¼ _wðtÞ þ ½vðtÞ,wðtÞ�qðtÞ with haðqðtÞÞ,wðtÞi ¼ 0:

Therefore,

�

ðb
a

lðq, vÞ dt ¼

ðb
a

u½l� þ v,
@l

@v

� ��
q

�
d

dt

@l

@v
þ 
sa

s

 !
wdt,

which implies

d

dt

@l

@v
�

�
vD,

@l

@v

��
q

� u½l� ¼ 
sa
s, haðqÞ, vi ¼ 0, _q ¼ huðqÞ, vi: ð3:6Þ

If the fields u1(q), . . . , un�p(q) span the subspace Dq, Equations (3.6) are equivalent to

(3.4). We will see in Section 6 that Equations (3.6) are useful when studying the dynamics

of the spatial momentum.
Below we evaluate the Lagrange multipliers for systems whose Lagrangian L :TQ!R

equals the kinetic minus potential energy, and the kinetic energy is given by a Riemannian

metric on Q:

Lðq, _qÞ ¼
1

2
hh _q, _qii �UðqÞ:

Let Gq : TqQ! T�qQ be the kinetic energy metric; that is, hh _q, _qii ¼ hGqv, vi. Let

� ¼ @l=@v ¼ Gqv 2 T�qQ be the conjugate momentum. The constraints in the momentum

representation are given by

haðqÞ,G�1q �i ¼ h�, bðqÞi ¼ 0,

where bðqÞ ¼ G�1q aðqÞ 2 TqQ. Using (3.6), we get

_� ¼ ½vD,���q þ u½l� þ 
sa
s: ð3:7Þ
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Let 
¼ (
1, . . . , 
p). Taking the time derivative of h�, b(q)i¼ 0 and replacing _� with the

right-hand side of (3.7), we obtain�
�, _bðqÞ

�
þ
�
½vD,���q þ u½l�, bðqÞ

�
þ 
haðqÞ, bðqÞi ¼ 0,

which implies


 ¼ �
��
�, _bðqÞ

�
þ
�
½vD,���q þ u½l�, bðqÞ

��
� haðqÞ, bðqÞi�1

¼ �

�
@l

@v
, _bðqÞ

�
þ

�
vD,

@l

@v

��
q

þ u½l�, bðqÞ

��
� haðqÞ, bðqÞi�1: ð3:8Þ

4. Dynamics of non-holonomic systems with symmetry

4.1. Reduced dynamics

Assume that a Lie group G acts freely and properly on the configuration space Q and that

the Lagrangian L and constraint distribution D are invariant with respect to the induced

action of G on TQ.
Although it is not needed for everything that we will be doing, the examples and the

theory are somewhat simplified if we make the following assumption.

4.1.1. Dimension assumption

The constraints and the orbit directions span the entire tangent space to the configuration

space:

Dq þ Tq OrbðqÞ ¼ TqQ:

If this condition is satisfied, we say that the principal case holds.
Let S be the sub-bundle of D whose fibre at q is Sq¼Dq\Tq Orb(q). We assume in this

article that Sq 6¼ {0}.5 The sub-bundle S is invariant with respect to the action of G on TQ

induced by the left action of G on Q. Choose subspaces Uq�Orb(q) such that

Orb(q)¼Sq�Uq and the sub-bundle U is G-invariant. Since the distributions S and U

are left-invariant, there exist subspaces c
S
q and c

U
q of the Lie algebra h such that in

a local trivialization Sq ¼ Lg�c
S
q and Uq ¼ Lg�c

U
q .

Let cS and c
U be the bundles over Q/G whose fibres are the subspaces cSq and c

U
q of the

Lie algebra h. Given � 2 h, we write its components along these subspaces as �S and �U.
Let As be a connection defined in a local trivialization by the formula

As ¼ Adgð� þA_rÞ,

where � 2 h and where A is a h-valued form on Q/G. This form is such that the constraints

in a local trivialization read

�U þ AU _r ¼ 0: ð4:1Þ

That is, the U-component of the form A is defined by the constraints. The S-component of

A is arbitrary at the moment; later on we will see how the structure of the Lagrangian

affects the choice of this component.
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Let r¼ (r1, . . . , r�) be local coordinates in the shape space Q/G, and let e1(r), . . . , ek(r)
be a basis of h ¼ TeG for each r2Q/G such that e1(r), . . . , em(r) span c

S and
emþ1(r), . . . , ek(r) span c

U .
As before, we define the vector fields u1(q), . . . , un(q) by formulae (2.12). Thus, the

fields u�, �¼ 1, . . . , �, span the horizontal space, the fields u�þa, a¼ 1, . . . ,m, span the
fibres of S, and the remaining fields span the fibres of U. The components of the velocity
vector _q relative to these vector fields are _r and � ¼ � þA_r. The constraints in this
representation are �U ¼ 0.

Using the non-holonomic Hamel Equations (3.4) and the G-invariance of the
constraint distribution D, one obtains the reduced non-holonomic equations of motion
from (2.13) and (2.14) by projecting Equation (2.14) onto the fibres of the bundle c�S, and
imposing constraints, i.e. setting �¼�S.

Summarizing, we have the following theorem.

Theorem 4.1: The reduced non-holonomic dynamics is given by the equations

d

dt

@l

@_r
�
@l

@r
¼ �

@l

@�
, i_rB þ hi_r�,Ai � h�, i_rAi þ hE,�

Si

 �
, ð4:2Þ

d

dt

@l

@�

� �
S

¼ ad��S
@l

@�
þ

@l

@�
, i_rE

 �� �
S

: ð4:3Þ

In the above, the Lagrangian l is written as a function of ðr, _r,�Þ, B is the curvature of A
(see (2.17)), and the quantities � and E are defined by Equations (2.16) and (2.18),
respectively. Note that the partial derivatives of l in (4.2) and (4.3) are computed before
setting �¼�S.

Equations (4.2) and (4.3) can be rewritten as

d

dt

@lc
@_r
�
@lc
@r
¼ �

@l

@�
, i_rB þ hi_r�,Ai � h�, i_rAi þ hE,�

Si

 �
,

d

dt

@lc
@�S
¼ ad��S

@l

@�
þ

@l

@�
, i_rE

 �� �
S

,

where lcðr, _r,�SÞ :¼ lðr, _r,�SÞ is the constrained reduced Lagrangian. These equations
follow directly from (4.2) and (4.3) because

@lc
@_r
¼
@l

@_r





�¼�S

,
d

dt

@lc
@_r
¼

d

dt

@l

@_r





�¼�S

,
@lc
@r
¼
@l

@r





�¼�S

,
@lc
@�S
¼

@l

@�S





�¼�S

:

Note that in general

@lc
@�S
6¼
@l

@�





�¼�S

:

4.2. The moving body frame and non-holonomic connection

In the rest of the article, we assume that the Lagrangian equals the kinetic minus potential
energy and that the kinetic energy is given by a Riemannian metric on the configuration
space Q.
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Definition 4.2: Under the dimension assumption and the assumption that the Lagrangian

is of the form kinetic minus potential energies, the non-holonomic connection Anhc is, by

definition, the connection on the principal bundle Q!Q/G whose horizontal space

at q2Q is given by the orthogonal complement to the space Sq¼Dq\Tq Orb(q) within

the space Dq.

Under the assumption that the distribution D is invariant and from the fact that the

group action preserves orthogonality (since it is assumed to preserve the Lagrangian and

hence the kinetic energy metric), it follows that the distribution and the horizontal spaces

transform to themselves under the group action. Therefore, the non-holonomic connection

in a local trivialization is defined by the formula

A
nhc
¼ Adgð� þA_rÞ, ð4:4Þ

where � 2 h and where A is a h-valued one-form on Q/G. Given _q ¼ ð_r, �Þ 2 TqQ, the

vertical and horizontal components of _q in a local trivialization are

ð0, � þA_rÞ and ð_r,�A_rÞ:

Using Definition 4.2, we rewrite � þA_r in (4.4) as

ð�S þ AS _rÞ þ ð�U þ AU _rÞ, �S þ AS _r 2 c
S , �U þ AU _r 2 c

U :

Using the non-holonomic connection, define the body angular velocity � 2 h by the

formula

� ¼ � þA _r:

If the body angular velocity is used, the constraints (4.1) read

�U ¼ 0:

Let the kinetic energy metric in a local trivialization be written as

hh _q, _qii ¼ hGðrÞ _r, _ri þ 2hKðrÞ _r, �i þ hIðrÞ �, �i: ð4:5Þ

The constrained locked inertia tensor IS : cS ! ðcSÞ� is given in a local trivialization by

hISðrÞ�, 	i ¼ hhLg��,Lg�	ii, �, 	 2 c
S :

Similarly, define IUðrÞ : c
U
! ðc

U
Þ
�, ISUðrÞ : c

U
! ðc

S
Þ
�, and IUSðrÞ : c

S
! ðc

U
Þ
� by

hIUðrÞ�, 	i ¼ hhLg��,Lg�	ii, �, 	 2 c
U ,

hISUðrÞ�, 	i ¼ hhLg��,Lg�	ii, � 2 c
U , 	 2 c

S,

hIUSðrÞ�, 	i ¼ hhLg��,Lg�	ii, � 2 c
S, 	 2 c

U ,

respectively.
Definition 4.2 implies that the constrained kinetic energy metric written as a function

of ð_r,�SÞ is block-diagonal, that is, it reads�
GcðrÞ_r, _r

�
þ
�
ISðrÞ�

S ,�S
�
:

Dynamical Systems 201

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
l
i
f
o
r
n
i
a
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
]
 
A
t
:
 
0
4
:
1
0
 
2
8
 
A
p
r
i
l
 
2
0
0
9



Substituting � ¼ �S � A _r in (4.5), one obtains

hGcðrÞ_r, _ri þ 2hKSðrÞ_r,�
Si þ hISðrÞ�

S,�Si � 2hISðrÞA
S _r,�Si � 2hISUðrÞA

U _r,�Si,

and therefore

A
S
¼ I�1S ðrÞKSðrÞ � I

�1
S ðrÞISUðrÞA

U :

In the rest of the article, we follow the following index conventions:

(1) The first batch of indices range from 1 to m corresponding to the symmetry

directions along the constraint space. These indices will be denoted a, b, c, . . . .
(2) The second batch of indices range from mþ 1 to k corresponding to the symmetry

directions not aligned with the constraints. Indices for this range will be denoted

by a0, b0, c0, . . . .
(3) The indices A, B, C, . . . on the Lie algebra h range from 1 to k.
(4) The indices �, �, . . . on the shape variables r range from 1 to �. Thus, � is the

dimension of the shape space Q/G and so �¼ n� k.

The summation convention for all of these indices will be understood.
In the basis @/@r1, . . . , @/@r�, e1(r), . . . , ek(r), with e1(r), . . . , em(r) spanning c

S and

emþ1(r),. . . ek(r) spanning c
U , the components of the non-holonomic connection are

A
a
� ¼ I

ab
S K�b � I

ab
S Iba0A

a0

� and A
a0

� :
6

Note that the I abS need not equal Iab.
One often uses the non-holonomic momentum relative to the body frame p¼ @lc/@�

S

and writes the reduced dynamics as

d

dt

@lc
@_r
�
@lc
@r
¼ �


p,
@I�1S
@r

p

�

�

D
pþ IUSI

�1
S pþ i_r�, i_rB þ hi_r�,Ai � h�, i_rAi þ hE, I

�1
S pi

E
, ð4:6Þ

_p ¼ ad�
I�1
S
p
pþ hp, i_r�i þ i_r�, i_rEh i

h i
S
: ð4:7Þ

Equation (4.7) is called the momentum equation in body representation.
In these equations the reduced Lagrangian is represented as a function of ðr, _r, pÞ,

� is a ðcUÞ�-valued one-form on Q/G given by

� ¼ ðKU � IUSA
S
� IUA

U
Þdr,

and � is a c
S

 ðc

S
Þ
�-valued one-forms on Q/G defined by the formula

p, i_r�
� �

¼ ad�
I�1
S
p
i_r�þ pþ IUSI

�1
S p, i_rE

� �h i
S
:

Remark: The first term in the right-hand side of the shape Equation (4.6) appears for the

following reason. The term 1
2 hIS �S,�Si in the constrained reduced Lagrangian lcðr, _r,�SÞ

produces the term 1
2 h@rIS �S,�Si in the right-hand side of the shape equation. When

p is used instead of �, this term becomes 1
2 h@rIS I

�1
S p, I�1S pi ¼ 1

2 hI
�1
S @rIS I

�1
S p, pi ¼

� 1
2 hp, @rI

�1
S pi. On the other hand, the contribution of the term 1

2 hp, I
�1
S pi in lcðr, _r, pÞ

202 A.M. Bloch et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
l
i
f
o
r
n
i
a
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
]
 
A
t
:
 
0
4
:
1
0
 
2
8
 
A
p
r
i
l
 
2
0
0
9



is 1
2 hp, @rI

�1
S pi. Thus, in order to obtain the correct term, � 1

2 hp, @rI
�1
S pi, one needs to

subtract hp, @rI
�1
S pi from the right-hand side of the shape equation.

Sometimes it is desirable to use a slightly different representation of Equations (4.2),

(4.3) and (4.6), (4.7). Recall that the inertia tensor is an invertible operator I : h! h
�.

Its inverse I �1 maps h� to h, and defines the operators

IS : c�S ! c
S, IU : c�U ! c

U , ISU : c�U ! c
S, IUS : c�S ! c

U ð4:8Þ

by the formulae

I�1� ¼ IS�þ IUS�, IS� 2 c
S, IUS� 2 c

U , � 2 c
�
S,

I�1� ¼ ISU�þ IU�, ISU� 2 c
S , IU� 2 c

U , � 2 c
�
U :

The operators (4.8) are uniquely defined by these formulae since h ¼ c
S
� c
U . Note that

I
DU and IUS normally are not zero operators. However, it is straightforward to see that

IUSIS þ I
UIUS : cS ! c

U

maps every � 2 c
S to 0. Therefore,

ðIUÞ
�1
ðIUSIS þ I

UIUSÞI
�1
S ¼ ðI

UÞ
�1
IUS þ IUSI

�1
S ¼ 0,

and one can replace the terms IUSI
�1
S p with �(IU)�1IUS p.

In coordinate notation, the reduced equations of motion become

d

dt

@lc
@_r�
�
@lc
@r�
¼ �Dc

b�I
bd
S pcpd �K��� _r� _r�

� ðB
c
�� � I

U
c0a0 I

a0cB
c0

�� þDb��I
bc
S Þpc _r�, ð4:9Þ

_pa ¼ ðC
c
ba � Cc0

baI
U
c0a0I

a0cÞIbdS pcpd þD
c
a�pc _r� þDa�� _r� _r�: ð4:10Þ

Here and below lcðr
�, _r�,�aÞ is the constrained Lagrangian, and IbdS and IUa0c0 are the

components of the tensors I�1D and (IU)�1, respectively. We stress that in general

IbdS 6¼ I
bd and IUa0c0 6¼ I a0c0 . The coefficients BC��, D

c
b�, Db�� and K��� are given by the

formulae

B
C
�� ¼

@AC
�

@r�
�
@AC

�

@r�
� CC

BAA
A
�A

B
� þ �

C
A�A

A
� � �

C
A�A

A
� ,

Dc
b� ¼ �ðC

c
Ab � Cc0

AbI
U
c0a0I

a0cÞA
A
� þ Cc0

ab�c0�I
ac
S þ �

c
b� � �

c0

b�I
U
c0a0I

a0c,

Db�� ¼ �c0�ð�
c0

b� � Cc0

AbA
A
� Þ,

K��� ¼ �c0�B
c0

��,

ð4:11Þ

and �Cb� are the components of the form � introduced in (2.16). Equations (4.9) and (4.10)

originated in [10] and [19].
The keys to the qualitative behaviour of this system and stability in particular are the

terms on the right-hand side of the momentum Equation (4.10). One case of interest is

where the matrix Cc
ba � Cc0

baI
U
c0a0 I

a0c is skew. This is discussed in [12]. This again divides

into two cases: the terms quadratic in _r are present or not. There are cases where

these terms vanish and one does not obtain asymptotic stability – for example the
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rolling penny problem. If the terms quadratic in _r are present one often obtains asymptotic

stability, as in the rattleback top.
A key case of interest to us in this article are the Euler–Poincaré–Suslov equations

discussed below where there are no internal or shape degrees of freedom, i.e. no

coordinates r�. We discuss in detail in this case when one does or does not obtain partial

asymptotic stability.
Whether the non-holonomic systems exhibit asymptotic behaviour or not it is striking

that we have the following proposition.

Proposition 4.3: The non-holonomic equations (4.9) and (4.10), in the case that lc is

quadratic in p and _r, are time reversible.

Proof: The equations are verified to be invariant under the discrete Z2 symmetry

ðt!�t, p!�p, _r!�_rÞ,

giving the stated result. œ

Furthermore, in this setting it is easy to check that energy is always preserved. This is

in contrast to the type of asymptotic stability exhibited by, say a harmonic oscillator with

external dissipation (friction), which is not reversible.

4.3. Momentum conservation relative to the body frame

Here we discuss how one can select the basis in Dq\TqOrb(q) in order to observe

momentum conservation in the non-holonomic setting. More details can be found in [20].

Theorem 4.4: For 	ðrÞ 2 c
S, the quantity hp, 	(r)i is a conservation law of the reduced

non-holonomic dynamics (4.6) and (4.7) if

(i) The form � is exact;
(ii) The component of ½ad�

I�1
S
ppþ hi_r�, i_rEi�S along 	(r) equals zero, i.e.,

D�
ad�
I�1
S
p
pþ i_r�, i_rEh i

�
S
, 	ðrÞ

E
¼ 0:

Proof: Taking the flow derivative of hp, 	(r)i, we obtain

d

dt
hp, 	ðrÞi ¼ h _p, 	ðrÞi þ hp, _	i ¼ ad�

I�1
S
p
pþ hp, i_r�i þ i_r�, i_rEh i

h i
S
, 	ðrÞ

D E
þ hp, _	i:

Condition (ii) implies

d

dt
hp, 	ðrÞi ¼

�
hp, i_r�i½ �S , 	ðrÞ

�
þ hp, _	i ¼

�
p, hi_r�, 	i þ _	

�
:

Equation

d	 ¼ �h�, 	i ð4:12Þ

implies that the flow derivative of hp, 	(r)i vanishes. Condition (i) of the theorem ensures

the existence of 	ðrÞ 2 c
S. œ
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Corollary 4.5: Assume that the form � is exact and ½ad�
I�1
S
p
pþ hi_r�, i_rEi�S ¼ 0: Then there

exists a basis 	1(r), . . . , 	m(r) of c
S such that the momentum equation written relative to this

basis becomes

_p ¼ 0:

This basis, if it exists, is often non-trivial even for simple (e.g. commutative) symmetry

groups.

Example: Consider a system whose Lagrangian L :TR
3
!R and constraint are

L ¼
1

2
_r2 þ ð1� b2ðrÞÞð_s1Þ2 þ ð_s2Þ2
� �

� VðrÞ

and

_s2 ¼ bðrÞ_s1,

respectively. This system is R
2-invariant. The group elements are written as s¼ (s1, s2)2R

2.

The potential energy V(r) and the constraint coefficient b(r) are smooth functions of the

shape variable r. The subspace cS of the Lie algebra R
2 for this system is one-dimensional;

it is spanned by

@

@s1
þ bðrÞ

@

@s2
:

The momentum equation for this system is computed to be

_p ¼ bðrÞb0ðrÞp_r:

The right-hand side of the momentum equation satisfies the conditions of Corollary 4.5.
Using (4.12), d	¼�b(r)b0(r)	 dr, which implies

	ðrÞ ¼ e�
1
2b

2ðrÞ @s1 þ bðrÞ@s2ð Þ:

Thus, if one defines the vector fields u1, u2, u32TR
3 by the formulae

u1 ¼
@

@r
, u2 ¼ e�

1
2b

2ðrÞ @

@s1
þ bðrÞ

@

@s2

� �
, u3 ¼

@

@s2
,

non-holonomic momentum conservation is observed.

5. Euler–Poincaré–Suslov equations

An important special case of the reduced non-holonomic equations is the following: The

configuration space is a Lie group G and the system is characterized by a left-invariant

Lagrangian l ¼ 1
2 hI�,�i ¼ 1

2 IAB�A�B, where � ¼ g�1 _g 2 h, IAB are the components of

the inertia tensor I : h 7! h
�, and by the left-invariant constraint

ha,�i ¼ aA�A ¼ 0, ð5:1Þ

where a lies in the dual space h
� and h�, �i denotes the natural pairing between the

Lie algebra and its dual. Multiple constraints may be imposed as well.
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In the absence of constraints the reduced dynamics is governed by the Euler–Poincaré

Equations (2.23). Here we represent these equations as

_p ¼ ad��p, ð5:2Þ

where p ¼ I� 2 h
� is the body momentum. In components, these equations read

_pB ¼ CC
ABI

ADpCpD ¼ CC
ABpC�A: ð5:3Þ

5.1. Measure Preservation

It is of interest that while the unconstrained dynamics on TG preserves the phase volume,

the reduced dynamics (5.2) may fail to be measure–preserving and thus may exhibit

asymptotic behaviour, as was shown by [21]. See [34–39] for the use of invariant measure

in understanding dynamics and integrability of non-Hamiltonian mechanics.

Theorem 5.1: The Euler–Poincaré Equations (5.2) have an integral invariant with positive

C1 density if and only if the group G is unimodular.7

We only outline the proof here, for the complete exposition refer to [21]. Sufficiency

can be seen as follows: A criterion for unimodularity ([21]) is CC
AC ¼ 0 (with the summation

convention). Since the divergence of the right hand side of Equation (5.3) is

CC
ACI

ADpD ¼ 0, the corresponding flow preserves the volume form dp16 � � �6 dpk in h
�.

Recall that the flow of a vector field f is volume–preserving if and only if div f¼ 0.

The necessity is derived from the following theorem of [21]: A flow of a homogeneous vector

field in R
n has an integral invariant with positive C1 density if and only if this flow preserves

the standard volume in R
n.

Now, turning to the case where we have the constraint (5.1) we obtain the Euler–

Poincaré–Suslov equations

_p ¼ ad�� pþ 
a ð5:4Þ

together with the constraint (5.1), where 
 is the Lagrange multiplier. Using (3.8), we

obtain


 ¼ �had�� p, I�1ai=ha, I�1ai ¼ �hp, ad� I
�1ai=ha, I�1ai:

One can then formulate a condition for the existence of an invariant measure of the

Euler–Poincaré–Suslov equations. The following result was proved by [21] for compact

algebras and for arbitrary algebras by [22].

Theorem 5.2: The Euler–Poincaré–Suslov Equations (5.4) have an integral invariant with

positive C1 density if and only if

Kad�
I�1a

aþ T ¼ �a ð5:5Þ

for some � 2R, where K¼ 1/ha, I�1ai and T 2 h
� is defined by hT, �i ¼Tr(ad�).

In coordinates condition (5.5) reads

KCC
ABI

ADaCaD þ CC
BC ¼ �aB: ð5:6Þ

The proof is done by solving for the Lagrange multiplier 
 and computing the divergence

of the right-hand side.
For a unimodular Lie group the quantities

Pk
B¼1 C

B
AB, A¼ 1, . . . , k, always vanish.

In particular if the group is compact or semisimple, then the group is unimodular.
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Further, in the semisimple case we can use the Killing form to identify h
� with h and

condition (5.6) can be written as

½I
�1a, a� ¼ �a, � 2 R:

For a matrix Lie algebra the Killing form is a multiple of the trace and so pairing a with

itself (via the Killing form or multiple of the trace) we have

h½I�1a, a�, ai ¼ h �a, ai

and, since the left-hand side is zero, we conclude that � must be zero. Thus in this case only

constraint vectors a which commute with I�1a allow volume in h
� to be preserved.

This means that a and I�1a must lie in the same maximal commuting subalgebra.

In particular if a is an eigenstate of the inertia tensor, the flow is measure-preserving. In the

case that the maximal commuting subalgebra is one-dimensional this is a necessary

condition. This is the case for groups such as SO(3) (see below). One can introduce several

constraints of this type.
We can thus formulate the following result as a symmetry requirement on the

constraints.

Theorem 5.3: A compact Euler–Poincaré–Suslov system is volume-preserving (and

therefore generically cannot exhibit asymptotic dynamics in the momentum space) if the

constraint vectors a are eigenvectors of the inertia tensor, or the constrained system is Z2

symmetric about all principal axes. If the maximal commuting subalgebra is one-dimensional

this condition is necessary.

In the case when the group is not compact a little more freedom is allowed as we shall see

in the case of the Chaplygin sleigh below.

5.2. Spatial momentum dynamics

Let eA be a basis of h, and let uA¼Rg*eA. Then g_¼hu(g), 	i, where 	¼ g_ g�1. If G¼ SO(3),

	 is the spatial angular velocity.
The Lagrangian and the constraints are

lRðg, 	Þ ¼
1

2
hIðgÞ	, 	i

and

haRðgÞ, 	i ¼ 0,

respectively. In the above, IðgÞ ¼ Ad�g�1IAdg�1 and aRðgÞ ¼ Ad�g�1a 2 h
�.

Define the spatial momentum � by the formula

� ¼
@lR

@	
¼ Ad�g�1p:

Then, using (3.6), we obtain

_� ¼ 
aRðgÞ, ð5:7Þ
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where, according to (3.8)


 ¼ �h�, _bRðgÞi � haRðgÞ, bRðgÞi�1:

Equation (5.7) implies that the spatial momentum is not generically conserved in the

non-holonomic setting.

6. Examples

In this section, we illustrate the above theory by discussing a number of key non-

holonomic examples where the dynamics is conveniently described using quasivelocities.

Perhaps the simplest non-holonomic system is the following:

6.1. Euler–Poincaré–Suslov problem on SO(3)

In this case, one can formulate the problem as the standard Euler equations

I _� ¼ I���,

where �¼ (�1,�2,�3) is the system angular velocities in a frame where the inertia matrix

is of the form I ¼ diag(I1, I2, I3) and the system is subject to the constraint

a �� ¼ 0,

where a¼ (a1, a2, a3).
The non-holonomic equations of motion are then given by

I _� ¼ I���þ 
a, a �� ¼ 0,

and the Lagrange multiplier is given by


 ¼ �
I�1a � ðI���Þ

I�1a � a
:

One can then check that if a2¼ a3¼ 0 (a constraint that is an eigenstate of the moment of

inertia operator) for example, the (reduced) phase volume is preserved.

6.2. Chaplygin sleigh

Here we describe the Chaplygin sleigh, one of the simplest mechanical system which

illustrates the possible dissipative nature of non-holonomic systems. Note that this

dissipation is ‘non-physical’ in the sense that the energy is preserved while the volume on

the level surfaces of energy is not.
The Chaplygin sleigh is discussed for example in [1] (see also the paper [13], where an

interesting connection with systems with impacts is made).
The sleigh is essentially a flat rigid body in the plane supported at three points, two of

which slide freely without friction while the third is a knife edge constraint which allows no

motion perpendicular to its edge.
We will derive the equations from the Euler–Poincaré–Suslov equations (5.4) on SE(2).

Let  be the angular orientation of the sleigh, (x, y) be the coordinates of the contact point

208 A.M. Bloch et al.
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as shown in Figure 1. The blade is depicted as a bold segment in the Figure. The body

frame is

e1 ¼
@

@
, e2 ¼ cos 

@

@x
þ sin 

@

@y
, e3 ¼ � sin 

@

@x
þ cos 

@

@y

(Figure 1); the vector e1 may be visualized as a vector orthogonal to the body and directed

towards the reader. Let � ¼ g�1 _g 2 tfð2Þ, the components of � relative to the body frame

are (�1,�2,�3), where �1 ¼ _ is the angular velocity of the sleigh relative to the vertical

line through the contact point, and �2 and �3 are the components of linear velocity of the

contact point in the directions along and orthogonal to the blade, respectively. Let the

centre of mass be located on the line through the blade at the point ae2 relative to the body

frame. See Figure 1 for details. Denote the mass and the moment of inertia of the sleigh by

m and J. The constraint reads �3
¼ 0.

The velocity of the centre of mass relative to the body frame is �2e2þ (�3
þ a�1)e3.

The Lagrangian is just the kinetic energy of the sleigh, which is the sum of the kinetic

energies of the linear and rotational modes of the body. Therefore the reduced Lagrangian

and the reduced constrained Lagrangian of the Chaplygin sleigh are ([16])

lð�Þ ¼
1

2
ðJþma2Þð�1Þ

2
þmðð�2Þ

2
þ ð�3Þ

2
þ 2a�1�3

� �
,

and

lcð�Þ ¼
1

2
ðJþma2Þð�1Þ

2
þmð�2Þ

2
� �

,

respectively. The constrained space c
S is defined by

c
S
¼ f�3 ¼ 0g:

The dual of bS is

ðbSÞ� ¼ fp3 ¼ 0g:

e2

ae2

e3

(x,y)

x

y

q

Figure 1. The Chaplygin sleigh.
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6.2.1. Equations of motion in the body frame

The reduced dynamics of the Chaplygin sleigh is given by the Euler–Poincaré–Suslov

equations on the algebra tfð2Þ. The two independent equations are

_p1 ¼ �
a p1p2
Jþma2

, _p2 ¼
map21
ðJþma2Þ2

, ð6:1Þ

where

p1 ¼
@lc
@�1
¼ ðJþma2Þ�1, p2 ¼

@lc
@�2
¼ m�2

are the components of non-holonomic momentum relative to the body frame. If a 6¼ 0,

equations in (6.1) have a family of relative equilibria given by p1¼ 0, p2¼ const.

Linearizing at any of these equilibria, we find that there is one zero eigenvalue and one real

eigenvalue. The trajectories of (6.1) are either equilibria situated on the line p1¼ 0, or

elliptic arcs, as shown in Figure 2. Assuming a4 0, the equilibria located in the upper half

plane are asymptotically stable (filled dots in Figure 2) whereas the equilibria in the lower

half plane are unstable (empty dots). The elliptic arcs form heteroclinic connections

between the pairs of equilibria.
If a¼ 0, momentum dynamics is trivial. Taken together with the analysis of

equations in (6.1), this means that we do not observe asymptotic stability if and only

if a¼ 0.
The condition a¼ 0 means that the centre of mass is situated at the contact point of the

sleigh and the plane. The inertia tensor I becomes block-diagonal in this case, i.e. the

direction defined by the constraint is an eigendirection of the inertia tensor.

6.2.2. The dynamics of the spatial momentum

Recall that the spatial angular velocity is defined as 	 ¼ R�g�1 _g ¼ _gg�1 2 tfð2Þ. For the

group SE(2) the components of 	 are computed to be

	1 ¼ _, 	2 ¼ _xþ y _, 	3 ¼ _y� x _:

p2

p1

Figure 2. The momentum dynamics of the unbalanced Chaplygin sleigh.
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The corresponding frame consists of the generators of the left action of SE(2) on itself.

The latter are given by the formulae

u1 ¼
@

@
� y

@

@x
þ x

@

@y
, u2 ¼

@

@x
, u3 ¼

@

@y
,

and the corresponding brackets are computed to be

½u1, u2� ¼ �u3, ½u1, u3� ¼ u2, ½u2, u3� ¼ 0:

The Lagrangian becomes

lRðg, Þ ¼
Jþma2

2
ð	1Þ2 þ

m

2

�
ð	2 � y	1Þ2 þ ð	3 þ x	1Þ2

þ 2a	1
�
�ð	2 � y	1Þ sin  þ ð	3 þ x	1Þ cos 

�	
,

and the constraint becomes

�ð	2 � y	1Þ sin  þ ð	3 þ x	1Þ cos  ¼ 0:

The spatial components of the non-holonomic momentum are

�1 ¼ ðJþma2Þ	1 �myð	2 � y	1Þ þmxð	3 þ x	1Þ þma	1ðx cos  þ y sin Þ,

�2 ¼ m
�
ð	2 � y	1Þ � a	1 sin 

�
,

�3 ¼ m
�
ð	2 � y	1Þ þ a	1 cos 

�
:

The momentum belongs to the subspace of tf�ð2Þ defined by the equation

��2 sin  þ �3 cos  �
ma

Jþma2
ð�1 þ y�2 � x�3Þ ¼ 0:

Using (5.7), the dynamics of spatial momentum for the Chaplygin sleigh is

_�1 ¼ 
ðx cos  þ y sin Þ, _�2 ¼ �
 sin , _�3 ¼ 
 cos ,

where 
 is as given by the formula


 ¼
Jð�1 þ y�2 � x�3Þð�2 cos  þ �3 sin Þ

ðJþma2Þ2
:

Regardless of the value of a, the spatial momentum of the Chaplygin sleigh is conserved

if and only if ¼ const, i.e. when the contact point of the sleigh is moving along

a straight line.

6.2.3. Momentum conservation for the unbalanced Chaplygin sleigh

We now show that the components of momentum are conserved if one uses the vector

fields u1, u2, u32T SE(2) given by

u1 ¼ cos k
@

@
þ

a

k
sin k cos 

@

@x
þ sin 

@

@y

� �
, ð6:2Þ
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u2 ¼ �
k

a
sin k

@

@
þ cos k cos 

@

@x
þ sin 

@

@y

� �
, ð6:3Þ

u3 ¼ �sin 
@

@x
þ cos 

@

@y
, ð6:4Þ

where k2 :¼ma2/(Jþma2).
The structure of the momentum trajectories in Figure 2 in combination with

translational symmetry of the sleigh suggests that there may exist vector fields

u¼ u1()e1þ u2()e2 such that h p, ui ¼ const. That is, the components of the non-

holonomic momentum along a field whose direction and magnitude relative to the body

frame depends on the angle  may be conserved. Note that  is not a shape variable as in

Theorem 4.4.
Differentiating the quantity hp, u()i and taking into account Equations (6.1) yields

_u1 ¼ �
map1

ðJþma2Þ2
u2, _u2 ¼

ap1
Jþma2

u1:

Using the formula p1 ¼ ðJþma2Þ�1 ¼ ðJþma2Þ _, we obtain

du1

d
¼ �

ma

Jþma2
u2,

du2

d
¼ au1:

This system defines two independent vector fields (6.2) and (6.3). The field u3 is defined by

formula (6.4) in order to have the sleigh constraint to be written as �3¼ 0, where (�1, �2, �3)
are the components of g_ relative to the frame u1, u2, u3.

Conservation of momentum can be confirmed by the Hamel equations for the sleigh.

Computing the Jacobi–Lie brackets for the fields u1, u2, u3, we obtain

½u1, u2� ¼ �
k2

a
cos k u1 þ k sin k u2 þ u3,

½u1, u3� ¼ �
k

a
cos k sin k u1 � cos2 k u2,

½u2, u3� ¼
k2

a2
sin2 k u1 þ

k

a
cos k sin k u2,

which implies

C1
12 ¼ �

k2

a
cos k, C2

12 ¼ k sin k, C3
12 ¼ 1,

C1
13 ¼ �

k

a
cos k sin k, C2

13 ¼ �cos
2 k, C3

13 ¼ 0,

C1
23 ¼

k2

a2
sin2 k, C2

23 ¼
k

a
cos k sin k, C3

23 ¼ 0:

Written relative to the frame u1, u2, u3, the Lagrangian and the constrained Lagrangian

become

lð�Þ ¼
1

2

�
ðJþma2Þð�1Þ2 þmð�2Þ2 þ 2ma cos k �1�3 � 2ma sin k �2�3 þmð�3Þ2

�
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and

lcð�Þ ¼
1

2

�
ðJþma2Þð�1Þ2 þmð�2Þ2

�
:

The constrained Hamel equations are computed to be

d

dt

@lc
@�1
¼ 0,

d

dt

@lc
@�2
¼ 0:

Thus, the components of momentum relative to the frame u1, u2, u3 are conserved.

6.3. Chaplygin sleigh with an oscillator

Here we analyse the dynamics of the Chaplygin sleigh coupled to an oscillator. We show
that the phase flow is integrable, and generic invariant manifolds are two-dimensional tori.

6.3.1. The Lagrangian, non-holonomic connection and reduced dynamics

Consider the Chaplygin sleigh with a mass sliding along the direction of the blade.
The mass is coupled to the sleigh through a spring. One end of the spring is attached to the
sleigh at the contact point, the other end is attached to the mass. The spring force is zero
when the mass is positioned above the contact point. See Figure 1 where the sliding mass is
represented by a black dot and the blade is shown as a bold black segment.

The configuration space for this system is R� SE(2). This system has one shape
(the distance from the mass to the contact point, r) and three group degrees of freedom.

The reduced Lagrangian l : TR� tfð2Þ ! R is given by the formula

lðr, _r, �Þ ¼
1

2
m_r2 þm_r�2 þ

1

2
ðJþmr2Þð�1Þ2 þ 2mr�1�3 þ ðMþmÞðð�2Þ2 þ ð�3Þ2Þ
� �

�
1

2
kr2,

where � ¼ g�1 _g 2 tfð2Þ and k is the spring constant. The constrained reduced
Lagrangian is

lcðr, _r, �1, �2Þ ¼
1

2
m_r2 þm_r�2 þ

1

2
ðJþmr2Þð�1Þ2 þ ðMþmÞð�2Þ2
� �

�
1

2
kr2:

The constrained reduced energy

1

2
m_r2 þm_r�2 þ

1

2
ðJþmr2Þð�1Þ2 þ ðMþmÞð�2Þ2
� �

þ
1

2
kr2

is positive-definite, and thus the mass cannot move infinitely far from the sleigh
throughout the motion.

The non-holonomic connection is

� þA _r,

where

A
1
¼ 0, A2

¼
m

Mþm
, A3

¼ 0:

The constraint is given by the formula

�3 ¼ 0:
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The reduced Lagrangian written as a function of ðr, _r,�Þ becomes

lðr, _r,�Þ ¼
1

2

Mm

Mþm
_r2 þ

1

2
ðJþmr2Þð�1Þ

2
þ 2mr�1�3 þ ðMþmÞðð�2Þ

2
þ ð�3Þ

2
� �

�
1

2
kr2:

The constrained reduced Lagrangian written as a function of ðr, _r, pÞ is

lcðr, _r, pÞ ¼
1

2

Mm_r2

Mþm
þ
1

2

p21
Jþmr2

þ
p22

Mþm

� �
�
kr2

2
:

The reduced dynamics for the sleigh-mass system is computed to be

Mm

Mþm
€r ¼

Mmr

ðMþmÞðJþmr2Þ2
p21 � kr,

_p1 ¼ �
mr

ðMþmÞðJþmr2Þ
p1p2 þ

m2r

ðMþmÞðJþmr2Þ
p1 _r,

_p2 ¼
mr

ðJþmr2Þ2
p21:

ð6:5Þ

We now select a new frame in the Lie algebra tfð2Þ in order to eliminate the second

term in Equation (6.5). Put

e1 ¼ ððJþmr2Þ�
m

2Mþm, 0, 0Þ, e2 ¼ ð0, 1, 0Þ, e3 ¼ ð0, 0, 1Þ:

The reduced Lagrangian written in this frame becomes

lðr, _r,�Þ ¼
1

2

Mm

Mþm
_r2 þ

1

2

�
ðJþmr2Þ

M
Mþmð�1Þ

2
þ ðMþmÞðð�2Þ

2
þ ð�3Þ

2
Þ

þ 2mrðJþmr2Þ�
M

2Mþm�1�3
	
�
1

2
kr2:

Using Equations (4.2) and (4.3), the reduced dynamics becomes

Mm

Mþm
€r ¼

Mmr

ðMþmÞðJþmr2Þ
M

Mþmþ1
p21 � kr, ð6:6Þ

_p1 ¼ �
mr

ðMþmÞðJþmr2Þ
p1p2, ð6:7Þ

_p2 ¼
mr

ðJþmr2Þ
M

Mþmþ1
p21: ð6:8Þ

6.3.2. Relative equilibria of the sleigh-mass system

Assuming that (r, p)¼ (r0, p0) is a relative equilibrium, Equation (6.8) implies r0p
0
1 ¼ 0.

Thus, either r0¼ 0 and p01 is an arbitrary constant, or, using (6.6), p01 ¼ 0 and r0¼ 0.

Thus, the only relative equilibria of the sleigh-mass system are

r ¼ 0, p ¼ p0:
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6.3.3. The discrete symmetries and integrability

It is straightforward to see that Equations (6.6)–(6.8) are invariant with respect to the

following transformations:

(i) (r, p1, p2)! (r,�p1, p2),
(ii) (r, p1, p2)! (�r, p1,�p2),
(iii) (t, r, p)! (�t,�r, p),
(iv) (t, r, p1, p2)! (�t, r, p1,�p2).

We now use these transformations to study some of the solutions of (6.6)–(6.8).

Consider an initial condition ðr, _r, pÞ ¼ ð0, _r0, p0Þ. Then the r-component of the solution

subject to this initial condition is odd, and the p-component is even. Indeed, let

ðrðtÞ, pðtÞÞ, t4 0, ð6:9Þ

be the part of this solution for t4 0. Then

ð�rð�tÞ, pð�tÞÞ, t5 0, ð6:10Þ

is also a solution. This follows from the invariance of Equations (6.6)–(6.8) with respect

to transformation (iii). Using the formula

drðtÞ

dt





t¼0
¼

dð�rð�tÞÞ

dt





t¼0

,

we conclude that (6.9) and (6.10) satisfy the same initial condition and thus represent

the forward in time and the backward in time branches of a the same solution.

Thus, r(�t)¼�r(t) and p(�t)¼ p(t).
Next, p1(t)¼ 0 implies that p2(t)¼ const and r(t) satisfies the equation

Mm

Mþm
€r ¼ �kr,

and thus Equations (6.6)–(6.8) have periodic solutions

rðtÞ ¼ A cos!tþ B sin!t, p1 ¼ 0, p2 ¼ C,

where A,B, and C are arbitrary constants and ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðMþmÞ=Mm

p
.

Without loss of generality, we set A¼ 0 and consider periodic solutions

rðtÞ ¼ _r0=! sin!t, p1 ¼ 0, p2 ¼ p02, ð6:11Þ

which correspond to the initial conditions

rð0Þ ¼ 0, _rð0Þ ¼ _r0, p1ð0Þ ¼ 0, p2ð0Þ ¼ p02:

We now perturb solutions (6.11) by setting

rð0Þ ¼ 0, _rð0Þ ¼ _r0, p1ð0Þ ¼ p01, p2ð0Þ ¼ p02: ð6:12Þ

Dynamical Systems 215

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
l
i
f
o
r
n
i
a
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
]
 
A
t
:
 
0
4
:
1
0
 
2
8
 
A
p
r
i
l
 
2
0
0
9



Assuming that p01 is small and using a continuity argument, there exists � ¼ �p,_r0 4 0

such that

rð�p,_r0 Þ ¼ 0

for solutions subject to initial conditions (6.12). That is, the r-component is 2�-periodic if
p01 is sufficiently small.

Using Equation (6.6) and periodicity of r(t), we conclude that p1 is 2�-periodic as well.
Equation (6.7) then implies that p2(t) is also 2�-periodic. Thus, the reduced dynamics

is integrable in an open subset of the reduced phase space. The invariant tori are

one-dimensional, and the reduced flow is periodic. A generic periodic trajectory in the

direct product of the shape and momentum spaces is shown in Figure 3.
Using the quasi-periodic reconstruction theorem [23,24], we obtain the following

theorem.

Theorem 6.1: Generic trajectories of the coupled sleigh-oscillator system in the full phase

space are quasi-periodic motions on two-dimensional invariant tori.

Typical trajectories of the contact point of the sleigh with the plane are shown in

Figure 4. The symmetry observed in these trajectories follows from the existence, for each

group trajectory g(t), of a group element h such that g(tþ 2�)� hg(t), where 2� is the

r p1

p2

Figure 3. A reduced trajectory of the sleigh-mass system.

Figure 4. Trajectories of the contact point of the blade for various initial states.
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period of the corresponding reduced dynamics. It would be interesting to see if the

technique of pattern evocation [25,26] extends to the current circumstances.

6.4. Asymptotic behaviour of momentum integrals

Assuming that the only non-zero term in the right-hand side of the momentum

equation (4.7) is hp, i_r�i, Theorem 4.4 and Corollary 4.5 give sufficient conditions for

existence of m independent momentum integrals hp, 	a(r)i, a¼ 1, . . . ,m. The fields

	aðrÞ 2 c
S satisfy Equation (4.12), their existence follows from the integrability of the

distribution associated with the form � (see Theorem 4.4 for details). In the coordinate

form, Equation (4.12) reads

d	b ¼ �Db
a�ðrÞ	

a dr�, ð6:13Þ

where the quantities Db
a�ðrÞ are defined by formula (4.11).

The properties of distribution (6.13) resemble the properties of linear homogeneous

systems of differential equations as the coefficients of the differential forms in (6.13) are

linear functions in the components of 	. It is straightforward to show that the space of

integral manifolds of distribution (6.13) has the structure of anm-dimensional vector space.

Definition 6.2: The Wronskian of the m integral manifolds 	¼ 	a(r), a¼ 1, . . . ,m, is the
determinant

WðrÞ ¼ det

	11ðrÞ . . . 	1mðrÞ

..

. ..
.

	m1 ðrÞ . . . 	mmðrÞ

2
664

3
775: ð6:14Þ

The properties of the Wronskian of the system of invariant manifolds of (6.13) are similar

to those of the Wronskian of the solutions of a system of linear ordinary differential

equations.

Theorem 6.3: The Wronskian satisfies the equation

d lnW ¼ �Tr � :¼ �Da
a�ðrÞdr

�: ð6:15Þ

Proof: Taking into account (6.13) and (6.14), we obtain

@W

@r�
¼ �WDa

a�:

Therefore,

dW ¼
@W

@r�
dr� ¼ �WDa

a� dr
� ¼ �WTr �,

which is equivalent to formula (6.15). œ

Corollary 6.4: The Wronskian can be evaluated by the formula

WðrÞ ¼Wðr0Þ exp

ðr
r0

Tr �: ð6:16Þ

The integral in (6.16) is independent of path from r0 to r.
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Formula (6.16) allows one to obtain the Wronskian explicitly in the multi-dimentional
shape space setting. This result can be used to study the reduced energy levels even if the
momentum integrals cannot be effectively computed as in [40] . We demonstrate this in the
following section for the rolling disk.

6.5. The rolling falling disk

To illustrate the results of Section 4.3 and Section 6.4, consider a disk rolling
without sliding on a horizontal plane (Figure 5). The configuration space for this
system is (��/2,�/2)� SO(2)�SE(2). The coordinates on the configuration space are
denoted (, ,�, x, y). As the figure indicates, we denote the coordinates of contact of the
disk in the xy-plane by (x, y), and let , �, and  represent the angle between the plane of
the disk and the vertical axis, the ‘heading angle’ of the disk, and ‘self-rotation’ angle of the
disk, respectively. Denote the mass, the radius and the moments of inertia of the disk by m,
R, A and B, respectively. The Lagrangian is given by the kinetic minus potential energies:

L ¼
m

2
ð�1 � Rð _� sin  þ _ ÞÞ2 þ ð�2Þ2 sin2  þ ð�2 cos  þ R _Þ2
� �
þ
1

2
Að _2 þ _�2 cos2 Þ þ Bð _� sin  þ _ Þ2
� �

�mgR cos ,

where �1 ¼ _x cos�þ _y sin�þ R _ and �2 ¼ � _x sin�þ _y cos�, while the constraints are
given by

_x ¼ � _ R cos�, _y ¼ � _ R sin�:

Note that the constraints may also be written as �1¼ 0, �2¼ 0.
This system is invariant under the action of the group G¼ SO(2)�SE(2); the action

by the group element (�,�, a, b)2 SO(2)� SE(2) is given by

ð, ,�, x, yÞ 7! ð, þ �,�þ �, x cos�� y sin�þ a, x sin�þ y cos�þ bÞ:

The fibres of the constraint distribution Dq are spanned by the vector fields @, @�, and
�R cos� @x�R sin� @yþ @ . Therefore,

Sq ¼ Dq \ TqOrbðqÞ ¼ span @�,� R cos� @x � R sin� @y þ @ 
� �

:

P

x

z

y

(x,y) Q

y

q

j

Figure 5. The geometry for the rolling disk.
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We select the basis of the subspace c
S
� tpð2Þ � tfð2Þ to be

e1 ¼ ð1, 0,R, 0Þ and e2 ¼ ð� tan , cos�1 ,� R tan , 0Þ:

The two components of the non-holonomic momentum relative to e1 and e2 are

p1 ¼ A _� cos2  þ ðmR2 þ BÞð _� sin  þ _ Þ sin ,

p2 ¼ �A _� cos2  sin  þ ðmR2 þ BÞð _� sin  þ _ Þ cos2 :

The momentum equations for the falling disk are computed to be

_p1 ¼ tan  p1 �
B

mR2 þ B
p2

� �
_, _p2 ¼ �

mR2

A
p1 _:

According to Corollary 4.5, there exists a basis 	1(), 	2() of the subspace c
S such that

the components hp, 	1()i and hp, 	2()i of non-holonomic momentum are constants

of motion.
We write the momentum levels as c1 and c2, i.e.

hp, 	1ðÞi ¼ c1, hp, 	2ðÞi ¼ c2: ð6:17Þ

Given the momentum levels c1 and c2, Equations in (6.17) define p1 and p2 as functions of

. The vector fields 	1() and 	2() form the fundamental solution of the linear system

d	1

d
¼ � tan  	1 þ

mR2

A
	2,

d	2

d
¼

B

mR2 þ B
	2: ð6:18Þ

It is possible to write the solutions of system (6.18) in terms of the hypergeometric

function. See [27–29] for details. For additional work and history of the falling disk

see [16,30,31].
Kolesnikov [32] proves that the disk does not fall, i.e. the absolute value of the tilt does

not reach the value of �/2 in finite time, for all but a codimension one set of initial

conditions. It is interesting that the proof does not use the explicit formulae for the fields

	1() and 	2().
Indeed, the boundaries for the tilt of the disk  are determined by the inequality

Uc()	 h, where h is the energy level and

UcðÞ ¼
1

2

�
p21ðÞ=Aþ p22ðÞ=ðmR2 þ BÞ

�
þmgR cos 

is the amended potential restricted to the momentum level (6.17). The crucial step in the

proof is to show that lim!��/2Uc()¼1 for most initial conditions. As in Section 6.4,

consider the Wronskian

WðÞ ¼ det
	11ðÞ 	12ðÞ

	21ðÞ 	22ðÞ

" #
:

By Liouville’s formula (which is a special case of (6.16))

WðÞ ¼Wð0Þ exp

ð
0

� tan  d ¼Wð0Þcos :
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Therefore,W(0)! 0 as !��/2. Formulae (6.17) thus imply that the absolute value of at
least one of the momentum components p1(), p2() approaches infinity as !��/2, and
so does Uc() for all but a codimension one subset of c¼ (c1, c2).

7. Conclusions

In this article, we studied the use of quasivelocities and Hamel equations in the dynamics
of non-holonomic systems with symmetry. In particular, we discussed the importance of
the choice of a basis of the tangent bundle of the configuration space in studying
momentum conservation and integrability of non-holonomic systems. We showed that
these ideas could be very helpful in analysing specific examples such as the sleigh-mass
system and the falling disk.

In future work, we intend to extend some of these ideas to infinite-dimensional systems,
to the analysis of control of non-holonomic systems, and to the dynamics of discrete

non-holonomic systems, both free and controlled.
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Notes

1. In certain cases, some or all of ui can be chosen to be global vector fields on Q.
2. If Q is a Lie group, this formula is derived in [18].
3. Euler wrote the three components of the equations d

dt
@l
@� ¼

@l
@� � �, with explicit formulae

substituted for @l
@�, where l is the reduced rigid body Lagrangian.

4. Constraints are non-holonomic if and only if they cannot be rewritten as position constraints.
5. If Sq¼ {0}, a set of non-holonomic constraints is said to be purely kinematic.
6. Recall that the components Aa0

� are defined by the constraints.
7. A Lie group is said to be unimodular if it has a bilaterally invariant measure.
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