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Abstract. The authors’ recent paper in Reports in Mathematical Physics de-

velops Dirac reduction for cotangent bundles of Lie groups, which is called Lie–
Dirac reduction. This procedure simultaneously includes Lagrangian, Hamil-

tonian, and a variational view of reduction. The goal of the present paper is to

generalize Lie–Dirac reduction to the case of a general configuration manifold;
we refer to this as Dirac cotangent bundle reduction. This reduction proce-

dure encompasses, in particular, a reduction theory for Hamiltonian as well as
implicit Lagrangian systems, including the case of degenerate Lagrangians.

First of all, we establish a reduction theory starting with the Hamilton-

Pontryagin variational principle, which enables one to formulate an implicit
analogue of the Lagrange-Poincaré equations. To do this, we assume that a

Lie group acts freely and properly on a configuration manifold, in which case

there is an associated principal bundle and we choose a principal connection.
Then, we develop a reduction theory for the canonical Dirac structure on the

cotangent bundle to induce a gauged Dirac structure. Second, it is shown

that by making use of the gauged Dirac structure, one obtains a reduction
procedure for standard implicit Lagrangian systems, which is called Lagrange-

Poincaré-Dirac reduction. This procedure naturally induces the horizontal and

vertical implicit Lagrange-Poincaré equations, which are consistent with those
derived from the reduced Hamilton-Pontryagin principle. Further, we develop

the case in which a Hamiltonian is given (perhaps, but not necessarily, coming

from a regular Lagrangian); namely, Hamilton-Poincaré-Dirac reduction for
the horizontal and vertical Hamilton-Poincaré equations. We illustrate the

reduction procedures by an example of a satellite with a rotor.
The present work is done in a way that is consistent with, and may be

viewed as a specialization of the larger context of Dirac reduction, which allows
for Dirac reduction by stages. This is explored in a paper in preparation by
Cendra, Marsden, Ratiu and Yoshimura.
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1. Introduction. This paper develops a reduction procedure for the canonical
Dirac structure defined on the cotangent bundle T ∗Q of a configuration manifold
Q. In this paper we restrict ourselves to the case in which a Lie group G acts freely
and properly on Q; that is, one has a principal bundle Q → Q/G. The reduction pro-
cedure includes—in one overarching construction—the case of implicit Lagrangian
systems and Hamiltonian systems as well as reduction of the Hamilton-Pontryagin
principle to produce, for instance, the Hamilton-Poincaré variational principle and
the associated implicit analogue of the Lagrange-Poincaré and Hamilton-Poincaré
equations.

Our approach may be viewed as a specialization of the larger context of Dirac
reduction of anchored vector bundles, as developed by [26]. That provides an inter-
esting context that is closed under reduction and so allows for Dirac reduction by
stages. Our cotangent bundle reduction procedure may be viewed as a nontrivial
special case in the same way as the important case of cotangent bundle reduction
may be viewed as a nontrivial special context for symplectic or Poisson reduction.
Unlike some other approaches to Dirac reduction, our approach also allows for re-
duction of variational principles and includes, simultaneously, both the Lagrangian
and Hamiltonian sides. This will be explained in further detail below.

The notion of implicit Lagrangian systems, their relation to Dirac structures and
the Hamilton-Pontryagin principle were developed in our earlier papers ([87, 88]).
This development made use of a Dirac structure that is induced on T ∗Q from
a given constraint distribution ∆Q on Q and its variational links were clarified by
employing the Hamilton-Pontryagin principle, through which one can treat the case
of degenerate Lagrangian systems with holonomic constraints as well as mechanical
systems with nonholonomic constraints. Applications to electric circuits were shown
in [89] and the link with the generalized Legendre transformation was developed in
[90].

The present paper focuses on reduction of the canonical cotangent Dirac structure
without nonholonomic constraints. In accompanying papers, we shall extend this
reduction procedure to the case of systems with nonholonomic constraints ∆Q ⊂ TQ
as well as making the link with the Dirac anchored vector bundle approach of [26].

Since this paper is not dealing with systems with nonholonomic constraints,
we will be reducing integrable Dirac structures. Using the Courant bracket, one
can readily show that the corresponding reduced Dirac structure is also integrable.
However, we do not emphasize this point since one of our key future goals is to deal
with nonholonomic constraints, in which case one does not have integrability.

We recall a few facts about the important case in which Q = G that was treated
in our previous paper ([91]). That paper also dealt with the case of a nonholonomic
distribution ∆G on G. When ∆G = TG, and with the canonical Dirac structure
D ⊂ TT ∗G⊕ T ∗T ∗G on T ∗G, the reduction procedure was called Lie-Dirac reduc-
tion. In this procedure, using the isomorphism T ∗G ∼= G × g∗, one constructs a
trivialized Dirac structure D̄ on G× g∗. By taking the quotient of D̄ by the action
of G, one obtains a reduced Dirac structure [D̄]G := D̄/G on the bundle g∗ × V
thought of as a vector bundle over g∗, where V = g ⊕ g∗ and where g = TeG is
the Lie algebra and g∗ is its dual. Thus, one ends up with a Dirac structure on V
that is parameterized by a choice of µ ∈ g∗. In this context, one gets a reduction
procedure for an associated implicit Lagrangian system, resulting in the implicit
Euler-Poincaré equations as well as its Hamiltonian counterpart, the Lie-Poisson
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equations. In addition, we established a general case of Dirac reduction with non-
holonomic constraints in which a constraint distribution ∆G ⊂ TG is given, and
this case was illustrated by the implicit Euler-Poincaré-Suslov equations, which can
be thought of as a rigid body system with nonholonomic constraints. Some related
Suslov problems in nonholonomic systems were discussed in [11].

The goal of the present paper is to generalize the results just described of [91]
(without the distribution ∆Q—that is, taking the case ∆Q = TQ) by replacing the
case Q = G with a general Q and assuming that we have a free and proper group
action of G on Q.

One of the works most relevant to the present paper is that of [24], which devel-
oped a context for Lagrangian reduction and in particular, the Lagrange-Poincaré
equations. Moreover, that work shows that the setting of Lagrange-Poincaré bun-
dles, which may be regarded as the Lagrangian analogue of a Poisson manifold in
symplectic geometry, enables one to perform Lagrangian reduction by stages. La-
grangian reduction and the Lagrange-Poincaré equations may be regarded as the
generalization of Euler-Poincaré reduction and its associated Euler-Poincaré equa-
tions. Another work that was a key to the viewpoint of the present paper was [23],
where reduced variational principles for the Lie-Poisson and Hamilton-Poincaré
equations were developed, namely, the Lie-Poisson variational principle and the
Hamilton-Poincaré variational principle. This Hamilton-Poincaré variational prin-
ciple is closely related with Poisson cotangent bundle reduction (see, [71, 73]). For
the details of the general theory of cotangent bundle reduction, see [58].

Goal. The main goal of this paper is to develop a Dirac reduction theory start-
ing with the canonical Dirac structure on T ∗Q, under the assumption of a free
and proper action of a Lie group G on Q; that is, the case of a principal bundle
Q → Q/G. The resulting technique will be called Dirac cotangent bundle reduction.
Associated with this geometric reduction, we also develop the reduction of dynam-
ics, by reducing a standard implicit Lagrangian system as well as its associated
Hamilton-Pontryagin variational principle. We further show how a Hamiltonian
analogue of this reduction can be carried out for a standard implicit Hamiltonian
system (that is a Hamiltonian system associated with the canonical Dirac structure)
and that it is consistent with the Hamilton-Poincaré variational principle.

As mentioned above, our theory of Dirac cotangent bundle reduction provides
both the Lagrangian and Hamiltonian points of view; it yields Lagrange-Poincaré-
Dirac reduction when one takes the Lagrangian view, and Hamilton-Poincaré-Dirac
reduction when one takes the Hamiltonian view. This dual structure in reduction
of standard implicit Lagrangian and Hamiltonian systems may be regarded as a
generalization of Euler-Poincaré-Dirac reduction and Lie-Poisson-Dirac reduction
developed in [91].

1.1. Some history and background of reduction. Let us briefly review some
background of reduction theory relevant with Dirac cotangent bundle reduction in
this paper. As to the details and history of reduction theory in mechanics, refer,
for instance, to [61, 62, 24, 67, 58].

Symplectic reduction. Let (P,Ω) be a symplectic manifold and let G be a Lie
group that acts freely and properly on P by symplectic maps. Suppose that the
action has an equivariant momentum map J : P → g∗ and let Gµ := {g ∈
G |Ad∗g−1 µ = µ} be the coadjoint isotropy subgroup of µ ∈ g∗. The symplec-
tic reduced space is defined to be the quotient space Pµ = J−1(µ)/Gµ, which
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carries a reduced symplectic form Ωµ uniquely defined by π∗µΩµ = i∗µΩ, where
πµ : J−1(µ) → Pµ is the projection and iµ : J−1(µ) → P is the inclusion. When one
chooses P = T ∗G with G acting by left translation, it was shown in [65] that the
symplectic reduced space (T ∗G)µ = J−1(µ)/Gµ may be identified via left transla-
tion with the coadjoint orbit Oµ := {Ad∗g−1 µ | g ∈ G} = G · µ through µ ∈ g∗ and
also that the reduced symplectic form coincides with the coadjoint orbit symplectic
form Ωµ(ad∗ξµ, ad∗ηµ) = −〈µ, [ξ, η]〉.

Lie-Poisson reduction. In its simplest form, we suppose that G acts freely and
properly on a Poisson manifold P , so that P/G is a smooth manifold which is
endowed with the unique Poisson structure and the canonical projection π : P →
P/G is a Poisson map. The condition that π be Poisson is that for two functions f ,
h : P/G → R, {f, h}P/G ◦ π = {f ◦ π, h ◦ π}P holds, where the brackets {, }P/G and
{, }P are on P/G and P , respectively. The functions F = f ◦ π and H = h ◦ π are
the unique G–invariant functions on P that project to f and h. It is shown that
{f, h}P/G is well defined by proving that {F,H}P is G–invariant, which follows from
the fact that F and H are G–invariant and the group action of G on P consists
of Poisson maps. This is a standard and perhaps the most elementary form of
reduction; a detailed exposition can be found in many references, such as [61].

In the particular case when P = T ∗G and the action of G on T ∗G is by the
cotangent lift of left (or right) translation of G on itself, the quotient space (T ∗G)/G
is naturally diffeomorphic to g∗, namely, the dual of the Lie algebra g of G. In many
references, such as [66], [39], and [68] (see [61] for an exposition), it was shown
how to compute the reduced Poisson bracket and associated reduced equations
of motion, a procedure now called Lie-Poisson reduction. In fact, the quotient
Poisson bracket is given by the plus (or minus) Lie-Poisson bracket as {f, h}±(µ) =
∓〈µ, [δf/δµ, δh/δµ]〉, where f, h are arbitrary functions on g∗. The minus sign
goes with left reduction and the plus sign with right reduction. Let H be a left-
invariant Hamiltonian on T ∗G and let λ̄ : T ∗G → G × g∗ be the left trivialized
diffeomorphism. Then, one has the trivialized Hamiltonian H̄ = H ◦ λ̄−1 and it
leads to the Lie–Poisson equations

dµ

dt
= ad∗δh

δµ
µ,

where h := H̄|g∗ is the reduced Hamiltonian on g∗ and µ ∈ g∗.
While it was [65] who showed how to compute the coadjoint orbit symplectic

form by reduction, it was [44] and [60] who explained how the Poisson structure
on Pµ is related with that on P/G in the generalized context of Poisson reduction.
While the Lie-Poisson bracket per se was discovered by Sophus Lie in the 1890s
(using different techniques), the coadjoint orbit symplectic form was discovered by
Souriau, Kirillov and Kostant in the early 1960s; see [61] and [85] for additional
historical comments.
Cotangent bundle reduction. We shall be reviewing some aspects of reduction
in the case of tangent and cotangent bundles. We shall follow the historical route
here. More details and comprehensive treatments may be found in [24] for tangent
bundle reduction and in [58] for the case of cotangent bundles.

We shall first consider the case of cotangent bundle reduction, namely, P = T ∗Q.
The simplest situation concerns reduction at zero; then the symplectic reduced space
at µ = 0 is given by Pµ = T ∗(Q/G) with the canonical symplectic form ΩQ/G.
Another basic case is the Abelian version of cotangent bundle reduction, where
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G = Gµ and one has (T ∗Q)µ = T ∗(Q/G) with the symplectic form ΩQ/G +βµ (here
βµ is a magnetic term that is closely related to curvature). The Abelian version of
cotangent bundle reduction was first developed by [79], who showed how to construct
βµ in terms of a potential one form αµ. The relatively simple but important case of
cotangent bundle reduction at the zero value of the momentum map was studied by
[77]. Motivated by the work of Smale and Satzer, the generalization of cotangent
bundle reduction for nonabelian groups at arbitrary values of the momentum map
was done in the 1978 version of [1] and it was [51] who interpreted the result in
terms of a connection, now called the mechanical connection.

The geometry of this situation was used to great effect in molecule dynamics, op-
timal control of deformable bodies inspired from the so-called “falling cat” problem,
and so on; see, for example, [38], [41, 42], and [72, 74, 75, 56].

From the symplectic point of view, the principal result is that the symplectic
reduction of a cotangent bundle at µ ∈ g∗ is a bundle over T ∗(Q/G) with fiber
the coadjoint orbit through µ. This result can be traced back in a preliminary
form, to the work of [80] and [84] on a “Yang–Mills construction”, which is, in
turn, motivated by Wong’s equations, i.e., the equations of a particle in a Yang–
Mills field. It was refined in [71] and [72, 73], where tangent and cotangent bundle
reduction were evolved into what we now term as the “bundle picture” or the “gauge
theory of mechanics”. See also [1] and [56]. The main result of the bundle picture
gives a structure to the quotient spaces (T ∗Q)/G and (TQ)/G when G acts by the
cotangent and tangent lifted actions. The symplectic leaves in this picture were
analyzed by [92], [33], and [59]. It was also shown that the symplectically reduced
cotangent bundle can be symplectically embedded in T ∗(Q/Gµ)—this is the injective
version of the cotangent bundle reduction theorem. From the Poisson viewpoint, in
which one simply takes the quotient by the group action, this reads as follows:
(T ∗Q)/G is a g∗–bundle over T ∗(Q/G), or a Lie-Poisson bundle over the cotangent
bundle of shape space.

The bundle point of view. Let π : Q → Q/G be a principal bundle with G acting
freely and properly on Q and choose a principal connection A : TQ → g on this
shape space bundle. The general theory, in principle, does not require one to choose
a connection. However, there are many good reasons to do so, such as applications
to stability and geometric phases. Define g̃ = (Q × g)/G, the associated bundle to
g, where the quotient uses the given action on Q and the adjoint action on g.

The connection A defines a bundle isomorphism ΨA : TQ/G → T (Q/G)⊕g̃ given
by ΨA([vq]G) = Tπ(vq) ⊕ [q, A(vq)]G. Here, the sum is a Whitney sum of vector
bundles over Q/G (the fiberwise direct sum) and the symbol [q, A(vq)]G means the
equivalence class of (q, A(vq)) ∈ Q × g under the G–action. The map ΨA is a
well-defined vector bundle isomorphism with inverse given by Ψ−1

A (u[q] ⊕ [q, ξ]G) =
[(u[q])h

q + ξq]G, where (u[q])h
q denotes the horizontal lift of u[q] to the point q and

ξq = ξQ(q).

Poisson cotangent bundle reduction. The bundle view of Poisson cotangent
bundle reduction considers the inverse of the fiberwise dual of ΨA, which defines a
bundle isomorphism (Ψ−1

A )∗ : T ∗Q/G → T ∗(Q/G)⊕ g̃∗, where g̃∗ = (Q× g∗)/G is
the vector bundle over Q/G associated with the coadjoint action of G on g∗. The
isomorphism makes explicit the sense in which (T ∗Q)/G is a bundle over T ∗(Q/G)
with fiber g∗. The Poisson structure on this bundle is a synthesis of the canonical
bracket, the Lie-Poisson bracket, and curvature. The inherited Poisson structure on
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this space was derived in [71] and the details were given in [73]. For other accounts
of Poisson cotangent bundle reduction, see [76] and [58].

Symplectic cotangent bundle reduction. It was [59] who showed that each
symplectic reduced space of T ∗Q, which are the symplectic leaves in (T ∗Q)/G ∼=
T ∗(Q/G)⊕ g̃∗, are given by a fiber product T ∗(Q/G)×Q/G Õ, where Õ is the asso-
ciated coadjoint orbit bundle. This makes precise the sense in which the symplectic
reduced spaces are bundles over T ∗(Q/G) with fiber a coadjoint orbit. That paper
also gives an intrinsic expression for the reduced symplectic form, which involves the
canonical symplectic structure on T ∗(Q/G), the curvature of the connection, the
coadjoint orbit symplectic form, and interaction terms that pair tangent vectors to
the orbit with the vertical projections of tangent vectors to the configuration space
(see also [92]). It was shown by [62] that the reduced space Pµ for P = T ∗Q is glob-
ally diffeomorphic to the bundle T ∗(Q/G)×Q/G Q/Gµ, where the bundle Q/Gµ is
regarded as a bundle over Q/G and in fact, the fibers of the map ρµ : Q/Gµ → Q/G
are diffeomorphic to the coadjoint orbit Oµ through µ for the G action on g∗.

These results simplify the study of these symplectic leaves. In particular, this
makes the injective version of cotangent bundle reduction transparent. Indeed,
there is a natural inclusion map T ∗(Q/G) ×Q/G Q/Gµ → T ∗(Q/Gµ), induced by
the dual of the tangent of the projection map ρµ. This inclusion map then realizes
the reduced space Pµ as a symplectic subbundle of T ∗(Q/Gµ).

1.2. Lagrangian and Hamiltonian reduction.
Routh reduction. Routh reduction for Lagrangian systems is classically associ-
ated with systems having cyclic variables (this is almost synonymous with having
Abelian symmetry group); modern accounts can be found in [3, 4] and in [61]. A key
feature of Routh reduction is that when one drops the Euler-Lagrange equations to
the quotient space associated with the symmetry, and when the momentum map is
constrained to a specified value (i.e., when the cyclic variables and their velocities
are eliminated using the given value of the momentum), then the resulting equa-
tions are in Euler-Lagrange form not with respect to the Lagrangian itself, but with
respect to the Routhian. Routh reduction is closely related to Routh’s treatment
of stability theory, which is a precursor to the energy-momentum method (see, for
instance, [56]).

Euler–Poincaré reduction. Another basic ingredient in Lagrangian reduction is
Euler–Poincaré reduction. Let L : TG → R be a left invariant Lagrangian. From
the viewpoint of reduced variational principles, Euler–Poincaré reduction is given
in the context of a reduced constrained variational principle (see [64], [61], [21] and
[22]):

δ

∫ t1

t0

l(ξ(t)) dt = 0,

where the variation of a curve ξ(t), t ∈ [t0, t1] in g is restricted to be of the form
δξ = η̇ + [ξ, η], and where l := L|g is the reduced Lagrangian (regarding g = TeG ⊂
TG), and η(t) is a curve in g such that η(ti) = 0, i = 0, 1. This reduced variational
principle gives the Euler–Poincaré equations

d

dt

∂l

∂ξ
= ad∗ξ

∂l

∂ξ
.
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Lie-Poisson variational principle. It was shown in [23] that the Lie–Poisson
equations can be also derived by the Lie–Poisson variational principle, which is
a Hamiltonian analogue of the reduced constrained variational principle for the
Euler–Poincaré equations. Let H : T ∗G → R be a left invariant Hamiltonian with
associated reduced Hamiltonian h : g∗ → R. The reduction of Hamilton’s phase
space principle yields the reduced principle

δ

∫ t1

t0

{〈µ(t), ξ(t)〉 − h(µ(t))} dt = 0.

In the above, the variation of a curve ξ(t), t ∈ [t0, t1] in g is given by δξ = η̇ + [ξ, η],
where η(t) ∈ g satisfies the boundary conditions η(ti) = 0, i = 0, 1. Then, it leads
to

ξ =
∂h

∂µ
,

dµ

dt
= ad∗ξµ,

which are called Lie–Poisson equations on V = g⊕ g∗.

Lagrange–Poincaré reduction. It was shown in [63, 64] how to generalize the
Routh theory to the nonabelian case as well as how to get the Euler-Poincaré
equations for matrix groups by the important technique of reducing variational
principles. This approach was motivated by related works of [19] and [20] . The
Euler-Poincaré variational structure was extended to general Lie groups in [10], and
[24] carried out a Lagrangian reduction theory that extends the Euler-Poincaré case
to arbitrary configuration manifolds. This work was in the context of the Lagrangian
analogue of Poisson reduction in the sense that no momentum map constraint is
imposed.

One of the things that makes the Lagrangian side of the reduction story inter-
esting is the lack of an obvious general category that is the Lagrangian analogue
of Poisson manifolds. Such a category, that of Lagrange-Poincaré bundles, is devel-
oped in [24], with the tangent bundle of a configuration manifold and a Lie algebra
as its most basic examples. That work also develops the Lagrangian analogue of
reduction for central extensions and, as in the case of symplectic reduction by stages
(see [57] and [58]), cocycles and curvatures enter in this context in a natural way.

The Lagrangian analogue of the bundle picture is the bundle (TQ)/G, which is a
vector bundle over Q/G; this bundle was studied in [24]. In particular, the equations
and variational principles are developed on this space. For Q = G, this reduces to
the Euler-Poincaré reduction and for G Abelian, it reduces to the classical Routh
procedure. A G–invariant Lagrangian L on TQ naturally induces a Lagrangian l on
(TQ)/G. The resulting equations inherited on this space are the Lagrange–Poincaré
equations (or the reduced Euler-Lagrange equations).

Recall that one can define a vector bundle isomorphism ΨA : TQ/G → T (Q/G)⊕
g̃ by choosing a principal connection A. Using the geometry of the bundle TQ/G ∼=
T (Q/G)⊕g̃, along with an affine connection on Q itself, one can write the Lagrange-
Poincaré equations intrinsically in terms of covariant derivatives D/Dt (see [24]) as

D

Dt

∂l

∂ẋ
(x, ẋ, ξ̄)− ∂l

∂x
(x, ẋ, ξ̄) = −

〈
∂l

∂ξ̄
(x, ẋ, ξ̄), B̃(ẋ, ·)

〉
,

D

Dt

∂l

∂ξ̄
(x, ẋ, ξ̄) = ad ∗ξ̄

∂l

∂ξ̄
(x, ẋ, ξ̄),
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where we call the first set of these equations the horizontal Lagrange-Poincaré equa-
tions, while the second the vertical Lagrange-Poincaré equations. The notation here
is as follows. Points in T (Q/G) ⊕ g̃ are denoted (x, ẋ, ξ̄), where ẋ = dx/dt and
ξ̄ = [q, ξ]G = A(q, q̇), and l(x, ẋ, ξ̄) denotes the reduced Lagrangian induced on the
quotient space from L. The bundle T (Q/G) ⊕ g̃ naturally inherits vector bundle
connections and D/Dt indicates the associated covariant derivatives. Also, B̃(ẋ, ·)
denotes the curvature of A thought of as an adjoint bundle valued two-form on
Q/G.

Hamilton–Poincaré variational principle. It was shown in [23] that a Hamil-
tonian analogue of Lagrange-Poincaré reduction can be carried out variationally,
leading to a reduced principle called the Hamilton–Poincaré variational principle.
It is clear that the dual of the quotient bundle TQ/G, that is, (TQ/G)∗ is canoni-
cally identified with the quotient bundle T ∗Q/G, where the action of a Lie group G
on T ∗Q is the cotangent lift of the action of G on Q. Recall that, choosing a prin-
cipal connection A as before, the vector bundle isomorphism ΨA defines by duality
a bundle isomorphism (Ψ−1

A )∗ : T ∗Q/G → T ∗(Q/G) ⊕ g̃∗, where g̃∗ = (Q × g∗)/G
is the associated bundle to g∗. For a given G–invariant Hamiltonian H : T ∗Q → R,
Hamilton’s phase space principle states that

δ

∫ t1

t0

{〈p(t), q̇(t)〉 −H(q(t), p(t))} dt = 0,

in which the endpoints q(t0) and q(t1) of q(t), t ∈ [t0, t1] are held fixed. This
principle induces Hamilton’s equations of motion. Note that the pointwise function
in the integrand, namely, F (q, q̇, p) = 〈p, q̇〉 −H(q, p) is defined on the Pontryagin
bundle TQ⊕T ∗Q over Q and also that G acts on TQ⊕T ∗Q by simultaneously left
translating on each factor by the tangent and cotangent lift. Since F is invariant
under the action of G because of the G–invariance of H, the function F drops to the
quotient f : TQ/G⊕T ∗Q/G → R, or equivalently, f : T (Q/G)⊕T ∗(Q/G)⊕Ṽ → R,
which is given by f(x, ẋ, y, ξ̄, µ̄) = 〈y, ẋ〉+

〈
µ̄, ξ̄
〉
−h(x, y, µ̄), where Ṽ = g̃⊕ g̃∗ and h

is the reduction of H from T ∗Q to T ∗(Q/G)⊕g̃∗. Then, the reduction of Hamilton’s
phase space principle gives the following Hamilton–Poincaré equations:

Dy

Dt
= −∂h

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
,

dx

dt
=

∂h

∂y
,

Dµ̄

Dt
= ad ∗ξ̄ µ̄,

ξ =
∂h

∂µ̄
.

1.3. Dirac reduction and the Hamilton-Pontryagin principle.
Some history of Dirac reduction procedures. It goes without saying that
reduction theory for Dirac structures should naturally include reduction of pre-
symplectic and Poisson structures and hence it has been naturally related to re-
duction of Hamiltonian systems. In fact, the development of reduction of Dirac
structures is a natural outgrowth of pre-symplectic and Poisson reduction.

In the context of Dirac structures, it was [31] who constructed a reduced Dirac
structure on the symplectic reduced space J−1(µ)/Gµ that is consistent with Poisson
reduction as developed by [60]. Symmetries of Dirac structures in the context of
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Hamiltonian systems were discussed in [36]. Reduction of Dirac structures and
implicit Hamiltonian systems was developed by [83, 6, 7] in a way that is consistent
with [31]. In these constructions, it was shown that a reduced Dirac structure fits
naturally into the context of symplectic reduction as well as Poisson reduction; if
a Dirac structure DP ⊂ TP ⊕ T ∗P on P is given by the graph of the bundle map
ω[ : TP → T ∗P associated with a symplectic structure ω, then a reduced Dirac
structure DPµ on Pµ = J−1(µ)/Gµ may be given by the graph of the reduced
bundle map associated with the reduced symplectic structure on Pµ, while if DP is
the graph of the bundle map B] : T ∗P → TP associated with a Poisson structure
B on P , then the reduced Dirac structure can be given by the graph of the bundle
map associated with the reduced Poisson structure on Pµ. In [8], singular reduction
of Dirac structures was developed in the context of implicit Hamiltonian systems.

Lie–Dirac reduction. Following [91], we start with the canonical Dirac structure
D on T ∗G defined as usual by the graph of the canonical symplectic structure ΩT∗G

or equivalently the canonical Poisson structure BT∗G. Using the left trivialization
map, λ̄ : T ∗G → G × g∗, we obtain a one-form θ on G × g∗ and a symplectic two-
form ω on G × g∗ as θ = λ̄∗ΘT∗G and ω = λ̄∗ΩT∗G, where ΘT∗G is the canonical
one-form on T ∗G and ΩT∗G = −dΘT∗G. The graph of the symplectic structure
ω = −dθ on G× g∗, then defines a Dirac structure D̄ on G× g∗. Again using left
trivialization, we may regard D̄ as a subset as follows:

D̄ ⊂ T (G× g∗)⊕ T ∗(G× g∗) ∼= (G× g∗)× (V ⊕ V ∗),

where V = g ⊕ g∗ and V ∗ = g∗ ⊕ g is its dual. On the right hand side, we regard
G× g∗ as the base and V ⊕ V ∗ as the fiber.

Using left invariance of the Dirac structure, namely, D̄(hg, µ) = D̄(g, µ) for all
h, g ∈ G and µ ∈ g∗, it induces a µ-dependent reduced Dirac structure

[D̄]G := D̄/G ⊂ (T (G× g∗)⊕ T ∗(G× g∗)) /G ∼= g∗ × (V ⊕ V ∗)

on the bundle T (G× g∗)/G ∼= g∗ × V over (G× g∗)/G = g∗.1

Explicitly, one computes that the reduced Dirac structure [D̄]G is given for each
µ ∈ g∗, by

[D̄]G(µ) = {((ξ, ρ), (ν, η)) ∈ V ⊕ V ∗ |
〈ν, ζ〉+ 〈σ, η〉 = [ω]G(µ)((ξ, ρ), (ζ, σ)) for all (ζ, σ) ∈ V },

where [ω]G := ω/G is a µ-dependent reduced symplectic form on g∗ × V , given for
each µ ∈ g∗ by

[ω]G(µ)((ξ, ρ), (ζ, σ)) = 〈σ, ξ〉 − 〈ρ, ζ〉+ 〈µ, [ξ, ζ]〉 .
The key difference between the Lie–Dirac reduction and other Dirac reduction

procedures previously mentioned is the fact that
Lie–Dirac reduction accommodates Lagrangian, Hamiltonian, and
a variational view of reduction simultaneously (see [91]). The goal
of the present paper is to do the same for the case of general Q.

To carry out Lie–Dirac reduction, one works with slightly larger spaces, as is already
evident in the reduction of Hamilton’s phase space principle, to give a variational
principle for the Lie-Poisson equations, which was developed in [23]. Specifically,
many schemes in the literature take the following view (or a variant of it): one starts

1This description of D̄ and its quotient [D̄]G is consistent with thinking of them as Dirac
structures on Dirac anchored vector bundles, as in [26].



96 HIROAKI YOSHIMURA AND JERROLD E. MARSDEN

with a manifold M , an almost Dirac structure on M , and a group G acting on M
(consistent with the Dirac structure). From these ingredients, one then constructs
a Dirac structure on M/G. For example, for M = T ∗G with G acting by group
multiplication, one gets g∗ with the Dirac structure associated with the Lie-Poisson
structure. However, this construction is too limited for our purposes and does not
allow one to include variational principles or the Lagrangian view. In our case of
mechanics on Lie groups, the basic difference in our approach is that instead of g∗,
the resulting reduced space is V = g⊕ g∗.

Euler-Poincaré-Dirac reduction. Again using the identification T ∗G ∼= G× g∗,
the µ-dependent reduced Dirac structure [D̄]G gives a reduction procedure for a
standard implicit Lagrangian system, called Euler-Poincaré-Dirac reduction, which
provides implicit Euler-Poincaré equations (see §5 of [91] for details).

Let L : TG → R be a Lagrangian, possibly degenerate, and let D be the canonical
Dirac structure on T ∗G, let X : TG ⊕ T ∗G → TT ∗G be a partial vector field—
that is, it assigns a vector in TpT

∗Q to each point (g, v, p) ∈ TG ⊕ T ∗G—and let
(L,D,X) be a standard implicit Lagrangian system, which satisfies this condition:
for each (g, v) ∈ TG and setting (g, p) = FL(g, v),

(X(g, v, p),dE(g, v, p)|TP ) ∈ D(g, p),

where E(g, v, p) := 〈p, v〉 − L(g, v) is the generalized energy on TG ⊕ T ∗G and
P = FL(TG) ⊂ T ∗G (we assume that P is a smooth submanifold).

The reduced Lagrangian l : g → R is defined by l = L|g where we regard
g = TeG ⊂ TG. Alternatively, using the left trivialization map λ : TG → G × g,
one can define the reduced Lagrangian l : g → R by l = L̄|g, where L̄ = L ◦ λ−1.
Further, let Ē : G× V → R be the trivialized generalized energy associated to E in
view of TG⊕T ∗G ∼= G×V . The reduction of a standard implicit Lagrangian system
(L,D,X) is given by a triple (l, [D̄]G, [X̄]G) that satisfies, for each η = g−1v ∈ g
and with µ = ∂l/∂η ∈ [P̄ ]G, the condition

([X̄]G(η, µ), [dĒ]G(η, µ)|[TP̄ ]G) ∈ [D̄]G(µ),

where P̄ = FL̄(G× g) ⊂ G× g∗, and since the map FL̄ is equivariant, the reduced
Legendre transformation is given by the quotient map Fl := [FL̄]G such that

[P̄ ]G = Fl(g) ⊂ g∗,

and hence

[T P̄ ]G ∼= g× T [P̄ ]G ⊂ g∗ × V.

Reduction of the trivialized partial vector field X̄ : G×V → G× g∗×V is given by
[X̄]G := X̄/G : V → g∗× V , which is denoted, for each (η, µ) ∈ V , by [X̄]G(η, µ) =
(µ, ξ, µ̇), where ξ = g−1ġ and µ̇ = dµ/dt are functions of (η, µ). The reduced
differential of Ē is the map [dĒ]G := dĒ/G : V → g∗× (V ⊕V ∗), which is given, in
coordinates, by [dĒ]G = (η, µ, 0, µ− ∂l/∂η, η) , where T ∗(G×V )/G ∼= g∗×(V ⊕V ∗).
Thus, its restriction to [T P̄ ]G ⊂ g∗ × V is given by [dĒ]G|[TP̄ ]G = (µ, 0, η) . This
reduction procedure produces the implicit Euler-Poincaré equations:

µ =
∂l

∂η
, ξ = η,

dµ

dt
= ad∗ξµ.
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Lie-Poisson-Dirac reduction. Given a left invariant Hamiltonian H : T ∗G → R,
we can form a standard implicit Hamiltonian system, namely the triple (H,D,X),
which satisfies, for each (g, p) ∈ T ∗G,

(X(g, p),dH(g, p)) ∈ D(g, p),

where X : T ∗G → TT ∗G is a vector field on T ∗G. Let H̄ : G × g∗ → R be the
trivialized Hamiltonian defined by H̄ = H ◦ λ̄−1 and let h = H̄|g∗ : g∗ → R be the
reduced Hamiltonian.

Let X̄ : G×g∗ → (G×g∗)×V be the trivialized vector field and let [X̄]G : g∗ →
g∗×V be the partial vector field given by [X̄]G = (µ, ξ(µ), µ̇), where ξ(µ) = ∂h/∂µ.
Then, reduction of a standard implicit Hamiltonian system (H,D,X) may be given
by a triple (h, [D̄]G, [X̄]G) that satisfies, at fixed µ ∈ g∗,

([X̄]G(µ), [dH̄]G(µ)) ∈ [D̄]G(µ),

where [dH̄]G := dH̄/G : g∗ → g∗ × V ∗ is reduction of the differential of H̄, which
is locally given by [dH̄]G = (µ, 0, ∂h/∂µ). This induces Lie-Poisson equations on
V = g⊕ g∗ as

ξ =
∂h

∂µ
,

dµ

dt
= ad∗ξµ.

This construction of Lie-Poisson equations is consistent with the Lie-Poisson varia-
tional principle mentioned before. As to the details, refer to §3 and §6 of [91].

Nonholonomic systems and applications. There are many research works on
reduction of nonholonomic systems from many point of views and we can not survey
them in a comprehensive way here, but we would like to mention the following works
including applications to control relevant with the present paper: [48, 5, 82, 10, 49,
50, 17, 18, 28, 25, 9, 27, 11].

Here, we only mention our previous work on Lie-Dirac reduction with nonholo-
nomic constraints; namely, it was shown in [91] that Euler-Poincaré-Dirac reduction
as well as Lie-Poisson-Dirac reduction can be extended to the case with a G-invariant
distribution ∆G ⊂ TG associated with the Lie-Dirac reduction with nonholonomic
constraints, which may appear in nonholonomic systems in rigid body mechanics,
called Suslov problems (see, for instance [93]). This reduction procedure is called
Euler-Poincaré-Suslov reduction that induces implicit Euler-Poincaré-Suslov equa-
tions as well as Lie-Poisson-Suslov reduction that yields implicit Lie-Poisson-Suslov
equations respectively.

In this paper, we primarily study the case in which there are no nonholonomic
constraints, since we are interested in reduction of standard implicit Lagrangian
systems and standard implicit Hamiltonian systems. Of course, the present reduc-
tion theory may be readily extended to the case in which nonholonomic constraints
are given as in the above case of Lie-Dirac reduction, however, we will study the
Dirac cotangent bundle reduction with nonholonomic constraints in another paper.

Hamilton-Pontryagin variational principle on Lie groups. Following §3 of
[91], we review the reduced Hamilton-Pontryagin principle for the special case Q =
G.
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Letting l : g → R be the reduced Lagrangian, the reduced Hamilton-Pontryagin
principle is given by

δ

∫ t1

t0

{l(η(t)) + 〈µ(t), ξ(t)− η(t)〉} dt = 0,

where ξ ∈ g, η ∈ g, and µ ∈ g∗. The variation of ξ(t), t ∈ [t0, t1] is computed
exactly as in Euler-Poincaré theory to be given by δξ(t) = ζ̇(t)+ [ξ(t), ζ(t)], so that
ζ(t) ∈ g satisfies ζ(ti) = 0, i = 0, 1. Then, it leads to the implicit Euler–Poincaré
equations on V = g⊕ g∗,

µ =
∂l

∂η
, ξ = η,

dµ

dt
= ad∗ξµ.

We remark that in this reduced variational principle for implicit Euler-Poincaré
equations, the reduced Lagrangian l on g may be degenerate. Needless to say, this
Hamilton-Pontryagin variational principle is consistent with the Euler-Poincaré-
Dirac reduction.

Discrete mechanics, variational integrators and applications. In conjunc-
tion with variational integrators in discrete mechanics (see, for instance, [69]), a
numerical scheme for time integration of Lagrangian dynamical systems was pro-
posed by [45] in the context of discrete Hamilton-Pontryagin principle and [12]
developed the structure-preserving time-integrators on Lie groups for rigid body
systems based on Hamilton-Pontryagin principle. Those variational integrators can
incorporate holonomic constraints via Lagrange multipliers, nonconservative forces
as well as discrete optimal control. The construction of geometric variational inte-
grator for unconstrained Lagrangian systems on Lie algebroids was also shown in
[55] and a variational integrator for the case of nonholonomic systems was estab-
lished in [40].

Relations with Lie algebroids and Courant algebroids. It was shown by
Weinstein in [86] that Lagrangian and Hamiltonian systems can be formulated on
Lie algebroids and also that the discrete analogue of Lagrangian systems can be
developed on Lie groupoids, where he asked whether it is possible to develop a
formalism on Lie algebroids similar to the ordinary Lagrangian formalism given in
[46]. This was done by [70]. Further, a geometric description on Lie algebroids of
Lagrangian systems with nonholonomic constraints was given in [29].

As mentioned previously, it was shown in [24] that the Lagrange-Poincaré equa-
tions can be formulated in the context of the bundle TQ/G ∼= T (Q/G)⊕g̃ over Q/G,
which falls into the category of the Lagrange-Poincaré bundles. It is known that
there is a Lie algebroid structure on the quotient bundle TQ/G ∼= T (Q/G) ⊕ g̃ →
Q/G, also called the Atiyah quotient bundle (see, [54]). However, the category of
Lagrange-Poincaré bundles does not make direct use of groupoids or algebroids.
Recently, Lagrangian and Hamiltonian descriptions of mechanics on Lie algebroids
were shown by [34], where a geometric formulation of the Lagrange-Poincaré and
Hamilton-Poincaré equations was obtained.

Following remarks in [91], let us explain a few relationships between Lie–Dirac
reduction and the reduction of Courant algebroids. Let P be a manifold with a free
and proper action by G, so that it is also a G-principal bundle over B = P/G. One
can consider the bundle

F = (TP ⊕ T ∗P )/G = (TP/G)⊕ (T ∗P/G)
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over B = P/G, where (TP/G)∗ ∼= T ∗P/G. It is easily checked that the natural lift
of the G-action to TP ⊕T ∗P preserves the Courant paring on TP ⊕T ∗P , as well as
the Courant bracket, which was introduced in [31]. Thus, F is naturally a Courant
algebroid over B in the general sense of [53]. While this Courant algebroid is not
of the form TB ⊕ T ∗B, one can still talk about Dirac structures in F . In fact, it is
a general fact that if D is a G-invariant Dirac structure on P ; that is, D is a subset
of TP ⊕T ∗P , then [D]G := D/G is a Dirac subbundle of F (and [D]G is integrable
if D is, since G preserves the Courant bracket).

For the case P = T ∗G, in view of T ∗G ∼= G× g∗, one gets a Courant algebroid

F = g∗ × (V ⊕ V ∗),

which is a trivial bundle over B = g∗ and where V = g ⊕ g∗, V ∗ = g∗ ⊕ g is the
dual of V , and V ⊕V ∗ is just a fiber of F over g∗. Let D̄ be the Dirac structure on
G × g∗. Then, the quotient [D̄]G := D/G, viewed as a structure in the bundle F
over B, gives a µ-dependent Dirac structure on g∗×V , where µ ∈ g∗. The reduction
of a Dirac structure on P = T ∗G induced from a nontrivial distribution on G can be
also understood in the above context as remarked in [91], although the Lie-Dirac
reduction construction itself does not use groupoids or algebroids. Of course, the
reduced Dirac structure associated with the canonical Dirac structure is integrable
with respect to the natural Courant bracket in F , whereas the one associated with
the induced Dirac structure from a nontrivial distribution is not. Some relevant
works that deal with the reduction of Courant algebroids and associated Dirac
structures can be found in, for instance, [13, 14], where the authors focus mainly
on so-called “exact” Courant algebroids; in the set up above, their reduction would
yield TB ⊕ T ∗B, rather than (TP/G)⊕ (T ∗P/G).

Outline of the paper. For readers’ convenience, we summarize the reduction
procedures associated with Dirac cotangent bundle reduction by the chart shown
in Fig. 1.

First, we provide a brief review for Dirac structures, implicit Lagrangian systems
and the Hamilton-Pontryagin principle.

Second, to develop our theory of Dirac cotangent bundle reduction for the case
in which a Lie group G acts freely and properly on Q, namely, in which there is a
principal bundle Q → Q/G, we establish the bundle picture for TQ ⊕ T ∗Q. That
is, we develop the geometric structure of the quotient space (TQ ⊕ T ∗Q)/G via
a bundle isomorphism of the form (TQ ⊕ T ∗Q)/G → T (Q/G) ⊕ T ∗(Q/G) ⊕ Ṽ
associated with a chosen principal connection on the principal bundle.

Third, we explore geometry of variations of curves in the reduced Pontryagin bun-
dle (TQ⊕T ∗Q)/G ∼= T (Q/G)⊕T ∗(Q/G)⊕Ṽ by making extensive use of the ideas as-
sociated with horizontal and vertical variations of curves in Q developed in [24, 23].
Using this, we establish a reduction procedure for the Hamilton-Pontryagin varia-
tional principle, which enables one to formulate an implicit analogue of Lagrange-
Poincaré equations, namely, horizontal and vertical implicit Lagrange-Poincaré equa-
tions, corresponding to the horizontal and vertical variations respectively. This may
be regarded as a natural extension of the case of the variational theory developed
in [91].

Further, we develop Dirac cotangent bundle reduction, which is a reduction proce-
dure for the canonical Dirac structure D on T ∗Q, by extending Lie-Dirac reduction
theory for the case Q = G to the general case of the principal bundle Q → Q/G. To
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Figure 1. Dirac cotangent bundle reduction

do this, we introduce an isomorphism T ∗Q ∼= Q̃∗×g∗ (an unreduced version of Stern-
berg space) to develop a G-invariant Dirac structure D̄ ⊂ T (Q̃∗×g∗)⊕T ∗(Q̃∗×g∗)
on Q̃∗ × g∗. Under the isomorphisms T ∗Q/G ∼= (Q̃∗ × g∗)/G ∼= T ∗(Q/G)⊕ g̃∗ and
TT ∗Q/G ∼= T (Q̃∗ × g∗)/G ∼= TT ∗(Q/G) ⊕ (g̃∗ × Ṽ ), it is shown that, by taking
the quotient of D̄ by the action of G, one can obtain a gauged Dirac structure
[D̄]G = [D̄]Hor

G ⊕ [D̄]Ver
G on the bundle TT ∗(Q/G) ⊕ (g̃∗ × Ṽ ) over T ∗(Q/G) ⊕ g̃∗,

where [D̄]Hor
G is a horizontal Dirac structure on the bundle TT ∗(Q/G) over T ∗(Q/G)

and [D̄]Ver
G is a vertical Dirac structure on the bundle g̃∗ × Ṽ over g̃∗.

Finally, it is shown how the gauged Dirac structure [D̄]G = [D̄]Hor
G ⊕[D̄]Ver

G accom-
modates a reduction procedure called Lagrange-Poincaré-Dirac reduction, which is
the reduction of standard implicit Lagrangian systems (for which the Lagrangian
is possibly degenerate) for the case of principal bundles, which naturally induces
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horizontal and vertical implicit Lagrange-Poincaré equations, consistent with the re-
duction of the Hamilton-Pontryagin variational principle. Making use of the gauged
Dirac structure, we also develop a reduction procedure for the case in which a regular
Lagrangian is given, or a Hamiltonian is given, which is called Hamilton-Poincaré-
Dirac reduction that induces horizontal and vertical Hamilton-Poincaré equations,
consistent with the Hamilton-Poincaré variational principle.

2. Some preliminaries.
Dirac structures. We first recall the definition of a Dirac structure on a vector
space V , say finite dimensional for simplicity (see, [32]). Let V ∗ be the dual space
of V , and 〈· , ·〉 be the natural paring between V ∗ and V . Define the symmetric
paring 〈〈·, ·〉〉 on V ⊕ V ∗ by

〈〈 (v, α), (v̄, ᾱ) 〉〉 = 〈α, v̄〉+ 〈ᾱ, v〉,

for (v, α), (v̄, ᾱ) ∈ V ⊕ V ∗. A Dirac structure on V is a subspace D ⊂ V ⊕ V ∗ such
that D = D⊥, where D⊥ is the orthogonal of D relative to the pairing 〈〈·, ·〉〉.

Now, let P be a given manifold and let TP ⊕ T ∗P denote the Whitney sum
bundle over P , namely, the bundle over the base P and with fiber over the point
x ∈ P equal to TxP ×T ∗x P . In this paper, we shall call a subbundle D ⊂ TP ⊕T ∗P
a Dirac structure on the manifold P , or a Dirac structure on the bundle TP → P ,
when D(x) is a Dirac structure on the vector space TxP at each point x ∈ P . A
given two-form ΩP on P together with a distribution ∆P on P determines a Dirac
structure on P as follows: let x ∈ P , and define

D(x) = {(vx, αx) ∈ TxP × T ∗x P | vx ∈ ∆P (x), and

αx(wx) = Ω∆P
(vx, wx) for all wx ∈ ∆P (x)},

(1)

where Ω∆P
is the restriction of ΩP to ∆P .

We call a Dirac structure D closed or integrable if the condition

〈£X1α2, X3〉+ 〈£X2α3, X1〉+ 〈£X3α1, X2〉 = 0 (2)

is satisfied for all pairs of vector fields and one-forms (X1, α1), (X2, α2), (X3, α3)
that take values in D, where £X denotes the Lie derivative along the vector field
X on P .

Remark 1. Let Γ(TP ⊕ T ∗P ) be a space of local sections of TP ⊕ T ∗P , which is
endowed with the skew-symmetric bracket [ , ] : Γ(TP ⊕ T ∗P )× Γ(TP ⊕ T ∗P ) →
Γ(TP ⊕ T ∗P ) defined by

[(X1, α1), (X2, α2)] := ([X1, X2] ,£X1α2 −£X2α1 + d 〈α2, X1〉)
= ([X1, X2] , iX1dα2 − iX2dα1 + d 〈α2, X1〉) .

This bracket is the one originally developed in [31] and it does not necessarily satisfy
the Jacobi identity. It was shown by [36] that the integrability condition of the Dirac
structure D ⊂ TP ⊕ T ∗P given in equation (2) can be expressed as

[Γ(D),Γ(D)] ⊂ Γ(D),

which is the closedness condition including the Courant bracket (see also [37] and
[43]).
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Induced Dirac structures. One of the most important and interesting Dirac
structures in mechanics is one that is induced from kinematic constraints, whether
holonomic or nonholonomic. Such constraints are generally given by a distribution
on a configuration manifold.

Let Q be a configuration manifold. Let TQ be the tangent bundle and T ∗Q be
the cotangent bundle. Let ∆Q ⊂ TQ be a regular distribution on Q and define a
lifted distribution on T ∗Q by

∆T∗Q = (TπQ)−1 (∆Q) ⊂ TT ∗Q,

where πQ : T ∗Q → Q is the canonical projection so that its tangent is a map
TπQ : TT ∗Q → TQ. Let ΩT∗Q be the canonical two-form on T ∗Q. The induced
Dirac structure D∆Q

on T ∗Q is the subbundle of TT ∗Q ⊕ T ∗T ∗Q, whose fiber is
given for each pq ∈ T ∗Q as

D∆Q
(pq) = {(vpq

, αpq
) ∈ Tpq

T ∗Q× T ∗pq
T ∗Q | vpq

∈ ∆T∗Q(pq), and

αpq (wpq ) = Ω∆Q
(pq)(vpq , wpq ) for all wpq ∈ ∆T∗Q(pq)},

where Ω∆Q
is defined by restricting ΩT∗Q to ∆T∗Q. This is, of course, a special

instance of the construction in equation (1).

Implicit Lagrangian systems. Let us recall the definition of implicit Lagrangian
systems (for further details, see [87]).

Let L : TQ → R be a Lagrangian, possibly degenerate. Given an induced
Dirac structure D∆Q

on T ∗Q and a partial vector field X : TQ⊕T ∗Q → TT ∗Q, an
implicit Lagrangian system is the triple (L,D∆Q

, X) that satisfies, for each (q, v, p) ∈
TQ⊕ T ∗Q and with P = FL(TQ), namely, (q, p) = (q, ∂L/∂v),

(X(q, v, p),dE(q, v, p)|TP ) ∈ D∆Q
(q, p), (3)

where E : TQ⊕ T ∗Q → R is the generalized energy defined by E(q, v, p) = 〈p, v〉 −
L(q, v) and the differential of E is the map dE : TQ ⊕ T ∗Q → T ∗(TQ ⊕ T ∗Q)
is given by dE = (q, v, p,−∂L/∂q, p − ∂L/∂v, v). Since p = ∂L/∂v holds on P ,
the restriction dE(q, v, p)|T(q,p)P = (−∂L/∂q, v) is a function on TP , which may be
understood in the sense that T(q,p)P is naturally included in T(q,v,p)(TQ⊕ T ∗Q).

Local representation. Recall that the partial vector field X : TQ⊕T ∗Q → TT ∗Q
is a map that assigns to each point (q, v, p) ∈ TQ⊕ T ∗Q, a vector in TT ∗Q at the
point (q, p) ∈ T ∗Q; we write X as

X(q, v, p) = (q, p, q̇, ṗ),

where q̇ = dq/dt and ṗ = dp/dt are understood to be functions of (q, v, p).
Using the local expression of the canonical two-form ΩT∗Q on T ∗Q, namely

ΩT∗Q ((q, p, u1, α1), (q, p, u2, α2)) = 〈α2, u1〉 − 〈α1, u2〉 ,
one sees that the induced Dirac structure may be locally expressed by

D∆Q
(q, p) = {((q, p, q̇, ṗ), (q, p, α, w)) | q̇ ∈ ∆(q), w = q̇, and α + ṗ ∈ ∆◦(q)} ,

where ∆◦(q) ⊂ T ∗q Q is the polar of ∆(q). Employing the local expressions for the
canonical symplectic form and the Dirac differential, the condition for an implicit
Lagrangian system (X,dE|TP ) ∈ D∆Q

reads〈
−∂L

∂q
, u

〉
+ 〈α, v〉 =

〈
α,

dq

dt

〉
−
〈

dp

dt
, u

〉
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for all u ∈ ∆(q) and all α, where p = ∂L/∂v (equality of base points) and (u, α)
are the local representatives of a point in T(q,p)T

∗Q. Then, we obtain the local
representation of an implicit Lagrangian system is given by

p =
∂L

∂v
,

dq

dt
= v ∈ ∆(q),

dp

dt
− ∂L

∂q
∈ ∆◦(q).

Notice that if a partial vector field X(q, v, p) = (q, p, q̇, ṗ) satisfies the Dirac condi-
tion (X,dE|TP ) ∈ D∆Q

, then the Legendre transformation p = ∂L/∂v is consistent
with the equality of base points and that the Dirac condition itself gives the second
order condition q̇ = v.

In this paper, we are primarily interested in the reduction theory for the case of
the canonical Dirac structure on a cotangent bundle and, given a Lagrangian, with
its associated standard implicit Lagrangian systems; namely, the case in which no
kinematic constraint is imposed, i.e., ∆Q = TQ, and the general reduction theory
of implicit Lagrangian systems with nonholonomic constraints will be developed in
another paper.

The standard implicit Lagrangian system can be locally expressed as

p =
∂L

∂v
,

dq

dt
= v,

dp

dt
=

∂L

∂q
,

which we shall call the implicit Euler–Lagrange equations. Note that the implicit
Euler–Lagrange equations include the Euler–Lagrange equations ṗ = ∂L/∂q, the
Legendre transformation p = ∂L/∂v and the second–order condition q̇ = v.

Remark 2. In [87], an implicit Lagrangian system is given by a triple (L,D∆Q
, X),

which satisfies, for each v ∈ ∆Q(q),

(X(q, v, p),DL(q, v)) ∈ D∆Q
(q, p), (4)

where (q, p) = FL(q, v) for v ∈ ∆Q(q) and DL = γQ ◦ dL : TQ → T ∗T ∗Q is the
Dirac differential of the Lagrangian, where γQ : T ∗TQ → T ∗T ∗Q; (q, δq, δp, p) 7→
(q, p,−δp, δq) is the natural symplectomorphism originally developed by [81]. Since
the Dirac differential of a given Lagrangian L, namely, DL takes its value in P =
FL(∆Q) ⊂ T ∗Q such that, for each (q, v) ∈ ∆Q ⊂ TQ and with the Legendre
transformation (q, p) = (q, ∂L/∂v),

DL(q, v) =
(
−∂L

∂q

)
dq + v dp ∈ T ∗P ⊂ T ∗T ∗Q,

the use of the Dirac differential of L implies that it contains the generalized Legendre
transformation. It follows from [88] that the Dirac differential of a given Lagrangian
L can be also understood in terms of the differential of E(q, v, p) = 〈p, v〉 − L(q, v)
on the Pontryagin bundle M = TQ ⊕ T ∗Q restricted to TP , namely, DL(q, v) =
dE(q, v, p)|TP . That is, the condition given in equation (4) is equivalent with the
one given in equation (3).

Pullback and pushforward of Dirac structures. Following [16] and [15], we
introduce the pushforward and pullback of Dirac structures.

Let V and W be vector spaces and let Dir(V ) and Dir(W ) be sets of Dirac
structures on V and W respectively. Let φ : V → W be a linear map.

Now, the forward map Fφ : Dir(V ) → Dir(W ) is defined by, for DV ∈ Dir(V ),

Fφ(DV ) = {(φ(x), β) | x ∈ V, β ∈ W ∗, (x, φ∗β) ∈ DV }
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and the backward map Bφ : Dir(W ) → Dir(V ) is defined by, for DW ∈ Dir(W ),

Bφ(DW ) = {(x, φ∗β) | x ∈ V, β ∈ W ∗, (φ(x), β) ∈ DW }.
Given DV ∈ Dir(V ) and DW ∈ Dir(W ), a linear map φ : V → W is called a

forward Dirac map if
Fφ(DV ) = DW .

On the other hand, φ : V → W is called a backward Dirac map if

Bφ(DW ) = DV .

Note that the maps Fφ and Bφ are not, in general, inverse to each other and
also that the pushforward of the Dirac structure DV sometimes may be denoted as
φ∗DV = Fφ(DV ) and the pullback of the Dirac structure DW as φ∗DW = Bφ(DW ).

Dirac structures on the Pontryagin bundle. Let TQ⊕T ∗Q be the Pontryagin
bundle over Q. Let Tϕ : T (TQ ⊕ T ∗Q) → TT ∗Q be the tangent map of the
projection ϕ : TQ⊕T ∗Q → T ∗Q. Given the induced Dirac structure D∆Q

on T ∗Q,
we can define a Dirac structure DTQ⊕T∗Q on TQ ⊕ T ∗Q by using the backward
Dirac map, namely, BTϕ : Dir(TT ∗Q) → Dir(T (TQ⊕ T ∗Q)) as

DTQ⊕T∗Q = BTϕ(D∆Q
),

which is given, for each point (q, v, p) ∈ TQ⊕ T ∗Q, by

DTQ⊕T∗Q(q, v, p) = { ((q̇, v̇, ṗ), T ∗ϕ(α, u)) |
(q̇, v̇, ṗ) ∈ T(q,v,p)(TQ⊕ T ∗Q), (α, u) ∈ T ∗ϕ(q,v,p)T

∗Q, (5)

(Tϕ(q̇, v̇, ṗ), (α, u)) ∈ D∆Q
(ϕ(q, v, p)) }.

In the above, we note that the Dirac structure D∆Q
on T ∗Q can be regarded as a

linear Dirac structure on the vector space Tpq
T ∗Q at each pq ∈ T ∗Q.

Recall that an implicit Lagrangian system is given by a triple (L,D∆Q
, X), which

satisfies the condition, for each (q, v, p) ∈ TQ⊕ T ∗Q,

(X(q, v, p),dE(q, v, p)|TP ) ∈ D∆Q
(ϕ(q, v, p)),

where E(q, v, p) = 〈p, v〉 − L(q, v) is the generalized energy on TQ ⊕ T ∗Q. Notice
that the partial vector field X : TQ⊕ T ∗Q → TT ∗Q has the property

X(q, v, p) = Tϕ(q̇, v̇, ṗ) = (q, p, q̇, ṗ) ∈ TT ∗Q,

while

dE(q, v, p)|TP =
(
−∂L

∂q

)
dq + v dp ∈ T ∗P ⊂ T ∗T ∗Q,

where p = ∂L/∂v holds on P = FL(∆Q). Hence, in view of equation (5), it follows
that, for each point (q̇, v̇, ṗ) ∈ T(q,v,p)(TQ⊕ T ∗Q) and with p = ∂L/∂v,

((q̇, v̇, ṗ), T ∗ϕdE(q, v, p)|TP ) ∈ DTQ⊕T∗Q(q, v, p)

and thus
((q̇, v̇, ṗ),dE(q, v, p)) ∈ DTQ⊕T∗Q(q, v, p).

Remark 3. In the above formulation, the Dirac structure DTQ⊕T∗Q ⊂ T (TQ ⊕
T ∗Q)⊕T ∗(TQ⊕T ∗Q) on the Pontryagin bundle TQ⊕T ∗Q can be also defined by
using a presymplectic form ΩTQ⊕T∗Q on TQ⊕ T ∗Q that is defined by pulling back
the canonical symplectic two-form from T ∗Q to TQ⊕T ∗Q as ΩTQ⊕T∗Q = ϕ∗ ΩT∗Q.
In this context, it is worth noting that our approach to implicit Lagrangian systems
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is closely related with the approach developed in [78] for the study of degenerate La-
grangian systems. It is also noteworthy that [30] developed the geometric approach
to vakonomic and nonholonomic mechanics in the general context of [78]. It will be
shown that the Dirac structure on the Pontryagin bundle and implicit Lagrangian
systems can be regarded in the general context of Dirac anchored vector bundles
and the associated Dirac dynamical systems in [26].

The Hamilton-Pontryagin principle. We next show how the implicit Euler–
Lagrange equations can be also obtained from the Hamilton-Pontryagin principle.
Define the action integral on the space of curves (q(t), v(t), p(t)), t ∈ [t0, t1] in
TQ⊕ T ∗Q by

F(q(t), v(t), p(t)) =
∫ t1

t0

{L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉} dt,

where q̇(t) = dq(t)/dt. The Hamilton-Pontryagin principle is the condition of sta-
tionarity of F: δF = 0. It follows that

δF(q, v, p) =
∫ t1

t0

{
〈δp, q̇ − v〉+

〈
−ṗ +

∂L

∂q
, δq

〉
+
〈
−p +

∂L

∂v
, δv

〉}
dt + 〈p, δq〉

∣∣∣∣t1
t0

= 0,

which is to be satisfied for all δq, δv and δp with appropriate boundary conditions.
Keeping the endpoints q(t0) and q(t1) of q(t) fixed, we obtain the implicit Euler–
Lagrange equations.

Remark 4. Using the generalized energy E(q, v, p) = 〈p, v〉 − L(q, v), it is clear
that the Hamilton-Pontryagin principle can be also represented by the condition of
stationarity of the action integral

F(q(t), v(t), p(t)) =
∫ t1

t0

{〈p(t), q̇(t)〉 − E(q(t), v(t), p(t))} dt.

3. The bundle pictures of Pontryagin bundles. This section develops the fun-
damental ingredients that will be employed in this paper to study the bundle pic-
tures associated with the reduced Pontryagin bundle (TQ⊕T ∗Q)/G. Key amongst
these is an isomorphism (to be defined) Ψ̃A = ΨA ⊕ (Ψ−1

A )∗ : (TQ ⊕ T ∗Q)/G →
T (Q/G)⊕T ∗(Q/G)⊕Ṽ , where Ṽ = g̃⊕g̃∗ is the associated bundle to V = g⊕g∗. Us-
ing this and building on the ideas in the theory of Lagrangian reduction ([64, 24]) as
well as of the Hamiltonian reduction ([23, 58]), we will develop “Dirac cotangent bun-
dle reduction”, together with reduction of implicit Lagrangian systems. Specifically,
we note that the isomorphism ΨA : TQ/G → T (Q/G)⊕ g̃ is used in the Lagrangian
reduction by stages, while the isomorphism (Ψ−1

A )∗ : T ∗Q/G → T ∗(Q/G) ⊕ g̃∗ is
used in Hamiltonian reduction.

Principal bundle and principal connection. Let G be a Lie group acting freely
and properly on a manifold Q and π : Q → Q/G be the corresponding principal
bundle. Let Φ : G×Q → Q be the left action: for g ∈ G and q ∈ Q,

Φ(g, q) ≡ Φg(q) ≡ Lgq ≡ g · q ≡ gq.

In this paper, the concatenation notation gq will be most commonly used. Further,
the tangent and cotangent lift of this action will be denoted gvq ≡ TqΦg · vq and
gαq ≡ T ∗gqΦg−1 · αq, where vq ∈ TqQ and αq ∈ T ∗q Q. We will also use the notations
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π(q) = [q]G = [q] for the equivalence class of q ∈ Q. A principal connection A on Q
is a Lie algebra valued one form A : TQ → g with the properties:

(i) A(ξq) = ξ for all ξ ∈ g; namely, A takes infinitesimal generators of a given
Lie algebra element to that element, and

(ii) A is equivariant; that is, A(TqΦg · vq) = Adg(A(vq)),where Adg denotes the
adjoint action of G on g.

In the above, ξq ≡ ξQ(q) and

ξq =
d

dt

∣∣∣∣
t=0

(exp tξ)q.

The restriction of A to the tangent space TqQ is denoted by Aq ≡ A(q) : TqQ → g
and the horizontal space of the connection defined at q ∈ Q is given by Horq =
KerAq, namely,

Horq = {vq ∈ TqQ | Aq(vq) = 0}.
On the other hand, the vertical space at q ∈ Q is

Verq = Ker Tqπ.

Then, at any point q ∈ Q, the tangent space TqQ can be decomposed as

TqQ = Horq ⊕Verq.

Hence the vertical and horizontal components of a vector vq ∈ TqQ may be given
as

Verq(vq) = Aq(vq)q and Horq(vq) = vq −Aq(vq)q,
which induces a decomposition TQ = Hor(TQ) ⊕ Ver(TQ), where Hor(TQ) =
∪q∈QHorq and Ver(TQ) = ∪q∈QVerq respectively denote the horizontal and vertical
subbundle of TQ, which are invariant under the action of G. A vector vq is called
horizontal if its vertical component is zero, namely, A(vq) = 0, while it is called
vertical if its horizontal component is zero, i.e., Tqπ(vq) = 0.

Horizontal lifts. The projection map Tπ : TQ → T (Q/G) defines, at each point
q ∈ Q, an isomorphism from the horizontal space Horq to the tangent space to the
base Tπ(q)(Q/G) as

Tqπ|Horq : Horq → Tπ(q)(Q/G)
and its inverse is called the horizontal lift. Hence, the horizontal lift of a tangent
vector vx ∈ Tx(Q/G) at q = π−1(x) ∈ Q is given by

vh
q = (Tqπ|Horq)−1(vx).

Given any vector field X on Q/G, there is a unique vector field Xh on Q that is
horizontal and that is π-related to X such that at each point q,

Tqπ ·Xh(q) = X(π(q)),

where the vertical part is zero as

A(Xh
q )q = 0.

The above relation of being π-related induces bracket-preserving as

Hor[Xh, Y h] = [X, Y ]h,

where X and Y are vector fields on Q/G.
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For any curve x(t) in Q/G, where t ∈ [t0, t1], the family of horizontal lifts is
denoted xh. The definition is given as follows. For any point q0 ∈ π−1(x0), where
x0 = x(τ0), for some τ0 ∈ [t0, t1], the horizontal lift of x(t), which at t = τ0 coincides
with q0, is uniquely determined by requiring its tangent to be a horizontal vector.
We shall denote this curve by xh

q0
, and is defined on [t0, t1].

Let q(t), t ∈ [t0, t1] be a curve in Q, and choose τ0 ∈ [t0, t1]. Then, there is
a unique horizontal curve qh(t) such that qh(τ0) = q(τ0) and π(qh(t)) = π(q(t))
for all t ∈ [t0, t1]. Therefore, we can define a curve gq(t), t ∈ [t0, t1] in G by the
decomposition

q(t) = gq(t)qh(t) (6)

for all t ∈ [t0, t1]. Note that gq(τ0) is the identity and also that if x(t) = π(q(t))
and q0 = q(τ0) then qh(t) = xh

q0
(t).

The time derivative of equation (6) with respect to t induces

q̇(t) = ġq(t)qh(t) + gq(t)q̇h(t).

In the above, for ug ∈ TgG and q ∈ Q, ugq means the derivative of the orbit map
g 7→ gq in the direction of ug to give an element of TgqQ.

It follows from definition of a horizontal vector that A(gq(t)q̇h(t)) = 0. Recall
that A(ξq) = ξ for ξ ∈ g and q ∈ Q, and we obtain, for ξ = ġqg

−1
q and q(t) =

gq(t)qh(t),
A(ġq(t)qh(t)) = A(ġq(t)g−1

q (t)gq(t)qh(t)) = ġqg
−1
q .

Thus, one can check that for any curve q(t), t ∈ [t0, t1] in Q,

A(q, q̇) = ġqg
−1
q .

Curvature and Cartan structure equations. The covariant exterior derivative
D of a Lie algebra-valued one-form α is defined by applying the usual exterior
derivative d to the horizontal parts of vectors Dα(X, Y ) = dα(HorX, HorY ) for two
vector fields X, Y on Q. The curvature B of a connection A is its covariant exterior
derivative—the Lie algebra valued two-form given by B(X, Y ) = dA(HorX, HorY ).
Using the identity (dα)(X, Y ) = X[α(Y )]−Y [α(X)]−α([X, Y ]), where the bracket
denotes the Jacobi-Lie bracket of vector fields, it follows that

B(X, Y ) = −A([HorX, HorY ]),

since A(HorX) = 0 and A(HorY ) = 0. Cartan’s structure equations state that, for
vector fields X, Y (not necessarily horizontal),

B(X, Y ) = dA(X, Y )− [A(X), A(Y )],

where the bracket on the right hand side is the Lie bracket in g.

Associated bundles. Let Φ : G × M → M be a left action of the Lie group G
on a vector space M . The associated vector bundle with standard fiber M is by
definition,

Q×G M = (Q×M)/G,

where the action of G on Q×M is given by g(q, m) = (gq, gm). The class of (q, m) is
denoted [q, m]G or simply [q, m]. The projection πM : Q×G M → Q/G is defined by
πM ([q, m]G) = π(q) and it is easy to check that it is well defined and is a surjective
submersion.
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Parallel transport in associated bundles. Let [q0,m0]G ∈ Q ×G M and let
x0 = π(q0) ∈ Q/G. Let x(t), t ∈ [t0, t1] be a curve in Q/G and let τ0 ∈ [t0, t1] be
such that x(τ0) = x0. The parallel transport of [q0,m0]G along the curve x(t) is
defined to be the curve

[q, m]G(t) = [xh
q0

(t),m0]G.

For t, t+ s ∈ [t0, t1], we adopt the notation τ t
t+s : π−1

M (x(t)) → π−1
M (x(t+ s)) for the

parallel transport map along the curve x(s) of any point

[q(t),m(t)]G ∈ π−1
M (x(t))

to the corresponding point

τ t
t+s[q(t),m(t)]G ∈ π−1

M (x(t + s)).

Thus,

τ t
t+s[q(t),m(t)]G = [xh

q(t)(t + s),m(t)]G.

We shall sometimes employ the notation Φ′(ξ) for the second component of the
infinitesimal generator of an element ξ ∈ g, namely, ξm = (m,Φ′(ξ)m), where we
utilize the identification TM = M×M for a vector space M . Then, the infinitesimal
generator may be thought of as a map Φ′ : g → End(M) (the linear vector fields
on M are identified with the space of linear maps of M to itself). Thus, we have a
linear representation of g on M .

Let [q(t),m(t)]G, t ∈ [t0, t1] be a curve in Q×G M given by

x(t) = πM ([q(t),m(t)]G) = π(q(t)),

and let, as above, τ t
t+s, where t, t + s ∈ [t0, t1], denote the parallel transport along

x(t) from t to t + s.

The covariant derivative in associated bundles. The covariant derivative of
[q(t),m(t)]G along x(t) is defined by

D[q(t),m(t)]G
Dt

= lim
s→0

τ t+s
t ([q(t + s),m(t + s)]G)− [q(t),m(t)]G

s
∈ π−1

M (x(t)).

Note that if [q(t),m(t)]G is a vertical curve, then its base point is constant; that is,
for each t ∈ [t0, t1],

x(t + s) = πM ([q(t + s),m(t + s)]G) = x(t),

so that xh
q(t)(t + s) = q(t) for all s. Therefore,

τ t+s
t ([q(t + s),m(t + s)]G) = [xh

q(t+s)(t),m(t + s)]G = [q(t),m(t + s)]G

and then we obtain the well-known fact that the covariant derivative of a vertical
curve in the associated bundle is just the fiber derivative. Namely,

D[q(t),m(t)]G
Dt

= [q(t),m′(t)]G,

where m′(t) is the time derivative of m.
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Affine connections on vector bundles. Recall from [47] and [2] that an affine
connection ∇ on a vector bundle τ : V → Q is a map ∇ : X∞(Q)× Γ(V ) → Γ(V ),
say (X, v) 7→ ∇Xv, having the following properties:

1. ∇fX+gY v = f∇Xv + g∇Y v,
2. ∇X(v + w) = ∇Xv +∇Xw, and
3. ∇X(fv) = f∇Xv + X[f ]v for all X ∈ X∞(Q) (the space of smooth vector

fields on Q), f, g ∈ C∞(Q) (the space of smooth real valued functions on Q),
and v, w ∈ Γ(V ) (the space of smooth sections of the vector bundle τ : V →
Q),

where X[f ] = df ·X denotes the derivative of f in the direction of the vector field
X. Now, the parallel transport of a vector vq ∈ τ−1(q0) along a curve q(t), t ∈ [t0, t1]
in Q such that q(τ0) = q0 for a fixed τ0 ∈ [t0, t1] is the unique vector v(t) such that
v(t) ∈ τ−1(q(t)) for all t, v(τ0) = v0, which satisfies ∇q̇(t)v(t) = 0 for all t. The
operation of parallel transport is a map given by, for t, s ∈ [t0, t1],

T t
t+s : τ−1(q(t)) → τ−1(q(t + s))

associated to each curve q(t) ∈ Q. Then, we can define the covariant derivative of
curves v(t) ∈ V by

Dv(t)
Dt

=
d

ds
T t+s

t v(t + s)
∣∣∣∣
s=0

.

Then, the covariant derivative of curves in a vector bundle τ : V → Q is related to
the affine connection ∇ as

∇Xv(q0) =
Dv(t)
Dt

∣∣∣∣
t=t0

,

where, for each q0 ∈ Q, each X ∈ X∞(Q), and each v ∈ Γ(V ), we have, by definition,
that q(t) is any curve in Q such that q̇(τ0) = X(q0) and v(t) = v(q(t)) for all t. This
property establishes, in particular, the uniqueness of the connection associated to
the covariant derivative D/Dt.

Affine connections on associated bundles. We have the following formula that
gives the relation between the covariant derivative of the affine connection and the
principal connection:

D[q(t),m(t)]G
Dt

= [q(t),−Φ′(A(q(t), q̇(t)))m(t) + ṁ(t))]G .

The previous definition of the covariant derivative of a curve in the associated vector
bundle Q×G M thus leads to an affine connection on Q×G M , which we shall call
∇̃A or simply ∇̃. Let ϕ : Q/G → Q×G M be a section of the associated bundle and
let X(x) ∈ Tx(Q/G) be a given vector tangent to Q/G at x. Let x(t) be a curve in
Q/G such that ẋ(τ0) = X(x); thus, ϕ(x(t)) is a curve in Q ×G M . The covariant
derivative of the section ϕ with respect to X at x is, by definition,

∇̃A
X(x)ϕ =

Dϕ(x(t))
Dt

∣∣∣∣
t=τ0

.

The notion of a horizontal curve [q(t),m(t)]G on Q×GM is defined by the condition
that its covariant derivative vanishes. A vector tangent to Q ×G M is called hori-
zontal if it is tangent to a horizontal curve. Correspondingly, the horizontal space
at a point [q, m]G ∈ Q×G M is the space of all horizontal vectors at [q, m]G.
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The adjoint bundle. One of the most interesting cases in this paper is the one
which is given as M = g and Φg = Adg.

The associated bundle with standard fiber g, where the action of G on g is the
adjoint action, is called the adjoint bundle g̃, which is defined by g̃ := (Q × g)/G.
Let π̃g̃ : g̃ → Q/G be the projection given by π̃g̃([q, ξ]G) = [q].

Let [q(s), η(s)]G be any curve in g̃. Then, noting that Φ = Ad : G× g → g, one
can easily check

D[q(s), η(s)]G
Ds

= [q(s),−[ξ(s), η(s)] + η̇(s))]G , (7)

where ξ(s) = A(q(s), q̇(s)) and we utilized the fact Φ′(ξ) = adξ. For the derivation
of equation (7), see Lemma 2.3.2 and Lemma 2.3.4 in [24].

The adjoint bundle is a Lie algebra bundle, namely, each fiber g̃x of g̃ carries a
natural Lie algebra structure defined by

[[q, ξ]G, [q, η]G] = [q, [ξ, η]]G,

since
[[gq, Adgξ]G, [gq, Adgη]G] = [gq, [Adgξ,Adgη]]G = [gq, Adg[ξ, η]]G

= [q, [ξ, η]]G = [[q, ξ]G, [q, η]G].

The bundle isomorphism between TQ/G and T (Q/G)⊕ g̃. Let Φ : G×Q → Q
be a free and proper action of G on Q, as before, so that there is a principal bundle
π : Q → Q/G. The tangent lift of this action of G on Q defines an action of G
on TQ and so we can form the quotient (TQ)/G =: TQ/G. Let τQ : TQ → Q be
the tangent bundle projection and there is a well defined map τQ/G : TQ/G →
Q/G induced by the tangent of the projection map π : Q → Q/G and given by
[vq]G → [q]G. The vector bundle structure of TQ is inherited by this bundle. One
can express reduced variational principles in a natural way in terms of this bundle
without any reference to a connection on Q. However, it is also interesting to
introduce an arbitrary chosen connection on Q relative to which one can concretely
realize the space TQ/G, which is one of the main tools in this paper.

Let A be a principal connection on Q, which defines a bundle isomorphism:

ΨA : TQ/G → T (Q/G)⊕ g̃

defined by
ΨA([vq]G) := (Tπ(vq), [q, A(vq)]G) , (8)

where vq ∈ TqQ and [vq]G indicates the equivalent class of the quotient TQ/G. We
can easily check that the bundle isomorphism is well defined, since Tgqπ(gvq) =
Tqπ(vq) and

[gq, A(gq, gvq)]G = [gq, AdgA(q, vq)] = [q, A(q, vq)]G.

Then, one has
ΨA([gq, gvq]G) = ΨA([q, vq])G.

In the above, we employ the concatenation notation gvq for the tangent lift action
of the group element g ∈ G on TQ. The inverse map Ψ−1

A : T (Q/G)⊕ g̃ → TQ/G
is given by

Ψ−1
A (u[q], [q, η]G) = [(u[q])h

q + ηq]G,
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where [q] = π(q) ∈ Q/G and (u[q])h
q is the horizontal lift of u[q] at the point q ∈ Q.

The map Ψ−1
A : T (Q/G)⊕ g̃ → TQ/G is well defined, noting that (u[q])h

gq = g(u[q])h
q

and that (Adgη)gq = gηq, as

Ψ−1
A (u[q], [gq, Adgη]G) = Ψ−1

A (u[q], [q, η]G).

Thus, we have the isomorphism TQ/G ∼= T (Q/G)⊕ g̃.

Remark 5. The quotient bundle TQ/G → Q/G is known as the Atiyah quotient
bundle (see, [54]). In [24], it was shown that the Lagrange-Poincaré equations can
be formulated in the context of the bundle T (Q/G)⊕ g̃, which falls into the category
of the Lagrange-Poincaré bundles.

Associated one-forms. The principal connection A is a Lie algebra valued one-
form, which is denoted by the linear map A(q) : TqQ → g for each q ∈ Q. Then, we
can define its dual map A(q)∗ : g∗ → T ∗q Q, and evaluating A(q)∗ at µ ∈ g∗ induces
an ordinary one-form

αµ(q) = A(q)∗(µ). (9)

Now, G acts on T ∗Q by the cotangent lift of the action Φ : G × Q → Q and
this lifted action is symplectic with respect to the canonical symplectic form on
T ∗Q. Recall that the equivariant momentum map J : T ∗Q → g∗ is defined by
〈J(αµ(q)), ξ〉 = 〈αµ(q), ξQ(q)〉 , where αµ(q) ∈ T ∗q Q and ξ ∈ g. Since J is equivari-
ant, it follows that J(gαq) = Ad∗g−1J(αq).

Then, one can check that for any connection A and µ ∈ g∗, the associated one-
form αµ defined by equation (9) has the following two properties:

1. αµ takes values in J−1(µ),
2. αµ is G-equivariant, namely, Φ∗gαµ = αAd∗gµ.

Remark 6. It is easy to check those properties as follows (see [58]): As to the first
property, one has

〈J(αµ(q)), ξ〉 = 〈αµ(q), ξQ(q)〉 = 〈A(q)∗(µ), ξQ(q)〉
= 〈µ,A(q)(ξQ(q))〉 = 〈µ, ξ〉 ,

which satisfies for arbitrary ξ, and hence J(αµ(q)) = µ. Thus, αµ takes values in
J−1(µ). As to the second, letting v ∈ TqQ and g ∈ G, by employing the definition
of αµ and the definition of the adjoint, it follows that

(Φ∗gαµ)(v) = αµ(gq)(TqΦg(v)) = 〈A(gq)∗(µ), TqΦg(v)〉
= 〈µ,A(gq)(TqΦg(v))〉 .

Make use of equivariance of A, namely, A(gq)(TqΦg(v)) = Adg(A(q)(v)) and covert
the preceding expression back to one involving αµ to get

(Φ∗gαµ)(v) = 〈µ,Adg(A(q)(v))〉 =
〈
Ad∗g(µ), A(q)(v)

〉
=
〈
A(q)∗Ad∗g(µ), v

〉
= αAd∗gµ(q)(v).

Thus, we obtain the equivariance property of αµ.
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The bundle isomorphism between T ∗Q/G and T ∗(Q/G) ⊕ g̃∗. Let us con-
sider the inverse of the fiberwise dual of ΨA given in equation (8), i.e., a bundle
isomorphism

(Ψ−1
A )∗ : T ∗Q/G → T ∗(Q/G)⊕ g̃∗.

We can compute this bundle isomorphism as follows (see also [58]):〈
(Ψ−1

A )∗([αq]G), (u[q], [q, ξ]G)
〉

=
〈
[αq]G, [(u[q])h

q + ξQ(q)]G
〉

=
〈
αq, (u[q])h

q

〉
+ 〈αq, ξQ(q)〉

=
〈
(αq)h∗

q , u[q]

〉
+ 〈J(αq), ξ〉 .

The bundle isomorphism (Ψ−1
A )∗ : T ∗Q/G → T ∗(Q/G)⊕ g̃∗ is given by

(Ψ−1
A )∗([αq]G) =

(
(αq)h∗

q , [q,J(αq)]G
)

. (10)

In the above, [αq]G is the equivalence class of the quotient T ∗Q/G, the map (·)h∗

q :
T ∗q Q → T ∗[q](Q/G) is the dual of the horizontal lift map (·)h

q : T[q](Q/G) → TqQ,
and J : T ∗Q → g∗ is the momentum map of the lifted action,

〈J(αq), ξ〉 = 〈αq, ξQ(q)〉 ,

for ξ ∈ g. The space T ∗(Q/G)⊕ g̃∗ is called the Weinstein space (see, [76]).

The reduced Pontryagin bundle (TQ ⊕ T ∗Q)/G. As was shown, both TQ/G
and T ∗Q/G are bundles over Q/G, and the Pontryagin bundle TQ⊕T ∗Q ∼= TQ×Q

T ∗Q is the Whitney bundle over Q. The quotient space of the Pontryagin bundle
TQ⊕ T ∗Q by G is a bundle over Q/G as

(TQ⊕ T ∗Q)/G ∼= (TQ×Q T ∗Q)/G ∼= (TQ)/G×Q/G (T ∗Q)/G.

Using the isomorphisms ΨA : (TQ)/G → T (Q/G) ⊕ g̃ and (Ψ−1
A )∗ : (T ∗Q)/G →

T ∗(Q/G)⊕g̃∗ that are respectively given in equations (8) and (10), we can construct
a bundle isomorphism in a natural way:

Ψ̃A = ΨA ⊕ (Ψ−1
A )∗ : (TQ⊕ T ∗Q)/G → T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ ,

which is given by, for each (vq, αq) ∈ TQ⊕ T ∗Q,

Ψ̃A([vq]G, [αq]G) =
(
ΨA([vq]G), (Ψ−1

A )∗([αq]G)
)

=
(
Tqπ(vq), (αq)h∗

q , [q, A(vq)]G, [q,J(αq)]G
)

.

In the above,
Ṽ = g̃⊕ g̃∗ = (Q× V )/G

is the associated bundle to V = g⊕ g∗, and we identify (Ṽ ∗)∗ = g̃∗ ⊕ g̃ with Ṽ and
(g̃∗)∗ with g̃.

4. Reduction of the Hamilton-Pontryagin principle. This section develops
reduction of the Hamilton-Pontryagin principle for the case of a principal bundle
π : Q → Q/G (so the Lie group G acts freely and properly on the configuration
manifold Q). We begin with the geometry of variations of curves in the Pon-
tryagin bundle TQ ⊕ T ∗Q. Following this, it will be shown that arbitrary varia-
tions of curves in Q can be decomposed into vertical and horizontal components,
which eventually yield two reduced equations of motion, namely, horizontal implicit
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Lagrange-Poincaré equations corresponding to horizontal variations and vertical im-
plicit Lagrange-Poincaré equations corresponding to vertical variations.

Curves in the Pontryagin bundle. Curves in the Pontryagin bundle TQ⊕T ∗Q
will be written as (q(t), v(t), p(t)), t ∈ [t0, t1]. Note that, in general, v(t) ∈ Tq(t)Q is
not necessarily equal to the tangent vector q̇(t) to q(t), where q̇(t) denotes the time
derivative of q(t), namely, q̇(t) ≡ dq(t)/dt. Here, let us first consider the case in
which one has the restriction v(t) = q̇; namely, the curves (q(t), q̇(t), p(t)), t ∈ [t0, t1]
in TQ⊕ T ∗Q.

The action of an element h ∈ G on a curve (q(t), q̇(t), p(t)) ∈ TQ⊕ T ∗Q is given
by

h · (q(t), q̇(t), p(t)) = (hq(t), Tq(t)Lhq̇(t), T ∗hq(t)Lh−1p(t)),
where Tq(t)Lh : Tq(t)Q → Thq(t)Q is the tangent of the left translation map Lh :
Q → Q; q(t) 7→ hq(t) at the point q(t) and T ∗hq(t)Lh−1 : T ∗q(t)Q → T ∗hq(t)Q is the
dual of the map Thq(t)Lh−1 : Thq(t)Q → Tq(t)Q.

Let A : TQ → g be a principal connection on π : Q → Q/G, which induces the
isomorphism

Ψ̃A = ΨA ⊕ (Ψ−1
A )∗ : (TQ⊕ T ∗Q)/G → T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ ,

which is given, for each (q, q̇, p) ∈ TQ⊕ T ∗Q, by

Ψ̃A([q(t), q̇(t), p(t)]G) =
(
x(t), ẋ(t), y(t), ξ̄(t), µ̄(t)

)
,

where x = [q] ∈ Q/G, ẋ = Tqπ(q̇) ∈ Tx(Q/G), y = (pq)h∗

q ∈ T ∗x (Q/G), ξ̄ = [q, ξ]G =
[q, A(q, q̇)]G ∈ g̃ and µ̄ = [q, µ]G = [q,J(q, p)]G ∈ g̃∗.

Let (x0, ẋ0, ξ̄0) be a given element of T (Q/G)⊕ g̃. For any curve x(s) on Q/G, let
(x(s), u(s)) be the horizontal lift of x(s) with respect to the connection ∇ such that
(x(0), u(0)) = (x0, ẋ0). Notice that (x(s), u(s)) is not the tangent vector (x(s), ẋ(s))
to x(s) in general. Let (x(s), ξ̄(s)) be the horizontal lift of x(s) with respect to the
connection ∇̃A on g̃ such that (x(0), ξ̄(0)) = (x0, ξ̄0). Thus, (x(s), u(s), ξ̄(s)) is a
horizontal curve with respect to the connection C = ∇⊕ ∇̃A naturally defined on
T (Q/G)⊕ g̃ in terms of the connection ∇ on T (Q/G) and the connection ∇̃A on g̃.

Spaces of curves and deformations of curves. Let us denote the space of all
smooth curves from a fixed interval [t0, t1] to Q by Ω(Q). For given qi ∈ Q, i = 0, 1,
we denote by Ω(Q; q0, q1) the space of curves q(t) on Q such that q(ti) = qi. We
denote by Ω(Q;x0, x1) the space of all curves in Ω(Q) such that π(q(ti)) = xi for
qi ∈ Q.

Recall that a deformation of a curve q(t), t ∈ [t0, t1] on a manifold Q is a smooth
function q(t, ε) such that q(t, 0) = q(t) for all t and that the corresponding variation
is defined by

δq(t) =
∂q(t, ε)

∂ε

∣∣∣∣
ε=0

and curves in Ω(Q; q0, q1) satisfy the fixed endpoint conditions, i.e., δq(ti) = 0 for
t = 0, 1.

Let τ : V → Q be a vector bundle and let v(t, ε) be a deformation in V of a
curve v(t) in V . If τ(v(t, ε)) = q(t) does not depend on ε, we call v(t, ε) a V -fiber
deformation of v(t), or simply, a fiber deformation of v(t). For each t, the variation

δv(t) =
∂v(t, ε)

∂ε

∣∣∣∣
ε=0



114 HIROAKI YOSHIMURA AND JERROLD E. MARSDEN

may be naturally identified with an element, also called δv(t), of τ−1(q(t)). In this
case, the curve δv in V is, by definition, a V -fiber variation of the curve v, or,
simply, a fiber variation of the curve v.

Horizontal and vertical variations. Given a curve q ∈ Ω(Q; q0, q1), a vertical
variation of δq of q satisfies the condition δq(t) = Ver(δq(t)) for all t. Similarly, a
horizontal variation satisfies δq(t) = Hor(δq(t)) for all t. It is apparent that any
variation δq can be uniquely decomposed into the vertical and horizontal compo-
nents as

δq(t) = Hor(δq(t)) + Ver(δq(t))
for all t, where Ver(δq(t)) = A(q(t), δq(t))q(t) and Hor(δq(t)) = δq(t)−Ver(δq(t)).

The structure of vertical variations. Let ξ = A(q, q̇) = ġqg
−1
q ∈ g. Variations

δq of q(t) induce corresponding variations

δξ(t) =
∂A(q(t, ε), q̇(t, ε))

∂ε

∣∣∣∣
ε=0

∈ g.

As was shown in equation (6), one has the decomposition q = gqqh, where qh(t)
is the horizontal curve qh(t) such that qh(t0) = q(t0) and π(qh(t)) = π(q(t)) for all t
and gq(t) ∈ G. A vertical deformation q(t, ε) can be written as q(t, ε) = gq(t, ε)qh(t).
The corresponding variation δq(t) = δgq(t)qh(t) is also vertical. Define the curve

ζ(t) = δgq(t)gq(t)−1 ∈ g

with the fixed endpoints ζ(ti) = 0, i = 0, 1. Then, we can construct the following
relation:

δq(t) = δgq(t)qh(t) = ζ(t)gq(t)qh(t) = ζ(t)q(t).
It follows from Lemma 3.1.1 in [24] that for any vertical variation δq = ζq of a curve
q ∈ Ω(Q; q0, q1), the corresponding variation δξ of ξ = A(q, q̇) is given by

δξ = ζ̇ + [ζ, ξ]

with ζ(ti) = 0, i = 0, 1.

Remark 7. Note that δξ = ζ̇ +[ζ, ξ] in the above is not computing the same object
as δξ = ζ̇ + [ξ, ζ] in the variational formulation of the Euler-Poincaré equations.

The structure of horizontal variations. Let ξ = A(q, q̇) = ġqg
−1
q ∈ g and

let us calculate variations δξ corresponding to a horizontal variation δq of a curve
q ∈ Ω(Q; q0, q1). Let q(t, ε) be a horizontal deformation of q(t), that is, ε 7→ q(t, ε)
is a horizontal curve for each t. In a local trivialization of the bundle, we write the
connection A as

ξ = A(q, q̇) = 〈A(q), q̇〉 .
Then, we can compute using the chain rule:

δξ =
∂ξ

∂ε

∣∣∣∣
ε=0

=
〈

DA(q) · ∂q

∂ε
,
∂q

∂t

〉 ∣∣∣∣
ε=0

+
〈

A(q),
∂2q

∂ε∂t

〉 ∣∣∣∣
ε=0

.

On the other hand, since ε 7→ q(t, ε) is horizontal,〈
A(q),

∂q

∂ε

〉
= 0,

and so, by differentiating with respect to t,〈
DA(q) · ∂q

∂t
,
∂q

∂ε

〉 ∣∣∣∣
ε=0

+
〈

A(q),
∂2q

∂ε∂t

〉 ∣∣∣∣
ε=0

= 0.
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Then, we obtain, by subtraction,

δξ = dA(q)
(

∂q

∂ε
,
∂q

∂t

) ∣∣∣∣
ε=0

.

Since ∂q/∂λ is horizontal, Cartan’s structure equation implies

δξ = B(q)
(

∂q

∂ε
,
∂q

∂t

) ∣∣∣∣
ε=0

, (11)

or, in other words, δξ = B(q)(δq, q̇).

The covariant variation on the adjoint bundle. It follows that any curve in
q ∈ Ω(Q; q0, q1) induces a curve in g̃ in a natural way, namely,

[q, ξ]G(t) = [q(t), ξ(t)]G.

Observe that, for each t, [q, ξ]G(t) ∈ g̃x(t) (the fiber over x(t)), where x(t) = π(q(t))
for all t. Let us see variations δ[q, ξ]G corresponding to vertical and also to horizontal
variations δq of q.

While vertical variations δq give rise to vertical variations δ[q, ξ]G, horizontal
variations δq need not give rise to horizontal variations δ[q, ξ]G. The deviation of
any variation δ[q, ξ]G from being horizontal is measured by the covariant variation
δA[q, ξ]G(t), which is defined for any given deformation q(t, ε) of q(t), by

δA[q, ξ]G(t) =
D[q(t, ε), ξ(t, ε)]G

Dε

∣∣∣∣
ε=0

.

Vertical variations and the adjoint bundle. Let us see the case of vertical
variations. The covariant variation δA[q, ξ]G(t) corresponding to a vertical variation
δq = ζq is given by

δA[q, ξ]G(t) =
D[q(t), ζ(t)]G

Dt
+ [q, [ξ, ζ]]G, (12)

where
[q, [ξ, ζ]]G = [[q, ξ]G, [q, ζ]G].

In the above, for the special case Q = G, we can regard it as a principal bundle over
a point and the identification of g with T (Q/G) ⊕ g̃ is given by ξ 7→ [e, ξ]G. This
equivalence defines δξ ≡ δA[e, ξ]G, which induces δξ = ζ̇ + [ξ, ζ] that is the same
type of variations as the constrained variations for the Euler-Poincaré equations.

The reduced curvature form. The curvature 2-form B ≡ BA of A induces a
g̃-valued 2-form B̃ ≡ B̃A on Q/G called the reduced curvature form given by

〈µ̄, B̃(x)(δx, ẋ)〉 = 〈[q, µ]G, [q, B(q)(δq, q̇)]G〉
= 〈[gq, Ad∗g−1µ]G, [gq, AdgB(q)(δq, q̇)]G〉,

(13)

where for each (x, ẋ) and (x, δx) in Tx(Q/G), (q, q̇) and (q, δq) are any elements of
TqQ such that x = π(q), (x, ẋ) = Tπ(q, q̇) and (x, δx) = Tπ(q, δq). This is easily
shown by checking that the right hand side does not depend on the choice of (q, δq)
and (q, q̇) using the equivariance properties of the curvature as

[gq, B(gq)(gδq, gq̇)]G = [gq, AdgB(q)(δq, q̇)]G = [q, B(q)(δq, q̇)]G.
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Horizontal variations and the adjoint bundle. It follows from equation (7)
that covariant variations δA[q, ξ]G(t) corresponding to horizontal variations δq

δA[q, ξ]G(t) = [q,−[A(q, δq), ξ] + δξ]G.

Since δq is horizontal, one has A(q, δq) = 0. Thus, by using equations (11) and
(13), one can obtain covariant variations δA[q, ξ]G(t) corresponding to horizontal
variations δq that are given by

δA[q, ξ]G(t) = [q, B(q) (δq, q̇)]G = B̃(x)(δx, ẋ)(t). (14)

The covariant variations. Recall that arbitrary variations δq of a curve q are
decomposed as

δq = Hor(δq) + Ver(δq),

where Ver(δq) = A(q, δq)q and Hor(δq) = δq − Ver(δq). It follows from equations
(12) and (14) that covariant variations δA[q, ξ]G(t) associated with arbitrary varia-
tions δq are given by

δA[q, ξ]G(t) =
D[q(t), ζ(t)]G

Dt
+ [q, [ξ, ζ]]G + [q, B(q)(δq, q̇)]G.

Noting that ξ̄ = [q, ξ]G and ζ̄ = [q, ζ]G, the covariant variations may be restated as

δAξ̄ =
Dζ̄

Dt
+ [ξ̄, ζ̄] + B̃(x)(δx, ẋ).

Variations of reduced curves in T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ . Let us consider vari-
ations of the reduced curves

[q(t), q̇(t), p(t)]G ∼= (x(t), u(t), y(t), ξ̄(t), µ̄(t))

in (TQ ⊕ T ∗Q)/G ∼= T (Q/G) ⊕ T ∗(Q/G) ⊕ Ṽ . Now, the variations of curves
[q(t), q̇(t)]G = (x(t), ẋ(t), ξ̄(t)) in T (Q/G)⊕ g̃ are given as

δ[q(t), q̇(t)]G = δx(t)⊕ δAξ̄(t),

where δx(t) ∈ Tx(t)(Q/G), and δAξ̄(t) ∈ Tξ̄(t)g̃ denotes the covariant variations on
the adjoint bundle.

Further, arbitrary variations of the curves [q(t), p(t)]G = (x(t), y(t), µ̄(t)) in
T ∗(Q/G) ⊕ g̃∗ induce arbitrary fiber variations (δx(t), δy(t)) ∈ T(x(t),y(t))T

∗(Q/G)
and δµ̄ ∈ Tµ̄g̃∗, and it follows

δ[q(t), p(t)]G = (δx(t), δy(t), δµ̄(t)).

Thus, variations of the curves in the reduced Pontryagin space are given by

δ[q(t), q̇(t), p(t)]G ∼= (δx(t), δy(t), δAξ̄(t), δµ̄(t)).

Geometry of reduced variations. In general, the second slot of a curve

(q(t), v(t), p(t)), t ∈ [t0, t1]

in TQ ⊕ T ∗Q, namely, v(t) is not equal to q̇(t). Then, the curve in the reduced
Pontryagin space (TQ⊕ T ∗Q)/G ∼= T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ is given by

[q(t), v(t), p(t)]G ∼= (x(t), u(t), y(t), η̄(t), µ̄(t)),

where (x, u, η̄) = [q, v]G ∈ T (Q/G) ⊕ g̃, u = Tqπ(vq) ∈ Tx(Q/G) and η̄ = [q, η]G =
[q, A(q, v)]G ∈ g̃, and where [q, p]G = (x, y, µ̄) ∈ T ∗(Q/G) ⊕ g̃∗, y = (pq)h∗

q ∈
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T ∗x (Q/G) and µ̄ = [q, µ]G = [q,J(q, p)]G ∈ g̃∗. Hence, it follows that a general
variation of the reduced curve [q(t), v(t), p(t)]G is given by

δ[q(t), v(t), p(t)]G ∼= (δx(t), δu(t), δy(t), δη̄(t), δµ̄(t)),

where δx(t) = Tqπ(δq(t)) ∈ Tx(Q/G), δu = TTπ(vq)Tπ(δv) ∈ Tux
T (Q/G), δy ∈

Tyx
T ∗(Q/G) and δµ̄ ∈ Tµ̄g̃∗ are arbitrary variations, and the variation δη̄(t) is

given by

δη̄(t) =
∂η̄(t, s)

∂s

∣∣∣∣
s=0

.

In the above, we choose a family of curves η̄(t, s) in g̃ such that η̄(t, 0) = η̄(t) and
it follows that δη̄(t) is, for each t, an element of T g̃.

Remark 8. For the case in which a curve in TQ⊕T ∗Q is given by (q(t), q̇(t), p(t)),
t ∈ [t0, t1], we consider the special kind of deformations ξ̄(t, s) of the curve

ξ̄(t) = [q(t), A(q(t), q̇(t))]G

in which the projection π̃g̃(ξ̄(t, s)) = x(t, s) does not depend on s, that is, deforma-
tions that take place only in the fiber of g̃ over x(t) = π̃g̃(ξ̄(t)), where π̃g̃ : g̃ → Q/G.
Thus, for each fixed t, the curve s 7→ ξ̄(t, s) is a curve in the fiber over x(t). Then,
since g̃ is a vector bundle, the variation δξ̄(t) induced by such a deformation ξ̄(t, s),
is naturally identified with a curve, also called δξ̄(t), in g̃, a g̃-fiber variation. For
a curve (x(t), ξ̄(t)) in Q/G ⊕ g̃, and a given arbitrary deformation (x(t, ε), ξ̄(t, ε)),
with x(t, 0) ⊕ ξ̄(t, 0) = x(t) ⊕ ξ̄(t), of it, the corresponding covariant variation
δx(t)⊕ δAξ̄(t) is, by definition,

δx(t)⊕ δAξ̄(t) =
∂x(t, s)

∂s

∣∣∣∣
s=0

⊕ Dξ̄(t, s)
Ds

∣∣∣∣
s=0

,

where δAξ̄(t) is a g̃-fiber deformation of ξ̄(t).
The most important example of a covariant variation δx(t) ⊕ δAξ̄(t) is the one

to be described next. Let q(t, s) be a deformation of a curve q(t) = q(t, 0) in
Q. This induces a deformation x(t, s) ⊕ ξ̄(t, s) of the curve x(t) ⊕ ξ̄(t) by taking
x(t, s) = [q(t, s)]G and ξ̄(t, s) = [q(t, s), A(q(t, s), q̇(t, s))]G, where q̇(t, s) represents
the derivative with respect to t. It follows that the covariant variation corresponding
to this deformation of x(t)⊕ ξ̄(t) is given by δx(t)⊕ δAξ̄(t), where

δAξ̄(t) =
Dζ̄(t)
Dt

+ [ξ̄(t), ζ̄(t)] + B̃(δx(t), ẋ(t)),

where ζ̄ = [q, ζ]G = [q, A(q, δq)]G ∈ g̃.

Reduction of the Hamilton-Pontryagin principle. From the action of G on Q,
we get an action of G on curves (q(t), v(t), p(t)) ∈ TQ⊕ T ∗Q in the action integral
F(q, v, p) in the Hamilton-Pontryagin principle by simultaneously left translating on
each factor by the tangent and cotangent lift. Let L : TQ → R be a left invariant
Lagrangian (possibly, degenerate). Recall that the Hamilton-Pontryagin principle
requires stationarity of the action integral on the space of curves (q(t), v(t), p(t)),
t ∈ [t0, t1] in TQ⊕ T ∗Q given by

F(q, v, p) =
∫ t1

t0

{L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉} dt;
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that is, δF = 0 with the endpoints of q(t) fixed. This principle gives the implicit
Euler–Lagrange equations on TQ⊕ T ∗Q:

p =
∂L

∂v
, q̇ = v, ṗ =

∂L

∂q
.

By the G-invariance of L : TQ → R, that is,

L(TqLg(vq)) = L(vq),

where g ∈ G, q ∈ Q and vq ∈ TqQ, we can define the reduced Lagrangian l :
T (Q/G)⊕ g̃ → R by

l([q, v]G) = L(q, v).
Recall that the curves in the reduced Pontryagin bundle (TQ ⊕ T ∗Q)/G are iso-
morphic to the curves in T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ , namely,

[q(t), v(t), p(t)]G ∼= (x(t), u(t), y(t), η̄(t), µ̄(t)).

Then, the action integral in the Hamilton-Pontryagin principle may be reduced
as

[F]G(x(t), u(t), y(t), η̄(t), µ̄(t))

=
∫ t1

t0

{
l(x(t), u(t), η̄(t)) + 〈y(t), ẋ(t)− u(t)〉+

〈
µ̄(t), ξ̄(t)− η̄(t)

〉}
dt.

Remark 9. The action integral in the Hamilton-Pontryagin principle can be re-
stated by using the generalized energy E(q, v, p) = 〈p, v〉 − L(q, v) on TQ ⊕ T ∗Q
as

F(q(t), v(t), p(t)) =
∫ t1

t0

{〈p(t), q̇(t)〉 − E(q(t), v(t), p(t))} dt.

Since E is G-invariant, the reduction of the action integral in the Hamilton-Pontryagin
principle is also represented by

[F]G(x(t), u(t), y(t), η̄(t), µ̄(t))

=
∫ t1

t0

{
〈y(t), ẋ(t)〉+

〈
µ̄(t), ξ̄(t)

〉
− E(x(t), u(t), y(t), η̄(t), µ̄(t))

}
dt,

where E : T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ → R is the reduced generalized energy given by

E(x, u, y, η̄, µ̄) = 〈y, u〉+ 〈µ̄, η̄〉 − l(x, u, η̄).

Proposition 1. The variation of the action integral in the reduced Hamilton-
Pontryagin principle is given by

δ[F]G(x(t), u(t), y(t), η̄(t), µ̄(t))

= δ

∫ t1

t0

{
l(x(t), u(t), η̄(t)) + 〈y(t), ẋ(t)− u(t)〉+

〈
µ̄(t), ξ̄(t)− η̄(t)

〉}
dt

=
∫ t1

t0

{〈
∂l

∂x
− Dy

Dt
−
〈
µ̄, B̃(ẋ, ·)

〉
, δx

〉
+
〈

∂l

∂u
− y, δu

〉
+
〈

∂l

∂η̄
− µ̄, δη̄

〉
+ 〈δy, ẋ− u〉+

〈
δµ̄, ξ̄ − η̄

〉
+
〈
−Dµ̄

Dt
+ ad ∗ξ̄ µ̄, ζ̄

〉}
dt,

for arbitrary variations δu, δy, δη̄ and δµ̄ and for variations δx⊕ δAξ̄, where

δAξ̄ =
Dζ̄

Dt
+ [ξ̄, ζ̄] + B̃(δx, ẋ)
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and with the boundary conditions

δx(ti) = 0 and ζ̄(ti) = 0 for i = 0, 1.

Proof. It follows that the variation of the action integral in the reduced Hamilton-
Pontryagin principle is given by direct computations as

δ[F]G(x, u, y, η̄, µ̄)

= δ

∫ t1

t0

{
l(x, u, η̄) + 〈y, ẋ− u〉+

〈
µ̄, ξ̄ − η̄

〉}
dt

=
∫ t1

t0

{〈
∂l

∂x
, δx

〉
+
〈

∂l

∂u
, δu

〉
+
〈

∂l

∂η̄
, δη̄

〉
+ 〈δy, ẋ− u〉+ 〈y, δẋ− δu〉

+
〈
δµ̄, ξ̄ − η̄

〉
+
〈
µ̄, δAξ̄ − δη̄

〉}
dt

=
∫ t1

t0

{〈
∂l

∂x
− Dy

Dt
−
〈
µ̄, B̃(ẋ, ·)

〉
, δx

〉
+
〈

∂l

∂u
− y, δu

〉
+
〈

∂l

∂η̄
− µ̄, δη̄

〉
+ 〈δy, ẋ− u〉+

〈
δµ̄, ξ̄ − η̄

〉
+
〈
−Dµ̄

Dt
+ ad∗ξ̄ µ̄, ζ̄

〉}
dt.

Remark 10. Since T (Q/G) and g̃ are vector bundles, we can interpret the deriva-
tives ∂l/∂ẋ and ∂l/∂ξ̄ in a standard way of fiber derivatives as being elements of
the dual bundles T ∗(Q/G) and g̃∗, for each choice of (x, ẋ, ξ̄) in T (Q/G) ⊕ g̃. In
other words, for given (x0, ẋ0, ξ̄0) and (x0, ẋ

′, ξ̄′), we define

∂l

∂ẋ
(x0, ẋ0, ξ̄0) · x′ =

d

ds

∣∣∣∣
s=0

l(x0, ẋ0 + sx′, ξ̄0)

and
∂l

∂ξ̄
(x0, ẋ0, ξ̄0) · ξ̄′ =

d

ds

∣∣∣∣
s=0

l(x0, ẋ0, ξ̄0 + sξ̄′).

To define the derivative ∂l/∂x, one uses the connection ∇ on the manifold Q/G.
The covariant derivative of l with respect to x at (x0, ẋ0, ξ̄0) in the direction of
(x(0), ẋ(0)) is defined by

∂C l

∂x
(x0, ẋ0, ξ̄0) · (x(0), ẋ(0)) =

d

ds

∣∣∣∣
s=0

l(x(s), ẋ(s), ξ̄(s)),

where we often write
∂C l

∂x
≡ ∂l

∂x
,

whenever there is no danger of confusion.
The covariant derivative on g̃ induces a corresponding covariant derivative on

the dual bundle g̃∗. Namely, let µ̄(t) be a curve in g̃∗. We can define the covariant
derivative of µ̄(t) in such a way that for any curve ξ̄(t) in g̃, such that both µ̄(t)
and ξ̄(t) project on the same curve x(t) in Q/G, we have

d

dt

〈
µ̄(t), ξ̄(t)

〉
=
〈

Dµ̄(t)
Dt

, ξ̄(t)
〉

+
〈

µ̄(t),
Dξ̄

Dt

〉
.

Likewise, we can define the covariant derivative on the vector bundle T ∗(Q/G).
Then, we obtain a covariant derivative on the vector bundle T ∗(Q/G)⊕ g̃∗.

In the sense of this definition, the term Dy/Dt (as will be shown in the horizontal
implicit Lagrange-Poincaré equations) means the covariant derivative on T ∗(Q/G)
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and the term Dµ̄/Dt (as will be shown in the vertical implicit Lagrange-Poincaré
equations) denotes the covariant derivative on the bundle g̃∗.

Remark 11. Note that variations δx⊕ δAξ̄ such that

δAξ̄ = B̃(δx, ẋ)

with δx(ti) = 0 for i = 0, 1 exactly correspond to horizontal variations δq of the
curve q(t) such that δq(ti) = 0 for ti = 0, 1, while variations δx⊕ δAξ̄ such that

δAξ̄ =
Dζ̄

Dt
+ [ξ̄, ζ̄] ≡ D[q, ζ]G

Dt
+ [q, [ξ, ζ]]G

with ζ̄(ti) = 0 (or, equivalently ζ(ti) = 0) for i = 0, 1 exactly correspond to vertical
variations δq of the curve q(t) such that δq(ti) = 0 for i = 0, 1.

Proposition 2. The stationary condition for the reduced Hamilton-Pontryagin
principle is given by

δ[F]G(x(t), u(t), y(t), η̄(t), µ̄(t))

= δ

∫ t1

t0

{
l(x(t), u(t), η̄(t)) + 〈y(t), ẋ(t)− u(t)〉+

〈
µ̄(t), ξ̄(t)− η̄(t)

〉}
dt

= 0,

for arbitrary variations δu, δy, δη̄ and δµ̄ and for variations δx⊕ δAξ̄, where

δAξ̄ =
Dζ̄

Dt
+ [ξ̄, ζ̄] + B̃(δx, ẋ)

and with the boundary conditions

δx(ti) = 0 and ζ̄(ti) = 0 for i = 0, 1.

This induces horizontal implicit Lagrange-Poincaré equations

Dy

Dt
=

∂l

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
, ẋ = u, y =

∂l

∂u
, (15)

and vertical implicit Lagrange-Poincaré equations

Dµ̄

Dt
= ad ∗ξ̄ µ̄, ξ̄ = η̄, µ̄ =

∂l

∂η̄
. (16)

Proof. It follows from Proposition 1 that the stationarity condition

δ[F]G(x, u, y, η̄, µ̄)

=
∫ t1

t0

{〈
∂l

∂x
− Dy

Dt
−
〈
µ̄, B̃(ẋ, ·)

〉
, δx

〉
+
〈

∂l

∂u
− y, δu

〉
+
〈

∂l

∂η̄
− µ̄, δη̄

〉
+ 〈δy, ẋ− u〉+

〈
δµ̄, ξ̄ − η̄

〉
+
〈
−Dµ̄

Dt
+ ad∗ξ̄µ̄, ζ̄

〉}
dt

= 0

is satisfied for arbitrary variations δu, δy, δη̄ and δµ̄ and for variations δx ⊕ δAξ̄,
where

δAξ̄ =
Dζ̄

Dt
+ [ξ̄, ζ̄] + B̃(δx, ẋ)

and with the boundary conditions

δx(ti) = 0 and ζ̄(ti) = 0 for i = 0, 1.
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Thus, we obtain the horizontal and vertical implicit Lagrange-Poincaré equations
as in equations (15) and (16).

Now we summarize what we have obtained in the following theorem.

Theorem 4.1. The following statements are equivalent:

(i) Hamilton-Pontryagin principle. The curve (q(t), v(t), p(t)) in TQ⊕ T ∗Q
is a critical point of the action integral

F(q(t), v(t), p(t)) = δ

∫ t1

t0

{L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉} dt

for all variations δq, δv and δp under the endpoint conditions δq(t0) = 0 and
δq(t1) = 0.

(ii) The Reduced Hamilton-Pontryagin principle. The reduced curve

[q(t), v(t), p(t)]G ∼= (x(t), u(t), y(t), η̄(t), µ̄(t)),

in the reduced Pontryagin bundle (TQ⊕ T ∗Q)/G ∼= T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ
is a critical point of the reduced action integral

δ[F]G(x(t), u(t), y(t), η̄(t), µ̄(t))

= δ

∫ t1

t0

{
l(x(t), u(t), η̄(t)) + 〈y(t), ẋ(t)− u(t)〉+

〈
µ̄(t), ξ̄(t)− η̄(t)

〉}
dt

= 0,

for arbitrary variations δu, δy, δη̄ and δµ̄ and for variations δx⊕ δAξ̄, where

δAξ̄ =
Dζ̄

Dt
+ [ξ̄, ζ̄] + B̃(δx, ẋ)

and with the boundary conditions

δx(ti) = 0 and ζ̄(ti) = 0 for i = 0, 1.

(iii) The implicit Euler-Lagrange equations hold:

p =
∂L

∂v
, q̇ = v, ṗ =

∂L

∂q
.

(iv) The horizontal implicit Lagrange-Poincaré equations, corresponding to
horizontal variations, hold:

Dy

Dt
=

∂l

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
, ẋ = u, y =

∂l

∂u
,

and the vertical implicit Lagrange-Poincaré equations, corresponding
to vertical variations, hold:

Dµ̄

Dt
= ad ∗ξ̄ µ̄, ξ̄ = η̄, µ̄ =

∂l

∂η̄
.
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Hamilton’s phase space principle. For the case in which a given G-invariant
Lagrangian L : TQ → R is regular, one can define a G-invariant Hamiltonian H
on T ∗Q by H = E ◦ (FL)−1, where E(vq) = 〈FL(vq), vq〉 − L(vq) and FL : TQ →
T ∗Q; vq 7→ pq = ∂L/∂vq is the Legendre transformation. Then the Hamilton-
Pontryagin principle may be replaced by Hamilton’s phase space principle.

Recall that Hamilton’s phase space principle states that the stationary condition
of the action integral on the space of curves (q(t), p(t)), t ∈ [t0, t1] in T ∗Q given by∫ t1

t0

{〈p(t), q̇(t)〉 −H(q(t), p(t))} dt

with the endpoints q(t0) and q(t1) of q(t) fixed, gives Hamilton’s equations on T ∗Q
as

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

The Hamilton-Poincaré variational principle. Let us see how we can develop
a Hamiltonian analogue of Lagrange-Poincaré reduction variationally, namely, a
reduced principle called the Hamilton–Poincaré variational principle. For details,
see [23].

It is clear that the dual of the quotient bundle TQ/G, that is, (TQ/G)∗ is canon-
ically identified with the quotient bundle T ∗Q/G. Recall that the vector bundle
isomorphism ΨA defines by duality a bundle isomorphism (Ψ−1

A )∗ : T ∗Q/G →
T ∗(Q/G) ⊕ g̃∗. In Hamilton’s phase space principle, the pointwise function in the
integrand, namely,

F (q, q̇, p) = 〈p, q̇〉 −H(q, p)
is defined on TQ ⊕ T ∗Q. The group G acts on TQ ⊕ T ∗Q by simultaneously
left translating on each factor by the tangent and cotangent lift and it induces
[q, q̇, p]G = (x, ẋ, ξ̄, µ̄), where x = [q], ξ̄ = [q, ξ]G = [q, A(q, q̇)]G and µ̄ = [q, µ]G =
[q,J(q, p)]G. Since the function F is invariant under the action of G, assuming
invariance of H, the function F drops to the quotient, namely, to the function
f : TQ/G⊕ T ∗Q/G → R, or equivalently, f : T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ → R, which
is given by

f(x, ẋ, y, ξ̄, µ̄) = 〈y, ẋ〉+
〈
µ̄, ξ̄
〉
− h(x, y, µ̄),

where Ṽ = g̃⊕ g̃∗ and h is the reduction of H from T ∗Q to T ∗(Q/G)⊕ g̃∗.
When the function F is used in the phase space variational principle, one is

varying curves (q(t), p(t)) and one of course insists that the slot q̇ actually is the
time derivative of q(t). This restriction induces in a natural way a restriction on the
variation of the curve [q(t), q̇(t)]G = (x(t), ẋ(t), ξ̄(t)) and the variation of x(t)⊕ ξ̄(t)
is given by δx(t)⊕ δAξ̄(t), where

δAξ̄(t) =
Dζ̄(t)
Dt

+ [ξ̄(t), ζ̄(t)] + B̃(δx(t), ẋ(t)),

with the conditions δx(ti) = 0 and ζ̄(ti) = 0, i = 0, 1, where ζ̄ = [q, ζ]G =
[q, A(q, δq)]G ∈ g̃. On the other hand, arbitrary variations δp induce arbitrary
fiber variations δy and δµ̄.

Using the same kind of argument, based on reducing the action and the variations
that we have used to derive the reduced Hamilton-Pontryagin variational princi-
ple and implicit Lagrange–Poincaré equations, we can easily show that Hamilton’s
phase space variational principle can also be reduced. In fact, we can easily obtain
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reduction of Hamilton’s phase space principle by applying the usual integration by
parts argument to the action∫ t1

t0

{
〈y, ẋ〉+

〈
µ̄, ξ̄
〉
− h(x, y, µ̄)

}
dt,

with variations

(δx, δAξ̄)⊕ (δy, δµ̄) =
(

δx,
Dζ̄

Dt
+ [ξ̄, ζ̄] + B̃(δx, ẋ)

)
⊕ (δy, δµ̄),

with restrictions explained above.
In this way, we obtain the horizontal Hamilton–Poincaré equations

Dy

Dt
= −∂h

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
,

dx

dt
=

∂h

∂y

as well as the vertical Hamilton–Poincaré equations

Dµ̄

Dt
= ad ∗ξ̄ µ̄, ξ̄ =

∂h

∂µ̄
.

5. Dirac cotangent bundle reduction. In this section, we develop a reduction
procedure for the canonical Dirac structure D ⊂ TT ∗Q⊕ T ∗T ∗Q on the cotangent
bundle T ∗Q. Choosing a principal connection A : TQ → g, we introduce a G-
principal bundle Q̃∗ with the base T ∗(Q/G) by pulling back the principal bundle
π : Q → Q/G by the cotangent bundle projection πQ/G : T ∗(Q/G) → Q/G, and
then we introduce an isomorphism λ̄ : T ∗Q → Q̃∗ × g∗. Further, we develop a G-
invariant Dirac structure D̄ on Q̃∗× g∗ using λ̄ as a forward Dirac map. Under the
isomorphism (Q̃∗ × g∗)/G ∼= T ∗(Q/G)⊕ g̃∗, it is shown that taking the quotient of
D̄ ⊂ T (Q̃∗× g∗)⊕T ∗(Q̃∗× g∗) by the action of G leads to a gauged Dirac structure
[D̄]G = [D̄]Hor

G ⊕ [D̄]Ver
G on the bundle TT ∗(Q/G) ⊕ (g̃∗ × Ṽ ) over T ∗(Q/G) ⊕ g̃∗,

where [D̄]Hor
G is a horizontal Dirac structure on the bundle TT ∗(Q/G) over T ∗(Q/G)

and [D̄]Ver
G is a vertical Dirac structure on g̃∗ × Ṽ over g̃∗.

A trivialized isomorphism λ : TQ → Q̃ × g. Let us introduce an isomorphism
λ : TQ → Q̃×g. First, let us pull back the G-principal bundle π : Q → Q/G by the
tangent bundle projection τQ/G : T (Q/G) → Q/G to obtain the G-principal bundle

Q̃ =
{
(q, u[q]) | τQ/G(u[q]) = π(q) = [q], q ∈ Q, u[q] ∈ T[q](Q/G)

}
with the base T (Q/G) whose fiber over u[q] is diffeomorphic to π−1([q]).

~
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It follows that the free and proper G-action on Q induces a free and proper
G-action on Q̃ : for each (q, u[q]) ∈ Q̃ and for g ∈ G,

g · (q, u[q]) = (gq, u[q]),

and we have the two projections

τ̃T (Q/G) : Q̃ → T (Q/G); (q, u[q]) 7→ u[q]

and
τ̃ : Q̃ → Q; (q, u[q]) 7→ q.

Now, define the isomorphism λ by

λ : TQ → Q̃× g; vq 7→ (q, u[q] = Tπ(vq), η = A(vq)).

We think of λ : TQ → Q̃×g as a right trivialization. The action of G on the product
space Q̃× g is given by, for g ∈ G and (q, u[q], η) ∈ Q̃× g,

g · (q, u[q], η) = (gq, u[q], gη) = (gq, u[q],Adgη).

In the above, we employ the concatenation notation gη ≡ Adgη for the adjoint
action, which is given by Adg : g → g. The inverse map of λ is given by, for each
(q, u[q], η) ∈ Q̃× g,

λ−1 : Q̃× g → TQ; (q, u[q], η) 7→ (q, (u[q])h
q + ηq).

Let τQ : TQ → Q be the tangent bundle projection and we can naturally define the
canonical projection τ̃Q = τQ ◦ λ−1 : Q̃× g → Q given by

τ̃Q : Q̃× g → Q; (q, u[q], η) 7→ q

and the differential map of τ̃Q may be given by

T τ̃Q : T (Q̃× g) → TQ; (q, u[q], η, δq, δu[q], δη) → (q, δq).

The quotient space (Q̃× g)/G. Recall that the principal connection A : TQ → g
satisfies the equivariance condition

A(g · vq) = Adg(A(vq))

and the quotient of the right trivialized isomorphism λ : TQ → Q̃ × g by G yields
the isomorphism [λ]G : (TQ)/G → (Q̃× g)/G as a left trivialization, which is given
by, for vq ∈ Q,

[vq]G 7→ (Tπ(vq), [q, A(vq)]G) =
(
u[q], [q, η]G

)
.

This map is well defined since the equivariance condition gives(
u[q], [q, η]G

)
=
(
Tπ(vq), [gq, AdgA(vq)]G

)
.

It follows that the quotient space (Q̃×g)/G is isomorphic to the space T (Q/G)⊕ g̃.
Since one has the isomorphism ΨA : TQ/G → T (Q/G)⊕ g̃ (see equation (8)), one
eventually has the following isomorphisms:

TQ/G ∼= (Q̃× g)/G ∼= T (Q/G)⊕ g̃.
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A trivialized isomorphism λ̄ : T ∗Q → Q̃∗ × g∗. Let us consider a trivialized
isomorphism λ̄ : T ∗Q → Q̃∗ × g∗ by following [76]. First, let us pull back the
G-principal bundle π : Q → Q/G by the cotangent bundle projection πQ/G :
T ∗(Q/G) → Q/G to obtain the G-principal bundle

Q̃∗ =
{

(q, y[q]) | πQ/G(y[q]) = π(q) = [q], q ∈ Q, y[q] ∈ T ∗[q](Q/G)
}

with the base T ∗(Q/G) whose fiber over y[q] is diffeomorphic to π−1([q]).

~

It follows that the free and proper G-action on Q induces a free and proper G-
action on Q̃∗ given, for each (q, y[q]) ∈ Q̃∗ and for g ∈ G, by g · (q, y[q]) = (gq, y[q]),
and we have the two projections

π̃T∗(Q/G) : Q̃∗ → T ∗(Q/G); (q, y[q]) 7→ y[q]

and
π̃ : Q̃∗ → Q; (q, y[q]) 7→ q.

Then, it is easily shown that Q̃∗ is also a vector bundle over Q, which is isomorphic
to the annihilator V (Q)◦ ⊂ T ∗Q of the vertical bundle V (Q) = KerTπ ⊂ TQ,
where the fibers of these vector subbundles are given by, for each q ∈ Q, V (Q)q :=
KerTqπ = {ξQ(q) | ξ ⊂ g} ⊂ TqQ and

V (Q)◦q :=
{
pq ∈ T ∗q Q | 〈pq, ξQ(q)〉 = 0

}
⊂ T ∗q Q.

Let us consider the product space Q̃∗ × g∗, which is isomorphic to T ∗Q by

λ̄ : T ∗Q → Q̃∗ × g∗; pq 7→ (q, y[q] = (pq)h∗

q , µ = J(pq)),

where the map (·)h
q : T[q](Q/G) → TqQ is the horizontal lift map, (·)h

q
∗ : T ∗Q →

T ∗[q](Q/G) denotes its dual, and J : T ∗Q → g∗ is the equivariant momentum map
associated with the lifted action 〈J(pq), ξ〉 = 〈pq, ξQ(q)〉 for pq ∈ T ∗Q and ξ ∈ g.

The action of G on the product space Q̃∗ × g∗ is given by, for g ∈ G and
(q, y[q], µ) ∈ Q̃∗ × g∗,

g · (q, y[q], µ) = (gq, y[q], gµ) = (gq, y[q],Ad∗g−1µ).

In the above, we employ the concatenation notation gµ ≡ Ad∗g−1µ for the coadjoint
action. The inverse map of λ̄ is given by, for each (q, y[q], µ) ∈ Q̃∗ × g∗,

λ̄−1 : Q̃∗ × g∗ → T ∗Q; (q, y[q], µ) 7→ (q, T ∗q π(y[q]) + A∗(q)µ).

We can naturally define the canonical projection π̃Q = πQ ◦ λ̄−1 : Q̃∗ × g∗ → Q
given by

π̃Q : Q̃∗ × g∗ → Q; (q, y[q], µ) 7→ q,
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where πQ : T ∗Q → Q is the cotangent bundle projection. Then, the differential
map of π̃Q may be given by

T π̃Q : T (Q̃∗ × g∗) → TQ; (q, y[q], µ, δq, δy[q], δµ) → (q, δq).

The quotient space (Q̃∗× g∗)/G. Recall that the momentum map J : T ∗Q → g∗

for the cotangent lift of left translation of G on Q is given by

〈J(pq), ξ〉 = 〈pq, ξQ(q)〉 ,

where ξ ∈ g. Note that the isomorphism λ̄ : T ∗Q → Q̃∗ × g∗; pq 7→ (q, y[q] =
(pq)h∗

q , µ = J(pq)) is a right trivialization. Taking the quotient of λ̄ by the action
of G, one obtains the isomorphism [λ̄]G : (T ∗Q)/G → (Q̃∗ × g∗)/G given by

[pq]G 7→
(
(pq)h∗

q , [q, J(pq)]G
)

=
(
y[q], [q, µ]G

)
.

This map is well defined because of equivariance of the momentum map; namely,(
y[q], [q, µ]G

)
=
(
(pq)h∗

q ,
[
gq, Ad∗g−1J(pq)

]
G

)
.

This observation shows that taking the quotient of the right trivialization Q̃∗ × g∗

by the action of G leads to the isomorphism T ∗Q/G ∼= (Q̃∗ × g∗)/G as a left
trivialization, from which one has the following isomorphisms:

T ∗Q/G ∼= (Q̃∗ × g∗)/G ∼= T ∗(Q/G)⊕ g̃∗.

The quotient space (Q̃∗ × g∗)/G is known as the Sternberg space.

The canonical Dirac structure on T ∗Q. Recall that the canonical one-form
ΘT∗Q on T ∗Q is defined by, for pq ∈ T ∗q Q and Wpq ∈ TpqT

∗Q,

ΘT∗Q(pq)(Wpq
) =

〈
pq, Tpq

π(Wpq
)
〉

and also that the canonical two-form on T ∗Q is given by ΩT∗Q = −dΘT∗Q. Then,
the canonical Dirac structure on T ∗Q, namely,

D ⊂ TT ∗Q⊕ T ∗T ∗Q

is given by, for each pq ∈ T ∗q Q,

D(pq) = {(Vpq
, βpq

) ∈ Tpq
T ∗Q× T ∗pq

T ∗Q |
βpq

(Wpq
) = ΩT∗Q(pq)(Vpq

,Wpq
) for all Wpq

∈ Tpq
T ∗Q}.

(17)

Symplectic forms on Q̃∗×g∗. Using the isomorphism λ̄ : T ∗Q → Q̃∗ × g∗, let us
define a one-form Θ on Q̃∗ × g∗ by Θ = λ̄∗ΘT∗Q and a symplectic two-form Ω on
Q̃∗×g∗ by Ω = λ̄∗ΩT∗Q, where, needless to say, Ω = −dΘ holds since d and λ̄∗
commute.

Proposition 3. A one-form Θ on Q̃∗ × g∗ can be defined by Θ = λ̄∗ΘT∗Q, which
is given by

Θ = γ∗ΘT∗(Q/G) + π̃∗Qαµ,

where π̃Q = πQ ◦ λ̄−1 : Q̃∗ × g∗ → Q; (q, y, µ) 7→ q is the natural projection,
γ : Q̃∗ × g∗ → T ∗(Q/G) is the projection given by (q, y, µ) 7→ ([q], y), ΘT∗(Q/G) is
the canonical one-form on T ∗(Q/G), αµ is the one-form on Q associated to µ ∈ g∗,
which is defined by αµ(q) = A∗(q)µ, namely, 〈αµ(q), δq〉 = 〈µ,A(q)(δq)〉 for all
δq ∈ TqQ.
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A two-form Ω on Q̃∗× g∗ can be defined by Ω = −dΘ = λ̄∗ΩT∗Q, which is given
by

Ω = γ∗ΩT∗(Q/G) − π̃∗QBµ + ω,

where ΩT∗(Q/G) is the canonical symplectic structure on T ∗(Q/G), ω is a symplectic
two-form on Q̃∗ × g∗, and Bµ is a two-form defined by, for q ∈ Q and µ ∈ g∗,
Bµ(q)(vq, wq) = 〈µ, B(q)(vq, wq)〉, where B is the curvature two-form of A.

In the above, the symplectic two-form ω is given, in a local trivialization
(x, g, y, µ) ∈ U ×G× U∗ × g∗ for (q, y, µ) ∈ Q̃∗ × g∗, by

ω(x, g, y, µ) ((ẋ, ġ, ẏ, µ̇), (δx, δg, δy, δµ))

=
〈
δµ, ġg−1

〉
−
〈
µ̇, δgg−1

〉
+
〈
µ, [ġg−1, δgg−1]

〉
,

where U is an open subset of Rr with r = dim(Q/G).

Proof. By direct computations using (x, g, y, µ) ∼= (q, y, µ) ∈ Q̃∗×g∗, it follows that
the one-form Θ on Q̃∗ × g∗ may be given by

Θ(x, g, y, µ)(δx, δg, δy, δµ) = λ̄∗ΘT∗Q(x, g, y, µ)(δx, δg, δy, δµ)

= ΘT∗Q(λ̄−1(x, g, y, µ))
(
T(x,g,y,µ)λ̄

−1(δx, δg, δy, δµ)
)

= λ̄−1(x, g, y, µ)
(
Tλ̄−1(x,g,y,µ)πQ ◦ T(x,g,y,µ)λ̄

−1(δx, δg, δy, δµ)
)

=
(
T ∗(x,g)π(y) + A∗(x, g)µ

) (
T(x,g,y,µ)(πQ ◦ λ̄−1)(δx, δg, δy, δµ)

)
=
(
T ∗(x,g)π(y) + αµ(x, g)

) (
T(x,g,y,µ)π̃Q(δx, δg, δy, δµ)

)
= T ∗(x,g)π(y)

(
T(x,g,y,µ)π̃(δx, δg, δy, δµ)

)
+ π̃∗Qαµ(x, g)(δx, δg, δy, δµ)

=
〈
y, T(x,g)π(δx, δg)

〉
+ π̃∗Qαµ(x, g)(δx, δg, δy, δµ)

= γ∗ΘT∗(Q/G)(x, g, y, µ)(δx, δg, δy, δµ) + π̃∗Qαµ(x, g)(δx, δg, δy, δµ).

In the above, ΘT∗(Q/G) is the canonical two-form on T ∗(Q/G), which is given by,
for (x, y) ∈ T ∗(Q/G) and (δx, δy) ∈ T(x,y)T

∗(Q/G),

ΘT∗(Q/G)(x, y)(δx, δy) =
〈
y, T(x,y)πQ/G(δx, δy)

〉
,

where x = [q] and the commutative relation π ◦ π̃Q = πQ/G ◦γ and T(x,g)π(δx, δg) =
T(x,y)πQ/G(δx, δy) holds. Thus, we can write the one-form Θ on Q̃∗ × g∗ as

Θ = γ∗ΘT∗(Q/G) + π̃∗Qαµ.

Next, let us compute the two-form Ω on Q̃∗× g∗ and recall that, for vector fields
X, Y ∈ X(Q̃∗ × g∗), one has

dΘ(X, Y ) = X[Θ(Y )]− Y [Θ(X)]−Θ([X, Y ]).

The vector fields X, Y on Q̃∗ × g∗ may be locally decomposed as

X = (X1, X2), Y = (Y 1, Y 2) ∈ X(U ×G)× X(U∗ × g∗),

which are given by, for (x, g, y, µ) ∈ Q̃∗ × g∗,

X(x, g, y, µ) =
(
X1

(x,g,y,µ)(x, g), X2
(x,g,y,µ)(y, µ)

)
= ((ẋ, ġ), (ẏ, µ̇)),

Y (x, g, y, µ) =
(
Y 1

(x,g,y,µ)(x, g), Y 2
(x,g,y,µ)(y, µ)

)
= ((δx, δg), (δy, δµ)).
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So, the flow of X is given by

(t, x, g, y, µ) 7→ (φ1
t (x, g), φ2

t (y, µ)) = ((x + t ẋ, exp (ġg−1)t · g), (y + t ẏ, µ + t µ̇)).

Hence, it follows that

X[Θ(Y )](x, g, y, µ) = £X(Θ(Y ))(x, g, y, µ)

=
d

dt

∣∣∣∣
t=0

Θ(φ1
t (x, g), φ2

t (y, µ))(Y 1
(x,g,y,µ)(x, g), Y 2

(x,g,y,µ)(y, µ))

=
d

dt

∣∣∣∣
t=0

〈
φ2

t (y, µ), Y 1
(x,g,y,µ)(x, g)g−1

〉
= 〈ẏ, δx〉+

〈
µ̇, δgg−1

〉
.

Similarly, one can easily obtain

Y [Θ(X)](x, g, y, µ) = £Y (Θ(X))(x, g, y, µ)

= 〈δy, ẋ〉+
〈
δµ, ġg−1

〉
.

The horizontal and vertical parts of X1(x, g) = (ẋ, ġ) and Y 1(x, g) = (δx, δg) are
given by

Hor(X1(x, g)) = X1(x, g)−Ver(X1(x, g)) = ẋ, Ver(X1(x, g)) = ġ,

Hor(Y 1(x, g)) = Y 1(x, g)−Ver(Y 1(x, g)) = δx, Ver(Y 1(x, g)) = δg.

For (x, g, ẋ, ġ) and (x, g, δx, δg) ∈ T(x,g)(U ×G),

A(x, g) · (ẋ, ġ) = Adg(A(x, e) · ẋ + g−1ġ) = A(x, g) · ẋ + ġg−1,

A(x, g) · (δx, δg) = Adg(A(x, e) · δx + g−1δg) = A(x, g) · δx + δgg−1,

where A(x, e) · ẋ = A(x, e, ẋ, 0), A(x, e) · δx = A(x, e, δx, 0), Adgg
−1ġ = ġg−1 and

Adgg
−1δg = δgg−1.

Hence, we can compute the term Θ([X, Y ]) as

Θ([X, Y ])(x, g, y, µ)

= Θ(x, g, y, µ)([X1, Y 1]
(
x, g), [X2, Y 2](y, µ)

)
=
〈
yx, T(x,g)π([X1, Y 1](x, g))

〉
+
〈
µ,A(x, g)([X1, Y 1](x, g))

〉
=
〈
yx, [T(x,g)π(X1(x, g)), T(x,g)π(Y 1(x, g))]

〉
+
〈
µ,A(x, g)([Hor(X1(x, g)),Hor(Y 1(x, g))])

〉
+
〈
µ,A(x, g)([Ver(X1(x, g)),Ver(Y 1(x, g))])

〉
= −〈µ,B(x, g)((ẋ, ġ), (δx, δg))〉+

〈
µ, [ġg−1, δgg−1]

〉
.

In the above, we note

B(x, g)((ẋ, ġ), (δx, δg)) = −A(x, g)([Hor(X1(x, g)),Hor(Y 1(x, g))])

= −A(x, g)([(ẋ, 0), (δx, 0)])

and
[ġg−1, δgg−1] = A(x, g)([Ver(X1(x, g)),Ver(Y 1(x, g))]).

Since one has

Ω = −dΘ(X, Y ) = −X[Θ(Y )] + Y [Θ(X)] + Θ([X, Y ]),
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it follows that, for (x, g, y, µ) ∈ Q̃∗ × g∗,

Ω(x, g, y, µ) ((ẋ, ġ, ẏ, µ̇), (δx, δg, δy, δµ))

= ΩT∗(Q/G)(x, y) ((ẋ, ẏ), (δx, δy))−Bµ(x, g)((ẋ, ġ), (δx, δg))

+ ω(x, g, y, µ) ((ẋ, ġ, ẏ, µ̇), (δx, δg, δy, δµ)) ,

where

ΩT∗(Q/G)(x, y) ((ẋ, ẏ), (δx, δy)) = 〈δy, ẋ〉 − 〈ẏ, δx〉 ,
Bµ(x, g)((ẋ, ġ), (δx, δg)) = 〈µ,B(x, g)((ẋ, ġ), (δx, δg))〉 ,

and

ω(x, g, y, µ) ((ẋ, ġ, ẏ, µ̇), (δx, δg, δy, δµ))

=
〈
δµ, ġg−1

〉
−
〈
µ̇, δgg−1

〉
+
〈
µ, [ġg−1, δgg−1]

〉
.

Thus, we obtain
Ω = γ∗ΩT∗(Q/G) − π̃∗QBµ + ω.

A Dirac structure on Q̃∗ × g∗. A Dirac structure D̄ on Q̃∗ × g∗ can be defined
from the canonical Dirac structure D on T ∗Q in equation (17) by using the forward
Dirac map FT λ̄ : Dir(TT ∗Q) → Dir(T (Q̃∗ × g∗)) associated with the tangent map
T λ̄ : TT ∗Q → T (Q̃∗ × g∗) of the right trivialization λ̄ : T ∗Q → Q̃∗ × g∗ as

D̄ = FT λ̄(D),

which is given by, for each pq ∈ T ∗Q,

D̄(λ̄(pq)) = {(T λ̄(wpq ), αλ̄(pq)) | wpq ∈ TpqT
∗Q, αλ̄(pq) ∈ T ∗λ̄(pq)(Q̃

∗ × g∗),

(wpq
, T ∗λ̄(αλ̄(pq))) ∈ D(pq)},

where λ̄(pq) = (q, y,J(pq)) = (q, y, µ) ∈ Q̃∗ × g∗.

The Dirac structure D̄ on Q̃∗ × g∗ is given, for (x, g, y, µ) ∼= (q, y, µ) ∈ Q̃∗ × g∗,
by

D̄(x, g, y, µ)

= {((ẋ, ġ, ẏ, µ̇), (κ, ν, v, η)) ∈ T(x,g,y,µ)(Q̃∗ × g∗)×T ∗(x,g,y,µ)(Q̃
∗ × g∗) |

〈κ, δx〉+ 〈ν, δg〉+ 〈δy, v〉+ 〈δµ, η〉 = Ω(x, g, y, µ)((ẋ, ġ, ẏ, µ̇), (δx, δg, δy, δµ))

for all (δx, δg, δy, δµ) ∈ T(x,g,y,µ)(Q̃∗ × g∗)}.

(18)

Invariance of Dirac structures. We recall the natural definition of invariant
Dirac structures (see, for instance, [35, 36, 53] and [7]). Let P be a manifold and
DP ⊂ TP ⊕ T ∗P be a Dirac structure on P with a Lie group G acting freely and
properly on P . We denote this action by Φ : G× P → P and the action of a group
element h ∈ G on a point x ∈ P by h · x = Φ(h, x) = Φh(x), so that Φh : P → P .
Then, a Dirac structure DP is G–invariant if

(Φh∗X, (Φ∗h)−1α) ∈ DP

for all h ∈ G and (X, α) ∈ DP .
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Next, we show that the Dirac structure D̄ on Q̃∗×g∗ is G–invariant. To do this,
let Φ : G× (Q̃∗ × g∗) → Q̃∗ × g∗ denote the G–action on Q̃∗ × g∗, so that holding
h ∈ G fixed, Φh : Q̃∗ × g∗ → Q̃∗ × g∗ is given by, for each (x, g, y, µ) ∈ Q̃∗ × g∗,

Φh(x, g, y, µ) = (x, hg, y, hµ),

where G acts on the components of Q̃∗ by left multiplication and it acts on the
component of g∗ by the coadjoint group action.

Since the action on T ∗Q is canonical, the corresponding symplectic structure Ω
on Q̃∗ × g∗ is also G–invariant; namely,

Φ∗h Ω = Ω

for all h ∈ G. The G-invariance of Dirac structures is given by, for all (X, α) ∈ D̄,

(Φh∗X, (Φ∗h)−1α) ∈ D̄,

which is restated by
FΦ̃h(D̄) = D̄,

where Φ̃h : T (Q̃∗× g∗) → T (Q̃∗× g∗) is the tangent lift of Φh : Q̃∗× g∗ → Q̃∗× g∗,
which is given by, for each (x, g, y, µ, ẋ, ġ, ẏ, µ̇) ∈ T (Q̃∗ × g∗),

h · (x, g, y, µ, ẋ, ġ, ẏ, µ̇) 7→ (x, hg, y, hµ, ẋ, hġ, ẏ, hµ̇),

where hµ = Ad∗h−1µ, hġ = TgLhġ and hµ̇ = Ad∗h−1 µ̇.
In fact, the left G-invariance of the Dirac structure can be represented by

D̄(x, hg, y, hµ) = D̄(x, g, y, µ),

for all h ∈ G and (x, g, y, µ) ∈ Q̃∗ × g∗, which is given, in view of equation (18), by

D̄(x, hg, y, hµ)

= {((ẋ, hġ, ẏ, hµ̇), (κ, hν, v, hη)) ∈ T(x,hg,y,hµ)(Q̃∗ × g∗)×T ∗(x,hg,y,hµ)(Q̃
∗ × g∗) |

〈κ, δx〉+ 〈hν, hδg〉+ 〈δy, v〉+ 〈hδµ, hη〉
= Ω(x, hg, y, hµ)((ẋ, hġ, ẏ, hµ̇), (δx, hδg, δy, hδµ))

for all (δx, hδg, δy, hδµ) ∈ T(x,hg,y,hµ)(Q̃∗ × g∗)}.
In the above, we can easily verify that the symplectic structure Ω is G–invariant

as follows; for each (x, g, y, µ) ∈ Q̃∗ × g∗,

Ω(x, hg, y, hµ)((ẋ, hġ, ẏ, hµ̇), (δx, hδg, δy, hδµ))

= 〈δy, ẋ〉 − 〈ẏ, δx〉 − 〈hµ,B(x, hg)((ẋ, hġ), (δx, hδg))〉
+ ω(x, hg, y, hµ) ((ẋ, hġ, ẏ, hµ̇), (δx, hδg, δy, hδµ)) ,

where
〈hµ,B(x, hg)((ẋ, hġ), (δx, hδg))〉 = 〈Ad∗h−1µ,AdhB(x, g)((ẋ, ġ), (δx, δg))〉

= 〈µ,B(x, g)((ẋ, ġ), (δx, δg))〉
and

ω(x, hg, y, hµ) ((ẋ, hġ, ẏ, hµ̇), (δx, hδg, δy, hδµ))

=
〈
hδµ, h(ġg−1)

〉
−
〈
hµ̇, h(δgg−1)

〉
+
〈
hµ, [h(ġg−1), h(δgg−1)]

〉
=
〈
Ad∗h−1δµ,Adh(ġg−1)

〉
−
〈
Ad∗h−1 µ̇,Adh(δgg−1)

〉
+
〈
Ad∗h−1µ, Adh[ġg−1, δgg−1]

〉
=
〈
δµ, ġg−1

〉
−
〈
µ̇, δgg−1

〉
+
〈
µ, [ġg−1, δgg−1]

〉
.
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The quotient space of the Pontryagin bundle TT ∗Q ⊕ T ∗T ∗Q. Recall that
one has the isomorphism

λ̄ : T ∗Q → Q̃∗ × g∗; pq 7→ (q, (pq)h∗

q ,J(pq)) = (q, y[q], µ),

where y[q] = (pq)h∗

q and µ = J(pq).
Using the map λ̄, one has an isomorphism regarding with TT ∗Q⊕ T ∗T ∗Q as

TT ∗Q⊕ T ∗T ∗Q ∼= T (Q̃∗ × g∗)⊕ T ∗(Q̃∗ × g∗).

The action of an element h ∈ G on an element (x, g, y, µ) ∈ Q̃∗ × g∗ is given by

h · (x, g, y, µ) = (x, hg, y, hµ)

= (x, hg, y, Ad∗h−1µ) ∈ Q̃∗ × g∗,

the action on an element (ẋ, ġ, ẏ, µ̇) ∈ T(x,g,y,µ)(Q̃∗ × g∗) is denoted by

h · (ẋ, ġ, ẏ, µ̇) = (ẋ, hġ, ẏ, hµ̇)

= (ẋ, hġ, ẏ, Ad∗h−1 µ̇) ∈ T(x,hg,y,hµ)(Q̃∗ × g∗),

and the action on (κ, ν, v, η) ∈ T ∗(x,g,y,µ)(Q̃
∗ × g∗) is given by

h · (κ, ν, v, η) = (κ, hν, v, hη)

= (κ, hν, v,Adhη) ∈ T ∗(x,hg,y,hµ)(Q̃
∗ × g∗).

Recall that taking the quotient of Q̃∗ × g∗ by the action of G leads to the iden-
tification

T ∗Q/G ∼= (Q̃∗ × g∗)/G ∼= T ∗(Q/G)⊕ g̃∗,

and one has also the following isomorphisms:

(TQ⊕ T ∗Q)/G ∼=
(
(Q̃× g)⊕ (Q̃∗ × g∗)

)
/G

∼= T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ ,

(TT ∗Q)/G ∼= T (Q̃∗ × g∗)/G

∼= TT ∗(Q/G)⊕ (g̃∗ × Ṽ ),

(T ∗T ∗Q)/G ∼= T ∗(Q̃∗ × g∗)/G

∼= T ∗T ∗(Q/G)⊕ (g̃∗ × Ṽ ∗).

Further, the quotient of TT ∗Q ⊕ T ∗T ∗Q by the action of G induces the isomor-
phisms:

(TT ∗Q⊕ T ∗T ∗Q)/G ∼= T (Q̃∗ × g∗)/G⊕ T ∗(Q̃∗ × g∗)/G

∼= TT ∗(Q/G)⊕ (g̃∗ × Ṽ )⊕ T ∗T ∗(Q/G)⊕ (g̃∗ × Ṽ ∗)

∼= TT ∗(Q/G)⊕ T ∗T ∗(Q/G)⊕
(
g̃∗ × (Ṽ ⊕ Ṽ ∗)

)
,

where we employed (g̃∗ × Ṽ )⊕ (g̃∗ × Ṽ ∗) ∼= g̃∗ × (Ṽ ⊕ Ṽ ∗).
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Dirac cotangent bundle reduction. In view of the isomorphism T ∗Q → Q̃∗×g∗,
it goes without saying that the canonical Dirac structure D on T ∗Q can be identified
with D̄ on Q̃∗ × g∗.

By the left G-invariance of D̄, it follows that, for h ∈ G and (x, g, y, µ) ∈ Q̃∗×g∗,

D̄(x, hg, y, hµ) = D̄(x, g, y, µ).

Then, one can uniquely determine D̄ by its value at the point (x, e, y, g−1µ) as

D̄(x, e, y, g−1µ) = {
(
(ẋ, g−1ġ, ẏ, g−1µ̇), (κ, g−1ν, v, g−1η)

)
|

〈κ, δx〉+ 〈g−1ν, g−1δg〉+ 〈δy, v〉+ 〈g−1δµ, g−1η〉
= Ω(x, e, y, g−1µ)((ẋ, g−1ġ, ẏ, g−1µ̇), (δx, g−1δg, δy, g−1δµ))

for all (δx, g−1δg, δy, g−1δµ)}.

(19)

In the above, the symplectic two-form Ω on Q̃∗×g∗ takes its value at (x, e, y, g−1µ) ∈
Q̃∗ × g∗ as

Ω(x, e, y, g−1µ)((ẋ, g−1ġ, ẏ, g−1µ̇), (δx, g−1δg, δy, g−1δµ))

= 〈δy, ẋ〉 − 〈ẏ, δx〉 −
〈
g−1µ,B(x, e)((ẋ, g−1ġ), (δx, g−1δg))

〉
+ ω(x, e, y, g−1µ)

(
(ẋ, g−1ġ, ẏ, g−1µ̇), (δx, g−1δg, δy, g−1δµ)

)
,

where
ω(x, e, y, g−1µ)

(
(ẋ, g−1ġ, ẏ, g−1µ̇), (δx, g−1δg, δy, g−1δµ)

)
=
〈
g−1δµ, g−1ġ

〉
−
〈
g−1µ̇, g−1δg

〉
+
〈
g−1µ, [g−1ġ, g−1δg]

〉
.

It follows from equation (19) that, by taking the quotient of D̄ by the action of G,
one can develop a structure [D̄]G := D̄/G on the bundle TT ∗Q/G ∼= TT ∗(Q/G)⊕
(g̃∗ × Ṽ ) over T ∗(Q/G)⊕ g̃∗, which is given by, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗,

[D̄]G(x, y, µ̄)

=
{(

(ẋ, ẏ, ξ̄, ˙̄µ), (κ, v, ν̄, η̄)
)
∈(T(x,y)T

∗(Q/G)× Ṽ )×(T ∗(x,y)T
∗(Q/G)× Ṽ ∗) |

〈κ, δx〉+ 〈δy, v〉+ 〈ν̄, ζ̄〉+ 〈δµ̄, η̄〉 = [Ω]G(x, y, µ̄)((ẋ, ẏ, ξ̄, ˙̄µ), (δx, δy, ζ̄, δµ̄))

for all (δx, δy, ζ̄, δµ̄) ∈ T(x,y)T
∗(Q/G)× Ṽ

}
,

(20)

where ξ̄ = [q, ξ]G = [q, ġg−1]G ∈ g̃, ζ̄ = [q, ζ]G = [q, δgg−1]G ∈ g̃, η̄ = [q, η]G ∈ g̃,
ν̄ = [q, ν]G ∈ g̃∗, and µ̄ = [q, µ]G ∈ g̃∗. Further, we note that Ṽ = g̃ ⊕ g̃∗ and
its dual Ṽ ∗ = g̃∗ ⊕ g̃ are the bundles over g̃∗, where we recall g̃ = (Q × g)/G and
g̃∗ = (Q× g∗)/G are the associated bundles over Q/G.

Furthermore, [Ω]G := Ω/G is given by, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗,

[Ω]G(x, y, µ̄)((ẋ, ẏ, ξ̄, ˙̄µ), (δx, δy, ζ̄, δµ̄))

= 〈δy, ẋ〉 − 〈ẏ, δx〉 −
〈
µ̄, B̃(x)(ẋ, δx)

〉
+ [ω]G(µ̄)

(
(ξ̄, ˙̄µ), (ζ̄, δµ̄)

)
= ωT∗(Q/G)(x, y)((ẋ, ẏ), (δx, δy))⊕ [ω]G(µ̄)

(
(ξ̄, ˙̄µ), (ζ̄, δµ̄)

)
.

(21)

In the above, ωT∗(Q/G)(x, y) = ΩT∗(Q/G)(x, y) − Bµ̄(x, y) can be regarded as a
reduced symplectic structure that is fiberwisely defined on T(x,y)T

∗(Q/G), where
ΩT∗(Q/G) is the canonical symplectic structure on T ∗(Q/G) and Bµ̄ = π∗Q/GB̃µ̄ is a

g̃-valued reduced curvature form on T ∗(Q/G), where B̃µ̄(ẋ, ·) := 〈µ̄, B̃(x)(ẋ, ·)〉 and
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we note that the curvature two-form B ≡ BA of the connection A is reduced to a
g̃–valued two-form B̃ ≡ B̃A on Q/G given by B̃(x)(δx, ẋ) = [q, B(q)(δq, q̇)]G.

Similarly, [ω]G := ω/G is a reduced symplectic structure on g̃∗ × Ṽ that is fiber-
wisely defined by, for each µ̃ ∈ g̃∗,

[ω]G(µ̄)((ξ̄, ˙̄µ), (ζ̄, δµ̄)) =
〈
δµ̄, ξ̄

〉
−
〈
˙̄µ, ζ̄
〉

+
〈
µ̄, [ξ̄, ζ̄]

〉
, (22)

where (ξ̄, ˙̄µ), (ζ̄, δµ̄) ∈ Ṽ . It is worth to note that the reduced symplectic structure
[ω]G on g̃∗ × Ṽ is the extended structure of the one that we derived for the case
Q = G (see [91]).

Notice that [Ω]G = ωT∗(Q/G) ⊕ [ω]G is a reduced symplectic structure on
the bundle TT ∗Q/G ∼= TT ∗(Q/G) ⊕ (g̃∗ × Ṽ ), which is defined at each point
(x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗, since it is skew symmetric and non-degenerate, as it can
be easily checked.

Proposition 4. The structure [D̄]G given in equation (4) is restated by, for each
(x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗,

[D̄]G(x, y, µ̄)

=
{(

(ẋ, ẏ, ξ̄, ˙̄µ), (κ, v, ν̄, η̄)
)
∈(T(x,y)T

∗(Q/G)× Ṽ )×(T ∗(x,y)T
∗(Q/G)× Ṽ ∗) |

ẋ = v, ẏ + κ = −B̃µ̄(ẋ, ·), ξ̄ = η̄, ˙̄µ + ν̄ = ad∗ξ µ̄
}

.

(23)

Proof. Assume that the condition (4) holds and it follows that, for each (x, y, µ̄),

〈κ, δx〉+ 〈δy, v〉+ 〈ν̄, ζ̄〉+ 〈δµ̄, η̄〉 = [Ω]G(x, y, µ̄)((ẋ, ẏ, ξ̄, ˙̄µ), (δx, δy, ζ̄, δµ̄))

for all (δx, δy, ζ̄, δµ̄) ∈ T(x,y)T
∗(Q/G) × Ṽ . First, by utilizing (21) and (22) and

setting δx = 0 and δµ̄ = 0, one has

〈δy, v − ẋ〉+
〈
ν̄ + ˙̄µ− ad∗ξ µ̄, ζ̄

〉
= 0, for all δy and ζ̄,

and it follows that v = ẋ and ˙̄µ + ν̄ = ad∗ξ µ̄. Next, setting δy = 0 and ζ̄ = 0, one
has 〈

ẏ + κ + B̃µ̄(ẋ, ·), δx
〉

+
〈
δµ̄, η̄ − ξ̄

〉
= 0, for all δx and δµ̄,

which leads to ẏ + κ = −B̃µ̄(ẋ, ·) and η̄ = ξ̄. The converse is shown in the same
way.

The gauged Dirac structure on TT ∗(Q/G) ⊕ (g̃∗ × Ṽ ). We have the proposi-
tion that the structure [D̄]G on TT ∗(Q/G) ⊕ (g̃∗ × Ṽ ) over T ∗(Q/G) ⊕ g̃∗ can be
understood as the direct sum of [D]Hor

G on TT ∗(Q/G) over T ∗(Q/G) and [D]Ver
G on

g̃∗ × Ṽ over g̃∗ as shown below.

Proposition 5. For each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗, one can express the structure

[D̄]G(x, y, µ̄) = [D̄]Hor
G (x, y)⊕ [D̄]Ver

G (µ̄).

In the above, [D̄]Hor
G is given by, for each (x, y) ∈ T ∗(Q/G),

[D̄]Hor
G (x, y) =

{
((ẋ, ẏ), (κ, v))∈T(x,y)T

∗(Q/G)× T ∗(x,y)T
∗(Q/G) |

〈κ, δx〉+ 〈δy, v〉 = ωT∗(Q/G)(x, y)((ẋ, ẏ), (δx, δy))

for all (δx, δy) ∈ T(x,y)T
∗(Q/G)

}
,
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or equivalently,

[D̄]Hor
G (x, y) =

{
((ẋ, ẏ), (κ, v)) ∈ T(x,y)T

∗(Q/G)× T ∗(x,y)T
∗(Q/G) |

ẋ = v, ẏ + κ = −B̃µ̄(ẋ, ·)
}

.
(24)

Further, [D̄]Ver
G is given by, for each µ̄ ∈ g̃∗,

[D̄]Ver
G (µ̄) =

{(
(ξ̄, ˙̄µ), (ν̄, η̄)

)
∈ Ṽ ⊕ Ṽ ∗ |

〈ν̄, ζ̄〉+ 〈δµ̄, η̄〉 = [ω]G(µ̄)((ξ̄, ˙̄µ), (ζ̄, δµ̄)) for all (ζ̄, δµ̄) ∈ Ṽ
}

,

or equivalently,

[D̄]Ver
G (µ̄) =

{(
(ξ̄, ˙̄µ), (ν̄, η̄)

)
∈ Ṽ ⊕ Ṽ ∗ | ξ̄ = η̄, ˙̄µ + ν̄ = ad∗ξ µ̄

}
. (25)

Proof. It is clear from Proposition 4 and also checked by direct computations.

Thus, we have the following theorem, which is associated with Dirac cotangent
bundle reduction.

Theorem 5.1. For (yx, µ̄) ∈ T ∗(Q/G) ⊕ g̃∗, the structure [D̄]G := D̄/G given
by equation (4), or equivalently, equation (23) is a Dirac structure on the bundle
TT ∗(Q/G) ⊕ (g̃∗ × Ṽ ) over T ∗(Q/G) ⊕ g̃∗, which is the natural reduction of the
canonical Dirac structure D on the cotangent bundle T ∗Q. Further, the reduced
Dirac structure [D̄]G can be expressed by a direct sum of a Dirac structure [D̄]Hor

G on
the bundle TT ∗(Q/G) over T ∗(Q/G) given in equation (24) and a Dirac structure
[D̄]Ver

G on the bundle g̃∗ × Ṽ over g̃∗ given in equation (25).

Proof. One can simply prove that for each (yx, µ̄) ∈ T ∗(Q/G)⊕ g̃∗, equation (4) is
a special case of the construction of a Dirac structure given by equation (1) on the
reduced symplectic manifold TT ∗Q/G = TT ∗(Q/G)⊕(g̃∗×Ṽ ) with a symplectic two
form [Ω]G. Similarly, one can show that [D̄]Hor

G is a Dirac structure on TT ∗(Q/G)
and [D̄]Ver

G is a Dirac structure on g̃∗ × Ṽ .

Notice that [D̄]G for the case Q = G, as in [91], is the reduced Dirac structure
on the bundle TT ∗G ∼= g∗ × V , which is the special case of [D̄]Ver

G for the general
Q.

Let us call the above reduced Dirac structure [D̄]G = [D̄]Hor
G ⊕ [D̄]Ver

G a gauged
Dirac structures on the bundle TT ∗(Q/G)⊕ (g̃∗× Ṽ ) over T ∗(Q/G)⊕ g̃∗, associ-
ated with the reduction of the canonical Dirac structure D on T ∗Q. Here, [D̄]Hor

G is
a horizontal Dirac structure on the bundle TT ∗(Q/G) over T ∗(Q/G) and [D̄]Ver

G

is a vertical Dirac structure on the bundle g̃∗ × Ṽ over g̃∗.

Needless to say, we note that the “gauged Dirac structure” depends on a principal
connection A : TQ → g and also that Q/G is a shape space and g̃∗ = (G× g∗)/G is
the associated bundle to g∗, regarded as a bundle over the shape space Q/G.

This construction of the reduced Dirac structure is quite consistent with the
reduced variational structures shown in §4.
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Relationship with reduction of Courant algebroids. This paragraph consid-
ers the relationship between Dirac reduction and the reduction of Courant alge-
broids for the case of P = T ∗Q. By choosing a principal connection and using
λ : TQ → Q̃× g and λ̄ : P → Q̃∗ × g∗, one can observe that

F = (TP ⊕ T ∗P )/G ∼= TT ∗(Q/G)⊕ T ∗T ∗(Q/G)⊕
(
g̃∗ × (Ṽ ⊕ Ṽ ∗)

)
is a Courant algebroid over B = P/G ∼= T ∗(Q/G) ⊕ g̃∗. Given the canonical
Dirac structure D on P = T ∗Q as in equation (17), the quotient [D]G = D/G
viewed as a subbundle of F gives the gauged Dirac structure on the bundle TP/G ∼=
TT ∗(Q/G)⊕ (g̃∗ × Ṽ ). This is consistent with the case P = T ∗G.

Another interesting thing relevant with Courant algebroids is that because the
gauged Dirac structure [D̄]G on the bundle TT ∗(Q/G)⊕(g̃∗×Ṽ ) can be represented
by a direct sum of the horizontal Dirac structure [D̄]Hor

G and the vertical Dirac
structure [D̄]Ver

G , namely,
[D̄]G = [D̄]Hor

G ⊕ [D̄]Ver
G ,

one can regard F as

F = F Hor ⊕ F Ver

over the bundle B = B Hor ⊕B Ver, where

F Hor = TT ∗(Q/G)⊕ T ∗T ∗(Q/G)

is a horizontal Courant algebroid over the shape space B Hor = T ∗(Q/G) and

F Ver = g̃∗ ×
(
Ṽ ⊕ Ṽ ∗

)
is a vertical Courant algebroid over the associated bundle B Ver = g̃∗.

6. Lagrange-Poincaré-Dirac reduction. This section shows how reduction of
standard implicit Lagrangian systems can be incorporated into the Dirac cotangent
bundle reduction and then how an implicit analogue of Lagrange-Poincaré equa-
tions can be established in the context of the reduction procedure called Lagrange-
Poincaré-Dirac reduction. We also illustrate the reduction procedure by an example
of a satellite with a rotor.
Standard implicit Lagrangian systems. Here, we consider the case in which
there is no constraint, namely, the case of a standard implicit Lagrangian system.

Let L : TQ → R be a Lagrangian, possibly degenerate. Given the canonical
Dirac structure D on T ∗Q and a partial vector field X : TQ ⊕ T ∗Q → TT ∗Q, a
standard implicit Lagrangian system is the triple (L,D,X) that satisfies, for each
(q, v, p) ∈ TQ⊕ T ∗Q and with P = FL(TQ), namely, (q, p) = (q, ∂L/∂v),

(X(q, v, p),dE(q, v, p)|TP ) ∈ D(q, p),

where E : TQ⊕ T ∗Q → R is the generalized energy defined by E(q, v, p) = 〈p, v〉 −
L(q, v) and the differential of E is the map dE : TQ ⊕ T ∗Q → T ∗(TQ ⊕ T ∗Q)
is given by dE = (q, v, p,−∂L/∂q, p − ∂L/∂v, v). Noting that p = ∂L/∂v holds
on P , the restriction of dE to TP is given, in coordinates, by dE(q, v, p)|T(q,p)P =
(q, p,−∂L/∂q, v), which may be understood in the sense that T(q,p)P is naturally
included in T(q,v,p)(TQ⊕ T ∗Q).
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Reduced Lagrangians. Suppose that L be left G-invariant, namely, for vq ∈ TQ,

L(TqLh · vq) = L(vq),

where h ∈ G and vq ∈ TqQ. Let A : TQ → g be a chosen principal connection on
π : Q → Q/G and we recall that the isomorphism λ : TQ → Q̃× g is given by

vq 7→ (q, Tπ(vq), A(vq)) = (x, g, u, η),

where q ∈ Q, g ∈ G, x = [q] ∈ Q/G, u = Tπ(vq) ∈ T[q](Q/G) and η = A(vq) ∈ g.
Then, one can define a Lagrangian on Q̃× g by

L̄ = L ◦ λ−1.

Because L is G–invariant, so is L̄ as

L̄(x, hg, u, hη) = L̄(x, hg, u,Adhη).

One can write this as

L̄(x, e, u, g−1η) = L̄(x, e, u, Adg−1η) = l(x, u, η̄),

where η̄ = [q, η]G ∈ g̃ and l is the reduced Lagrangian on TQ/G ∼= T (Q/G)⊕ g̃.

The reduced differential of generalized energies. Let us define the right triv-
ialized isomorphism

Λ = λ⊕ λ̄ : TQ⊕ T ∗Q → (Q̃× g)⊕ (Q̃∗ × g∗) = (Q̃⊕ Q̃∗)× V

by, for each (q, v, p) ∈ TQ⊕ T ∗Q,

(q, v, p) 7→ (q, Tπ(vq), (pq)h∗

q , A(vq),J(pq)) = (x, g, u, y, η, µ),

where J : T ∗Q → g∗ is an equivariant momentum map, (q, Tπ(vq), (pq)h∗

q ) =
(x, g, u, y) ∈ Q̃ ⊕ Q̃∗ and (A(vq),J(pq)) = (η, µ) ∈ V = g ⊕ g∗. The quotient
of Λ by the action of G is the map

[Λ]G := Λ/G : (TQ⊕ T ∗Q)/G → T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ ,

which is given by

[q, v, p]G 7→ ([q], Tπ(vq), (pq)h∗

q , [q, A(vq)]G, [q,J(pq)]G) = (x, u, y, η̄, µ̄).

Recall that we can define a generalized energy E on TQ⊕ T ∗Q by

E(q, v, p) = 〈p, v〉 − L(q, v),

which is G-invariant because of the G-invariance of L. The trivialized expression of
the generalized energy E can be defined by

Ē = E ◦ Λ−1 : (Q̃⊕ Q̃∗)× V → R,

which is given by

Ē(x, g, u, y, η, µ) = 〈y, u〉+ 〈µ, η〉 − L̄(x, g, u, η).

So, the differential of Ē is the map dĒ : (Q̃ ⊕ Q̃∗) × V → T ∗
(
(Q̃⊕ Q̃∗)× V

)
,

which is given by

dĒ(x, g, u, y, η, µ) =
(

∂Ē

∂x
,
∂Ē

∂g
,
∂Ē

∂u
,
∂Ē

∂y
,
∂Ē

∂η
,
∂Ē

∂µ

)
=
(
−∂L̄

∂x
,−∂L̄

∂g
, y − ∂L̄

∂u
, u, µ− ∂L̄

∂η
, η

)
.
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The map dĒ is G-invariant as

h · dĒ(x, g, u, y, η, µ) = dĒ(x, hg, u, y, hη, hµ)

=
(

∂Ē

∂x
, h

∂Ē

∂g
,
∂Ē

∂u
,
∂Ē

∂y
, h

∂Ē

∂η
, h

∂Ē

∂µ

)
=
(

∂Ē

∂x
, h

∂Ē

∂g
,
∂Ē

∂u
,
∂Ē

∂y
,Ad∗h−1

∂Ē

∂η
,Adh

∂Ē

∂µ

)
,

where hη = Adhη and hµ = Ad∗h−1µ.
Then, the quotient of the generalized energy dĒ by the action of G is given by

the map

[dĒ]G :=dĒ/G : T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ →

T ∗T (Q/G)⊕ T ∗T ∗(Q/G)⊕
(
g̃∗ × (Ṽ ⊕ Ṽ ∗)

)
,

which is represented by, for each (x, u, y, η̄, µ̄) ∈ T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ ,

[dĒ]G(x, u, y, η̄, µ̄) =
(

x, u, y,
∂E
∂x

,
∂E
∂u

,
∂E
∂y

, µ̄, η̄,
∂E
∂η̄

, g−1 ∂E
∂g

,
∂E
∂µ̄

)
=
(

x, u, y,− ∂l

∂x
, y − ∂l

∂u
, u, µ̄, η̄, µ̄− ∂l

∂η̄
, 0, η̄

)
,

where E is the reduced generalized energy on T (Q/G) ⊕ T ∗(Q/G) ⊕ Ṽ defined by
E(x, u, y, η̄, µ̄) = Ē(x, e, u, y, g−1η, g−1µ).

The reduced Legendre transformation. In view of the isomorphisms λ : TQ →
Q̃× g and λ̄ : T ∗Q → Q̃∗ × g∗, let us define the trivialized Legendre transformation
by

FL̄ : Q̃× g → P̄ ; (x, g, u, η) →
(

x, g, y =
∂L̄

∂u
, µ =

∂L̄

∂η

)
.

In the above, P̄ = FL̄(Q̃ × g) ⊂ Q̃∗ × g∗ corresponds to the trivialized expression
of the subspace P = FL(TQ) ⊂ T ∗Q. By the equivariance of the map FL̄, we can
define the reduced Legendre transformation by the quotient of FL̄ as

Fl := [FL̄]G : T (Q/G)⊕ g̃ → [P̄ ]G ⊂ T ∗(Q/G)⊕ g̃∗,

which is given by

(x, u, η̄) →
(

x, y =
∂l

∂u
, µ̄ =

∂l

∂η̄

)
.

On the other hand, the reduced Legendre transformation induces the condition

∂E
∂u

= y − ∂l

∂u
= 0,

∂E
∂η̄

= µ̄− ∂l

∂η̄
= 0.

Hence, the restriction of the quotient of the generalized energy [dĒ]G to the
subbundle [T P̄ ]G ⊂ TT ∗(Q/G)⊕ (g̃∗ × Ṽ ) is given by

[dĒ]G(x, u, y, η̄, µ̄)|[TP̄ ]G =
(

x, y,
∂E
∂x

,
∂E
∂y

, µ̄, g−1 ∂E
∂g

,
∂E
∂µ̄

)
=
(

x, y,− ∂l

∂x
, u, µ̄, 0, η̄

)
.

Notice that the subbundle [T P̄ ]G is the bundle over [P̄ ]G ⊂ T ∗(Q/G)⊕ g̃∗.
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Remark 12. In view of the isomorphisms λ : TQ → Q̃×g and λ̄ : T ∗Q → Q̃∗×g∗,
the quotient of T ∗(TQ ⊕ T ∗Q) ∼= T ∗TQ ⊕ T ∗T ∗Q by the action of G induces the
isomorphisms:

(T ∗TQ⊕ T ∗T ∗Q)/G ∼= (T ∗TQ/G)⊕ (T ∗T ∗Q/G)
∼= T ∗(Q̃× g)/G⊕ T ∗(Q̃∗ × g∗)/G

∼= T ∗T (Q/G)⊕ (g̃∗ × Ṽ )⊕ T ∗T ∗(Q/G)⊕ (g̃∗ × Ṽ ∗)

∼= T ∗T (Q/G)⊕ T ∗T ∗(Q/G)⊕
(
g̃∗ × (Ṽ ⊕ Ṽ ∗)

)
,

where T ∗TQ/G ∼= T ∗(Q̃ × g)/G ∼= T ∗T (Q/G) ⊕ (g̃× (g̃∗ ⊕ g̃∗)) ∼= T ∗T (Q/G) ⊕
(g̃∗ × Ṽ ).

Reduction of partial vector fields. Let X : TQ ⊕ T ∗Q → TT ∗Q be a partial
vector field on T ∗Q; namely, a map that assigns to a point (q, v, p) ∈ TQ⊕ T ∗Q, a
vector in Tpq

T ∗Q as
X(q, v, p) = (q, p, q̇, ṗ),

where q̇ and ṗ are functions of (q, v, p). Since X is left invariant, one has

h ·X(q, v, p) = X(hq, TqLhv, T ∗hqLh−1p).

Using the trivialized isomorphism Λ = λ ⊕ λ̄ : TQ ⊕ T ∗Q → (Q̃ ⊕ Q̃∗) × V , the
trivialized expression of the partial vector field X : TQ ⊕ T ∗Q → TT ∗Q may be
given by

X̄ : (Q̃⊕ Q̃∗)× V → T (Q̃∗ × g∗),

which is expressed as

X̄(x, g, u, y, η, µ) = (x, g, y, µ, ẋ, ġ, ẏ, µ̇) ∈ T(x,g,y,µ)(Q̃∗ × g∗).

Since X is G-invariant and Λ = λ⊕ λ̄ : TQ⊕T ∗Q → (Q̃⊕Q̃∗)×V is equivariant,
X̄ is also G-invariant:

h · X̄(x, g, u, y, η, µ) = X̄(x, hg, u, y, hη, hµ) ∈ T(x,hg,y,hµ)(Q̃∗ × g∗).

In the above, X̄(x, hg, u, y, hη, hµ) = X̄(x, hg, u, y, Adhη, Ad∗h−1µ) and it follows
that

X̄(x, hg, u, y, hη, hµ) = (x, hg, y, hµ, ẋ, hġ, ẏ, hµ̇)

=
(
x, hg, y, Ad∗h−1µ, ẋ, TgLhġ, ẏ, Ad∗h−1 µ̇

)
.

Hence, X̄ takes its value at the identity as

X̄(x, e, u, y, g−1η, g−1µ) = (x, e, y, g−1µ, ẋ, g−1ġ, ẏ, g−1µ̇).

Since X̄ : (Q̃ ⊕ Q̃∗) × V → T (Q̃∗ × g∗) is equivariant, it drops to the quotient by
G, and we can define a reduced partial vector field, denoted

[X̄]G := X̄/G : T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ → TT ∗(Q/G)⊕ (g̃∗ × Ṽ ),

which is given by, for each (x, u, y, η̄, µ̄) ∈ T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ ,

[X̄]G(x, u, y, η̄, µ̄) =
(
x, y, ẋ, ẏ, µ̄, ξ̄, ˙̄µ

)
,

where η̄ = [q, η]G = [q, A(q, v)]G, ξ̄ = [q, ξ]G = [q, A(q, q̇)]G ∈ g̃ and µ̄ = [q, µ]G ∈ g̃∗

such that µ̄ = ∂l/∂η̄.
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When we have an integral curve of [X̄]G, then ẋ ≡ dx/dt will be the time
derivative of x, ẏ ≡ Dy/Dt will be the covariant derivative of y in the bundle
T ∗(Q/G) and ˙̄µ ≡ Dµ̄/Dt will be the covariant derivative of µ̄ in g̃∗; note that
(ẋ, ẏ, ξ̄, ˙̄µ) are functions of (x, u, y, η̄, µ̄).

Lagrange-Poincaré-Dirac reduction. Let us show reduction of a standard im-
plicit Lagrangian system, called Lagrange-Poincaré-Dirac reduction.

Definition 6.1. The reduction of the standard implicit Lagrangian system
(L,D,X) is given by a triple

(l, [D̄]G, [X̄]G),

which satisfies, for each (x, u, y, η̄, µ̄) ∈ T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ , the condition(
[X̄]G (x, u, y, η̄, µ̄) , [dĒ]G(x, u, y, η̄, µ̄)|[TP̄ ]G

)
∈ [D̄]G(x, y, µ̄), (26)

where l : T (Q/G) ⊕ g̃ → R is the reduced Lagrangian and the reduced Legendre
transformation holds as (x, y = ∂l/∂u, µ̄ = ∂l/∂η̄) ∈ [P̄ ]G = Fl(T (Q/G) ⊕ g̃) ⊂
T ∗(Q/G)⊕ g̃∗.

Definition 6.2. A solution curve of the reduced standard implicit Lagrangian
system (l, [D̄]G, [X̄]G) is a curve (x(t), u(t), y(t), η̄(t), µ̄(t)), t ∈ [t0, t1] in T (Q/G)⊕
T ∗(Q/G) ⊕ Ṽ , which is an integral curve of the reduced partial vector field [X̄]G
that takes its value for each point of the curve as

[X̄]G (x(t), u(t), y(t), η̄(t), µ̄(t)) =
(

x(t), y(t),
dx(t)

dt
,
Dy(t)
Dt

, µ̄(t), ξ̄(t),
Dµ̄(t)

Dt

)
,

where y(t) = (∂l/∂u)(t) and µ̄(t) = (∂l/∂η̄)(t).

Theorem 6.3. Let (l, [D̄]G, [X̄]G) be the reduction of the standard implicit La-
grangian system that satisfies equation (26). Let (x(t), u(t), y(t), η̄(t), µ̄(t)), t ∈
[t0, t1] be a solution curve in T (Q/G) ⊕ T ∗(Q/G) ⊕ Ṽ of (l, [D̄]G, [X̄]G). Then,
the solution curve satisfies the implicit Lagrange-Poincaré equations:

Dy

Dt
=

∂l

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
,

dx

dt
= u,

y =
∂l

∂u
,

Dµ̄

Dt
= ad ∗ξ̄ µ̄,

ξ̄ = η̄,

µ̄ =
∂l

∂η̄
.

(27)

Proof. The reduction of the standard implicit Lagrangian system (l, [D̄]G, [X̄]G)
satisfies, for each (x, u, y, η̄, µ̄) ∈ T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ such that y = ∂l/∂u and
µ̄ = ∂l/∂η̄,(

[X̄]G(x, u, y, η̄, µ̄), [dĒ]G(x, u, y, η̄, µ̄)|[TP̄ ]G

)
∈ [D̄]G(x, y, µ̄),

which is represented by((
dx

dt
,
Dy

Dt
, ξ̄,

Dµ̄

Dt

)
,

(
− ∂l

∂x
, u, 0, η̄

))
∈ [D̄]G(x, y, µ̄).
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Then, it follows

〈
− ∂l

∂x
, δx

〉
+ 〈δy, u〉+

〈
0, ζ̄
〉

+ 〈δµ̄, η̄〉

=
〈

δy,
dx

dt

〉
−
〈

Dy

Dt
, δx

〉
−
〈
µ̄, B̃(ẋ, δx)

〉
+
〈
δµ̄, ξ̄

〉
−
〈

Dµ̄

Dt
, ζ̄

〉
+
〈
µ̄, [ξ̄, ζ̄]

〉
.

Hence, one has

〈
−Dy

Dt
+

∂l

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
, δx

〉
+
〈

δy,
dx

dt
− u

〉
+
〈
−Dµ̄

Dt
+ ad∗ξ̄ µ̄, ζ̄

〉
+
〈
δµ̄, ξ̄ − η̄

〉
= 0

for all δx, δy, ζ̄ and δµ̄.

Thus, we can obtain the implicit Lagrange-Poincaré equations in equation (27)
as the reduction of the standard implicit Lagrangian system.

Coordinate expressions. Suppose that Q has dimension n, so that Q/G has
dimension r = n − dim G. We choose a local trivialization of the principal bundle
Q → Q/G to be S × G, where S is an open set of Rr. Thus, we consider the
trivial principal bundle π : S × G → S with the structure group G acting only
on the second factor by left multiplication. Let A be a given principal connection
on the bundle Q → Q/G, or, in local representation, on the bundle S × G → S.
Write local coordinates for a point q = (x, g) ∈ Q ∼= S ×G by (xα, ga), where α =
1, ..., r and a = 1, ...,dim G. The principal connection one-form is locally written
by Adg(Ae(x)dx + g−1dg). Then, at any tangent vector (x, g, ẋ, ġ) ∈ T(x,g)(S ×G),
one has

A(x, g, ẋ, ġ) = Adg(Ae(x) · ẋ + ξ) = A(x, g) · ẋ + ġg−1,

where Ae is the g-valued one-form on S defined by Ae(x) · ẋ = A(x, e, ẋ, 0) and
ξ = g−1ġ. By the bundle isomorphism ΨA : TQ/G → T (Q/G)⊕ g̃,

ΨA([x, g, ẋ, ġ]G) = (x, ẋ, ξ̄),

where ξ̄ = (x,Ae(x) · ẋ + ξ). Let Aa
α(x) be the local coordinate expression of Ae on

the bundle S × G → S. Then, we simply write ξ̄a = ξa + Aa
αẋα. Let Cb

cd be the
structure constants of the Lie algebra g and the components of the curvature of A
are given, in coordinates, by

Bb
α β =

(
∂Ab

β

∂xα
− ∂Ab

α

∂xβ
− Cb

c dA
c
αAd

β

)
.
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Thus, the coordinate expression of the implicit Lagrange–Poincaré equa-
tions in (27) may be represented by

dyα

dt
=

∂l

∂xα
+ µ̄a

(
Ba

αβẋβ − Ca
dbA

b
αξ̄d
)
,

dxα

dt
= uα,

yα =
∂l

∂uα
,

dµ̄b

dt
= µ̄a

(
Ca

dbξ̄
d − Ca

dbA
d
αẋα

)
,

ξ̄b = η̄b,

µ̄b =
∂l

∂η̄b
.

Gauged Dirac structures in Lagrange-Poincaré-Dirac reduction. Let us de-
note by (l, [D̄]G, [X̄]G) the reduced implicit Lagrangian system that satisfies equa-
tion (26). Recall the reduced partial vector field

[X̄]G : T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ → TT ∗(Q/G)⊕ (g̃∗ × Ṽ )

is locally given by, for each (x, u, y, η̄, µ̄) ∈ T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ ,

[X̄]G(x, u, y, η̄, µ̄) =
(

x, y,
dx

dt
,
Dy

Dt
, µ̄, ξ̄,

Dµ̄

Dt

)
.

Notice that [X̄]G can be represented by the direct sum of the horizontal and vertical
parts such that

[X̄]G(x, u, y, η̄, µ̄) = [X̄]Hor
G (x, u, y)⊕ [X̄]Ver

G (η̄, µ̄),

where [X̄]Hor
G : T (Q/G) ⊕ T ∗(Q/G) → TT ∗(Q/G) denotes the horizontal partial

vector field, which is given by

[X̄]Hor
G (x, u, y) =

(
x, y,

dx

dt
,
Dy

Dt

)
∈ TT ∗(Q/G)

and [X̄]Ver
G : Ṽ → g̃∗× Ṽ indicates the vertical partial vector field, which is given by

[X̄]Ver
G (η̄, µ̄) =

(
µ̄, ξ̄,

Dµ̄

Dt

)
∈ g̃∗ × Ṽ .

On the other hand, the quotient of the differential of the generalized energy,
namely,

[dĒ]G : T (Q/G)⊕ T ∗(Q/G)⊕ Ṽ → T ∗T (Q/G)⊕ T ∗T ∗(Q/G)⊕
(
g̃∗ × (Ṽ ⊕ Ṽ ∗)

)
can be decomposed into the horizontal and vertical parts as

[dĒ]G(x, u, y, η̄, µ̄) = [dĒ]Hor
G (x, u, y)⊕ [dĒ]Ver

G (η̄, µ̄),

where [dĒ]Hor
G : T (Q/G) ⊕ T ∗(Q/G) → T ∗T (Q/G) ⊕ T ∗T ∗(Q/G) is the horizon-

tal differential of the generalized energy given by, for each (x, u, y) ∈ T (Q/G) ⊕
T ∗(Q/G),

[dĒ]Hor
G (x, u, y) =

(
x, u, y,

∂E
∂x

,
∂E
∂u

,
∂E
∂y

)
=
(

x, u, y,− ∂l

∂x
, y − ∂l

∂u
, u

)
,
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and [dĒ]Ver
G : Ṽ → g̃∗× (Ṽ ⊕ Ṽ ∗) is the vertical differential of the generalized energy

given by, for each (η̄, µ̄) ∈ Ṽ ,

[dĒ]Ver
G (η̄, µ̄) =

(
µ̄, η̄,

∂E
∂η̄

, g−1 ∂E
∂g

,
∂E
∂µ̄

)
=
(

µ̄, η̄, µ̄− ∂l

∂η̄
, 0, η̄

)
.

Recall the reduced Legendre transformation [P̄ ]G = Fl(T (Q/G)⊕g̃) ⊂ T ∗(Q/G)⊕g̃∗

that is given by

(x, u, η̄) 7→
(

x, y =
∂l

∂u
, µ̄ =

∂l

∂η̄

)
induces the conditions ∂E/∂u = y − ∂l/∂u = 0 and ∂E/∂η̄ = µ̄− ∂l/∂η̄ = 0.

This reduced Legendre transformation may be naturally decomposed into the
horizontal and vertical parts such that

Fl = FlHor ⊕ FlVer,

where the horizontal Legendre transformation

FlHor : T (Q/G) → T ∗(Q/G); (x, u) 7→
(

x, y =
∂l

∂u

)
induces the condition ∂E/∂u = y− ∂l/∂u = 0, while the vertical Legendre transfor-
mation

FlVer : g̃ → g̃∗; η̄ 7→ µ̄ =
∂l

∂η̄

satisfies the condition ∂E/∂η̄ = µ̄−∂l/∂η̄ = 0. One has [P̄ ]Hor
G = FlHor(T (Q/G)) ⊂

T ∗(Q/G) and [P̄ ]Ver
G = FlVer(g̃) ⊂ g̃∗ such that

[P̄ ]G = [P̄ ]Hor
G ⊕ [P̄ ]Ver

G .

Further, setting

[T P̄ ]Hor
G = T [P̄ ]Hor

G ⊂ TT ∗(Q/G) and [T P̄ ]Ver
G = g̃× T [P̄ ]Ver

G ⊂ g̃∗ × Ṽ ,

one has
[T P̄ ]G = [T P̄ ]Hor

G ⊕ [T P̄ ]Ver
G ⊂ TT ∗(Q/G)⊕ (g̃∗ × Ṽ ).

Thus, the restriction of [dĒ]G to [T P̄ ]G can be also decomposed as

[dĒ]G(x, u, y, η̄, µ̄)|[TP̄ ]G = [dĒ]Hor
G (x, u, y)|[TP̄ ]Hor

G
⊕ [dĒ]Ver

G (η̄, µ̄)|[TP̄ ]Ver
G

,

where

[dĒ]Hor
G (x, u, y)|[TP̄ ]Hor

G
=
(

x, y,
∂E
∂x

,
∂E
∂y

)
=
(

x, y,− ∂l

∂x
, u

)
,

and

[dĒ]Ver
G (η̄, µ̄)|[TP̄ ]Ver

G
=
(

µ̄, g−1 ∂E
∂g

,
∂E
∂µ̄

)
= (µ̄, 0, η̄) .

Recall that the reduced Dirac structure [D̄]G is a gauged Dirac structure, which
may be decomposed into the horizontal and vertical Dirac structures as, for each
(x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃,

[D̄]G(x, y, µ̄) = [D̄]Hor
G (x, y)⊕ [D̄]Ver

G (µ̄).

Note that the horizontal Dirac structure [D̄]Hor
G is shown in equation (24), while the

vertical Dirac structure [D̄]Ver
G in equation (25).

Thus, we obtain the following theorem associated with the gauged Dirac struc-
ture.



DIRAC COTANGENT BUNDLE REDUCTION 143

Theorem 6.4. Let (L,D,X) be a standard implicit Lagrangian system, which sat-
isfies the condition, for each (q, v, p) ∈ TQ⊕ T ∗Q,

(X(q, v, p),dE(q, v, p) |TP ) ∈ D(q, p),

where P = FL(TQ), namely, (q, p) = (q, ∂L/∂v). Let (l, [D̄]G, [X̄]G) be the reduc-
tion of (L,D,X), which satisfies the condition, for each (x, u, y, η̄, µ̄) ∈ T (Q/G)⊕
T ∗(Q/G)⊕ Ṽ ,

([X̄]G (x, u, y, η̄, µ̄) , [dĒ]G(x, u, y, η̄, µ̄)|[TP̄ ]G) ∈ [D̄]G(x, y, µ̄),

together with the reduced Legendre transformation

[P̄ ]G = Fl(T (Q/G)⊕ g̃) ⊂ T ∗(Q/G)⊕ g̃∗,

that is,

(x, u, η̄) 7→
(

x, y =
∂l

∂u
, µ̄ =

∂l

∂η̄

)
.

Then, (l, [D̄]G, [X̄]G) can be decomposed into the horizontal and vertical parts as

(l, [D̄]G, [X̄]G) = (l, [D̄]Hor
G , [X̄]Hor

G )⊕ (l, [D̄]Ver
G , [X̄]Ver

G ).

In the above, (l, [D̄]Hor
G , [X̄]Hor

G ) is the horizontal implicit Lagrangian system,
which satisfies, for each (x, u, y) ∈ T (Q/G)⊕ T ∗(Q/G),

([X̄]Hor
G (x, u, y) , [dĒ]Hor

G (x, u, y)|[TP̄ ]Hor
G

) ∈ [D̄]Hor
G (x, y),

together with the horizontal Legendre transformation [P̄ ]Hor
G = FlHor(T (Q/G)) ⊂

T ∗(Q/G); namely,

(x, u) 7→
(

x, y =
∂l

∂u

)
.

This induces the horizontal implicit Lagrange-Poincaré equations:

Dy

Dt
=

∂l

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
,

dx

dt
= u, y =

∂l

∂u
.

Moreover, (l, [D̄]Ver
G , [X̄]Ver

G ) is the vertical implicit Lagrangian system, which
satisfies, for each (η̄, µ̄) ∈ Ṽ ,

([X̄]Ver
G (η̄, µ̄) , [dĒ]Ver

G (η̄, µ̄)|[TP̄ ]Ver
G

) ∈ [D̄]Ver
G (µ̄),

together with the vertical Legendre transformation [P̄ ]Ver
G = FlVer(g̃) ⊂ g̃∗;

η̄ 7→ µ̄ =
∂l

∂η̄
.

This induces the vertical implicit Lagrange-Poincaré equations:

Dµ̄

Dt
= ad ∗ξ̄ µ̄, ξ̄ = η̄, µ̄ =

∂l

∂η̄
.
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Example: Satellite with a rotor. Let us consider an illustrative example of a
satellite with a rotor aligned with the third principal axis of the body (see, [64, 9,
27]).

The satellite with a rotor is modeled by a rigid body of a carrier and a rigid
rotor, whose configuration manifold is given by Q = S1 × SO(3), with the first
factor being the rotor relative angle and the second factor the rigid body attitude.
Consider the case in which there exists no torque at the rotor. Then, it immediately
follows that the Lie group G = SO(3) only acts on the second factor of Q and hence
that Q/G = S1.

Now, let q = (θ, R) be local coordinates for Q = S1 × SO(3) and (q, v) =
(θ, R, u, U) for TQ. Let us take a trivialized connection on Q → Q/G such that
TQ/G ∼= T (Q/G)⊕ g̃ = TS1 × so(3).

Let L : TQ → R be a left invariant Lagrangian that is given by the total kinetic
energy of the system (rigid carrier plus rotor) and let E : TQ ⊕ T ∗Q → R be a
left invariant generalized energy that is defined, for each (q, v, p) ∈ TQ ⊕ T ∗Q, by
E(q, v, p) = 〈p, v〉 − L(q, v). In view of TQ/G ∼= T (Q/G)⊕ g̃ and the G-invariance
associated with the Lagrangian, one has

L(q, v) = l([q, v]G),

where l : T (Q/G)⊕ g̃ = TS1× so(3) → R is the reduced Lagrangian, which is given
by, for each [q, v]G = (θ, u,Σ) ∈ TS1 × R3 ∼= TS1 × so(3),

l(θ, u,Σ) =
1
2
(
λ1Σ2

1 + λ2Σ2
2 + I3Σ2

3 + J3(Σ3 + u)2
)
.

In the above, I1 > I2 > I3 are the rigid body moments of inertia, J1 = J2 and J3

are the rotor moments of inertia, λi = Ii + Ji, θ is the relative angle of the rotor,
(θ, u) ∈ TS1, Σ = (Σ1,Σ2,Σ3) ∈ R3 is the body angular velocity that is defined by
Σ̂ = R−1U ∈ so(3) such that Σ̂ w ∼= Σ× w for all w ∈ R3, where (R,U) ∈ TSO(3).

In view of (TQ ⊕ T ∗Q)/G ∼= T (Q/G) ⊕ T ∗(Q/G) ⊕ Ṽ and the G-invariance
associated with the generalized energy E, one has

E(q, v, p) = E([q, v, p]G),

where Ṽ = so(3)⊕ so(3)∗ and E : TS1 ⊕ T ∗S1 ⊕ Ṽ → R is the reduced generalized
energy, which is given by, for each [q, v, p]G = (θ, u, y,Σ,Π) ∈ TS1 ⊕ T ∗S1 ⊕ Ṽ ,

E(θ, u, y,Σ,Π) = 〈y, u〉+ 〈Π,Σ〉 − l(θ, u, Σ)

= Π1Σ1 + Π2Σ2 + Π3Σ3 −
1
2
(
λ1Σ2

1 + λ2Σ2
2 + I3Σ2

3 + J3(Σ3 + u)2
)
,

where y ∈ T ∗θ S1 indicates the momentum and Π = (Π1,Π2,Π3) ∈ (R3)∗ ∼= so(3)∗

denotes the body angular momentum and where Ṽ = R3 ⊕ (R3)∗ ∼= so(3)⊕ so(3)∗.
The quotient of the differential of the generalized energy is the map

[dE]G : TS1 ⊕ T ∗S1 ⊕ Ṽ → T ∗TS1 ⊕ T ∗T ∗S1 ⊕
(
so(3)∗ × (Ṽ ⊕ Ṽ ∗)

)
.

Since the Lagrangian in this example is regular, the Legendre transform holds as(
θ, y =

∂l

∂u
, Π =

∂l

∂Σ

)
∈ T ∗S1 × (R3)∗ ∼= T ∗S1 × so(3)∗
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and the restriction of [dE]G to TT ∗S1 ⊕ (so(3)∗ × Ṽ ) is given by

[dE]G(θ, u, y,Σ,Π) |TT∗S1⊕(so(3)∗×Ṽ ) =
(

θ, y,− ∂l

∂θ
, u,Π, 0,Σ

)
. (28)

It follows that the conjugate momentum y of θ and the body angular momentum
Π may be represented by

y = J3(Σ3 + u), Π1 = λ1Σ1, Π2 = λ2Σ2, Π3 = λ3Σ3 + J3u.

The reduction of the partial vector field X : TQ ⊕ T ∗Q → TT ∗Q, namely,
the map [X̄]G : TS1 ⊕ T ∗S1 ⊕ Ṽ → TT ∗S1 ⊕ (so(3)∗ × Ṽ ) is given by, for each
(θ, u, y,Σ,Π) ∈ TS1 ⊕ T ∗S1 ⊕ Ṽ ,

[X̄]G (θ, u, y,Σ,Π) =
(
θ, y, θ̇, ẏ, Π,Ω, Π̇

)
, (29)

where Ω ∈ R3 is defined by Ω̂ = R−1Ṙ ∈ so(3) such that Ω̂ w ∼= Ω×w for w ∈ R3.

The reduction of the standard implicit Lagrangian system (L,D,X) is a triple

(l, [D̄]G, [X̄]G),

which satisfies, for each (θ, u, y,Σ,Π) ∈ TS1 ⊕ T ∗S1 ⊕ Ṽ , the condition(
[X̄]G (θ, u, y,Σ,Π) , [dE]G(θ, u, y,Σ,Π) |TT∗S1⊕(so(3)×Ṽ )

)
∈ [D̄]G(θ, y,Π), (30)

together with (θ, y = ∂l/∂u, Π = ∂l/∂Σ) ∈ T ∗S1 ⊕ so(3)∗.

Using equations (28), (29) and (30), one can easily derive the implicit Lagrange-
Poincaré equations for the satellite with a rotor, which consist of the horizontal
implicit Lagrange-Poincaré equations

dy

dt
= 0,

dθ

dt
= u, y =

∂l

∂u

and the vertical implicit Lagrange-Poincaré equations
dΠ
dt

= Π× Ω, Ω = Σ, Π =
∂l

∂Σ
.

In the above, it follows that the momentum y = J3(Σ3 + u) = constant.

7. Hamilton-Poincaré-Dirac reduction. We can define a standard implicit
Hamiltonian system from a given regular Lagrangian via the Legendre transforma-
tion. In this section, we show the reduction procedure of standard implicit Hamil-
tonian systems, called Hamilton-Poincaré-Dirac reduction, where it is shown how
Hamilton-Poincaré equations can be constructed in the context of the Dirac cotan-
gent bundle reduction. We also demonstrate this reduction procedure by an example
of a satellite with a rotor.

Standard implicit Hamiltonian systems. As in Lagrange-Poincaré-Dirac re-
duction, we consider the case in which there is no constraint, namely the case of a
standard implicit Hamiltonian system.

Let L : TQ → R be a given left G–invariant Lagrangian and let D be the
canonical Dirac structure on the cotangent bundle T ∗Q of a configuration manifold
Q. Denote a vector field on T ∗Q by X. For the case in which L is regular, we can
define a left G–invariant Hamiltonian by

H = E ◦ (FL)−1,
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where E : TQ → R is the energy defined, for each (q, v) ∈ TQ, by E(q, v) =
〈FL(q, v), vq〉−L(q, v). Then, a standard implicit Hamiltonian system can be defined
as a triple (H,D,X) which satisfies, for each (q, p) ∈ T ∗Q,

(X(q, p),H(q, p)) ∈ D(q, p).

Local representation. The differential of H is a map dH : T ∗Q → T ∗T ∗Q, which
is locally expressed by, for each (q, p) for T ∗Q,

dH =
(

q, p,
∂H

∂q
,
∂H

∂p

)
.

The vector field X is a map from T ∗Q to TT ∗Q, which assigns to each point
(q, p) ∈ T ∗Q, a vector in T(q,p)T

∗Q as

X(q, p) =
(

q, p,
dq

dt
,
dp

dt

)
.

Recall that the canonical two-form ΩT∗Q is given by

ΩT∗Q ((q, p, u1, α1), (q, p, u2, α2)) = 〈α2, u1〉 − 〈α1, u2〉 ,

and hence the canonical Dirac structure may be expressed by

D(q, p) = {((q, p, q̇, ṗ), (q, p, α, w)) | w = q̇, and α = −ṗ} .

Then, the condition for the standard implicit Hamiltonian system (X,dH) ∈ D
reads 〈

∂H

∂q
, u

〉
+
〈

α,
∂H

∂p

〉
=
〈

α,
dq

dt

〉
−
〈

dp

dt
, u

〉
for all u and α, where (u, α) are the local representatives of a point in T(q,p)T

∗Q.
Then, we obtain the local representation

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
.

Reduction of the differential of Hamiltonians. Next, we consider reduction
of the standard Hamiltonian system. Let A : TQ → g be a principal connection on
the principal bundle π : Q → Q/G as before. Recall that an equivariant momentum
map J : T ∗Q → g∗ is defined by, for pq ∈ T ∗q Q,

〈J(pq), ξ〉 = 〈pq, ξQ(q)〉,

where ξ ∈ g. Since H : T ∗Q → R is left invariant, namely, for pq ∈ T ∗Q,

H(T ∗hqLh−1pq) = H(pq)

for all h ∈ G. Recall that the isomorphism λ̄ : T ∗Q → Q̃∗ × g∗ is denoted by

pq 7→ ([q], (pq)h∗

q ,J(pq)) = (x, g, y, µ),

where y = (pq)h∗

q ∈ T ∗[q](Q/G) and µ = J(pq) ∈ g∗. Then, one can define a G–

invariant Hamiltonian on Q̃∗ × g∗ by

H̄ = H ◦ λ̄−1

and its differential may be represented by the map

dH̄ : Q̃∗ × g∗ → T ∗(Q̃∗ × g∗),
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which is expressed in coordinates by

dH̄ =
(

x, g, y, µ,
∂H̄

∂x
,
∂H̄

∂g
,

∂H̄

∂y
,
∂H̄

∂µ

)
.

The map dH̄ : Q̃∗ × g∗ → T ∗(Q̃∗ × g∗) is G-invariant as

h · dH̄(x, g, y, µ) = dH̄(x, hg, y, hµ) = dH̄(x, hg, y, Ad∗h−1µ),

and it follows that

dH̄ =
(

x, hg, y, hµ,
∂H̄

∂x
, h

∂H̄

∂g
,

∂H̄

∂y
, h

∂H̄

∂µ

)
=
(

x, hg, u,Ad∗h−1µ,
∂H̄

∂x
, T ∗hgLh−1

∂H̄

∂g
,

∂H̄

∂y
,Adh

∂H̄

∂µ

)
.

Then, one can compute it at the identity as

dH̄ =
(

x, e, y, g−1µ,
∂H̄

∂x
, g−1 ∂H̄

∂g
,

∂H̄

∂y
, g−1 ∂H̄

∂µ

)
=
(

x, e, y, Ad∗gµ,
∂H̄

∂x
, T ∗e Lg

∂H̄

∂g
,

∂H̄

∂y
,Adg−1

∂H̄

∂µ

)
=
(

x, e, y, Ad∗gµ,
∂H̄

∂x
, 0,

∂H̄

∂y
,Adg−1

∂H̄

∂µ

)
.

Since H̄ is G–invariant as

H̄(x, hg, y, hµ) = H̄(x, hg, y, Ad∗h−1µ),

one can write

H̄(x, e, y, g−1µ) = H̄(x, e, y, Ad∗gµ) = h(x, y, µ̄),

where µ̄ = [q, µ]G ∈ g̃∗ and h is the reduced Hamiltonian on T ∗Q/G ∼= (Q̃∗×g∗)/G ∼=
T ∗(Q/G)⊕ g̃∗.

Noting the isomorphisms T ∗T ∗Q/G ∼= T ∗(Q̃∗×g∗)/G ∼= T ∗T ∗(Q/G)⊕(g̃∗×Ṽ ∗),
the quotient of the map dH̄ : Q̃∗×g∗ → T ∗(Q̃∗×g∗) by the action of G is given by

[dH̄]G := dH̄/G : T ∗(Q/G)⊕ g̃∗ → T ∗T ∗(Q/G)⊕ (g̃∗ × Ṽ ∗),

which is denoted by, for each [q, p]G = (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗,

[dH̄]G(x, y, µ̄) =
(

x, y,
∂h

∂x
,
∂h

∂y
, µ̄, 0,

∂h

∂µ̄

)
.

The reduced vector field. Let X : T ∗Q → TT ∗Q be a vector field on T ∗Q;
namely, a map that assigns to a point (q, p) ∈ T ∗Q, a vector in Tpq

T ∗Q and X is
locally represented by

X(q, p) = (q, p, q̇, ṗ).

Since X is left invariant, it follows

h ·X(q, p) = X(hq, T ∗hqLh−1p).

By using λ̄ : T ∗Q → Q̃∗ × g∗, the trivialized expression of X is a map

X̄ : Q̃∗ × g∗ → T (Q̃∗ × g∗),
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which is expressed, for each (x, g, y, µ) ∈ Q̃∗ × g∗, by

X̄(x, g, y, µ) = (ẋ, ġ, ẏ, µ̇) ∈ T(x,g,y,µ)(Q̃∗ × g∗).

Because X is left invariant and λ̄ : T ∗Q → Q̃∗ × g∗ is equivariant, X̄ is also left
invariant, and hence

h · X̄(x, g, y, µ) = X̄(x, hg, y, hµ) ∈ T(x,hg,y,hµ)(Q̃∗ × g∗),

where X̄(x, hg, y, hµ) = X̄(x, hg, y, Ad∗h−1µ) and so

X̄(x, hg, y, hµ) = (x, hg, y, hµ, ẋ, hġ, ẏ, hµ̇)

=
(
x, hg, y, Ad∗h−1µ, ẋ, ThgLhġ, ẏ, Ad∗h−1 µ̇

)
.

Hence, the value of X̄ at the identity is

X̄(x, e, y, g−1µ) = (x, e, y, g−1µ, ẋ, g−1ġ, ẏ, g−1µ̇).

The quotient of the vector field

X̄ : Q̃∗ × g∗ → T (Q̃∗ × g∗)

by the action of G defines the reduced vector field as

[X̄]G := X̄/G : T ∗(Q/G)⊕ g̃∗ → TT ∗(Q/G)⊕ (g̃∗ × Ṽ ),

which is given by, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗,

[X̄]G(x, y, µ̄) =
(
x, y, ẋ, ẏ, µ̄, ξ̄, ˙̄µ

)
.

In the above, µ̄ = [q, µ]G and ξ̄ = [q, ξ]G, where ξ = A(q, q̇) = ġg−1.

When one has an integral curve of [X̄]G, then ẋ ≡ dx/dt will be the time deriva-
tive of x and ẏ will be Dy/Dt, the covariant derivative of y in the bundle T ∗(Q/G)
and ˙̄µ ≡ Dµ̄/Dt will be the covariant derivative of µ̄ in g̃∗. Note that ξ̄ is a function
of µ̄, namely, ξ̄(µ̄).

Hamilton-Poincaré-Dirac reduction. Let us show reduction of the standard
implicit Hamiltonian system, called Hamilton-Poincaré-Dirac reduction.

Definition 7.1. The reduction of the standard implicit Hamiltonian sys-
tem (H,D,X) is given by a triple

(h, [D̄]G, [X̄]G)

that satisfies, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗, the condition

([X̄]G(x, y, µ̄), [dH̄]G(x, y, µ̄)) ∈ [D̄]G(x, y, µ̄). (31)

Definition 7.2. A solution curve of (h, [D̄]G, [X̄]G) is a curve (x(t), y(t), µ̄(t)), t ∈
[t0, t1] in T ∗(Q/G)⊕ g̃∗ ∼= T ∗Q/G, which is an integral curve of the reduced vector
field [X̄]G : T ∗(Q/G) ⊕ g̃∗ → TT ∗(Q/G) ⊕ (g̃∗ × Ṽ ) that takes its value for each
point of the curve as

[X̄]G(x(t), y(t), µ̄(t)) =
(

x(t), y(t),
dx(t)

dt
,
Dy(t)
Dt

, µ̄(t), ξ̄(t),
Dµ̄(t)

Dt

)
.
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Theorem 7.3. Let (h, [D̄]G, [X̄]G) be the reduction of the standard implicit Hamil-
tonian system that satisfies equation (31). Let (x(t), y(t), µ̄(t)), t ∈ [t0, t1] in
T ∗(Q/G) ⊕ g̃∗ be a solution curve of (h, [D̄]G, [X̄]G). Then, the solution curve
satisfies the Hamilton-Poincaré equations:

Dy

Dt
= −∂h

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
,

dx

dt
=

∂h

∂y
,

Dµ̄

Dt
= ad ∗ξ̄ µ̄,

ξ̄ =
∂h

∂µ̄
.

(32)

Proof. The condition for (h, [D̄]G, [X̄]G) is given by, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕
g̃∗,

([X̄]G(x, y, µ̄), [dH̄]G(x, y, µ̄)) ∈ [D̄]G(x, y, µ̄),

which is represented by((
dx

dt
,
Dy

Dt
, ξ̄,

Dµ̄

Dt

)
,

(
∂h

∂x
,

∂h

∂y
, 0,

∂h

∂µ̄

))
∈ [D̄]G (x, y, µ̄) ,

together with ξ̄ = ∂h/∂µ̄. Then, it follows〈
∂h

∂x
, δx

〉
+
〈

δy,
∂h

∂y

〉
+
〈
0, ζ̄
〉

+
〈

δµ̄,
∂h

∂µ̄

〉
=
〈

δy,
dx

dt

〉
−
〈

Dy

Dt
, δx

〉
−
〈
µ̄, B̃(ẋ, δx)

〉
+
〈
δµ̄, ξ̄

〉
−
〈

Dµ̄

Dt
, ζ̄

〉
+
〈
µ̄, [ξ̄, ζ̄]

〉
.

Hence, one has〈
−Dy

Dt
− ∂h

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
, δx

〉
+
〈

δy,
dx

dt
− ∂h

∂y

〉
+
〈
−Dµ̄

Dt
+ ad∗ξ̄ µ̄, ζ̄

〉
+
〈

δµ̄, ξ̄ − ∂h

∂µ̄

〉
= 0

for all δx, δy, ζ̄ and δµ̄.

Thus, we can obtain the Hamilton-Poincaré equations in equation (32) as the
reduction of the standard implicit Hamiltonian system.

Remark 13. The derivative ∂h/∂x can be interpreted in a covariant way, in a
similar way that the partial derivative ∂l/∂x is defined as was previously shown, by
making use of the covariant derivatives in the bundles T ∗(Q/G) and g̃∗ induced by
duality in correspondence with the derivatives in the bundle T (Q/G) and g̃.

Coordinate expressions. As previously mentioned, suppose that Q has dimension
n, so that Q/G has dimension r = n − dim G. Choose a local trivialization of the
principal bundle Q → Q/G to be S × G → S, where S is an open set of Rr.
Coordinates for a point q = (x, g) ∈ Q ∼= S ×G are written (xα, ga). The principal
connection one-form on Q ∼= S × G is locally written by Adg(Ae(x)dx + g−1dg).
Then, at any tangent vector (x, g, ẋ, ġ) ∈ T(x,g)(S ×G), one has

A(x, g, ẋ, ġ) = Adg(Ae(x) · ẋ + ξ) = A(x, g) · ẋ + ġg−1,
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where Ae is the g-valued one-form on S defined by Ae(x) · ẋ = A(x, e, ẋ, 0) and
ξ = g−1ġ. By the bundle isomorphism ΨA : TQ/G → T (Q/G)⊕ g̃,

ΨA([x, g, ẋ, ġ]G) = (x, ẋ, ξ̄),

where ξ̄ = (x, Ae(x) · ẋ + ξ). Let Aa
α(x) be the local coordinate expression of Ae

on the bundle S × G → S. Then, we simply write ξ̄a = ξa + Aa
αẋα. Let Ca

bd be
the structure constants of g. Recall that the components of the curvature of A are
given, in coordinates, by

Bb
α β =

(
∂Ab

β

∂xα
− ∂Ab

α

∂xβ
− Cb

c dA
c
αAd

β

)
.

Thus, the coordinate expression of the Hamilton–Poincaré equations in
(32) may be represented by

dyα

dt
= − ∂h

∂xα
+ µ̄a

(
Ba

αβẋβ − Ca
dbA

b
αξ̄d
)
,

dxα

dt
=

∂h

∂yα
,

dµ̄b

dt
= µ̄a

(
Ca

dbξ̄
d − Ca

dbA
d
αẋα

)
,

ξ̄b =
∂h

∂µ̄b
.

Gauged Dirac structures in Hamilton-Poincaré-Dirac reduction. Let us
denote by (h, [D̄]G, [X̄]G) the reduced standard implicit Hamiltonian system that
satisfies equation (31). Recall the reduced vector field [X̄]G : T ∗(Q/G) ⊕ g̃∗ →
TT ∗(Q/G)⊕ (g̃∗ × Ṽ ) is locally given by, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗,

[X̄]G(x, y, µ̄) =
(

x, y,
dx

dt
,
Dy

Dt
, µ̄, ξ̄,

Dµ̄

Dt

)
,

and [X̄]G can be decomposed into the horizontal and vertical parts such that

[X̄]G(x, y, µ̄) = [X̄]Hor
G (x, y)⊕ [X̄]Ver

G (µ̄).

In the above, [X̄]Hor
G : T ∗(Q/G) → TT ∗(Q/G) denotes the horizontal partial vector

field, which is given by

[X̄]Hor
G (x, y) =

(
x, y,

dx

dt
,
Dy

Dt

)
∈ TT ∗(Q/G),

while [X̄]Ver
G : g̃∗ → g̃∗ × Ṽ indicates the vertical partial vector field, which is given

by

[X̄]Ver
G (µ̄) =

(
µ̄, ξ̄,

Dµ̄

Dt

)
∈ g̃∗ × Ṽ .

On the other hand, the quotient of [dH̄]G : T ∗(Q/G)⊕ g̃∗ → T ∗T ∗(Q/G)⊕ (g̃∗×
Ṽ ∗) is given by, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗,

[dH̄]G(x, y, µ̄) =
(

x, y,
∂h

∂x
,
∂h

∂y
, µ̄, 0,

∂h

∂µ̄

)
,

which can be decomposed into the horizontal and vertical parts as

[dH̄]G(x, y, µ̄) = [dH̄]Hor
G (x, y)⊕ [dH̄]Ver

G (µ̄).
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In the above, [dH̄]Hor
G is the horizontal differential of the Hamiltonian given by, for

each (x, y) ∈ T ∗(Q/G),

[dH̄]Hor
G (x, y) =

(
x, y,

∂h

∂x
,
∂h

∂y

)
,

and [dH̄]Ver
G is the vertical differential of the Hamiltonian given by, for each µ̄ ∈ g̃∗,

[dH̄]Ver
G (µ̄) =

(
µ̄, 0,

∂h

∂µ̄

)
.

Recall that the reduced Dirac structure [D̄]G is a gauged Dirac structure that can
be decomposed into the horizontal and vertical Dirac structures, which may be
represented by, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗,

[D̄]G(x, y, µ̄) = [D̄]Hor
G (x, y)⊕ [D̄]Ver

G (µ̄),

where the horizontal Dirac structure [D̄]Hor
G is shown in equation (24) and the ver-

tical Dirac structure [D̄]Ver
G in equation (25).

Thus, we obtain the following theorem associated with the gauged Dirac struc-
tures in Hamilton-Poincaré-Dirac reduction.

Theorem 7.4. Let (H,D,X) be a standard implicit Hamiltonian system and h :
T ∗(Q/G)⊕ g̃∗ → R be the reduced Hamiltonian. Let (h, [D̄]G, [X̄]G) be the reduction
of (H,D,X), which satisfies, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗, the condition

([X̄]G (x, y, µ̄) , [dH̄]G(x, y, µ̄) ∈ [D̄]G(x, y, µ̄).

Then, (h, [D̄]G, [X̄]G) can be decomposed into the horizontal and vertical parts as

(h, [D̄]G, [X̄]G) = (h, [D̄]Hor
G , [X̄]Hor

G )⊕ (h, [D̄]Ver
G , [X̄]Ver

G ).

In the above, (h, [D̄]Hor
G , [X̄]Hor

G ) is the horizontal implicit Hamiltonian system
that satisfies, for each (x, y) ∈ T ∗(Q/G),

([X̄]Hor
G (x, y) , [dH̄]Hor

G (x, y)) ∈ [D̄]Hor
G (x, y),

which induces the horizontal Hamilton-Poincaré equations:

Dy

Dt
= −∂h

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
,

dx

dt
=

∂h

∂y
.

On the other hand, (h, [D̄]Ver
G , [X̄]Ver

G ) is the vertical implicit Hamiltonian
system that satisfies, for each µ̄,

([X̄]Ver
G (µ̄) , [dH̄]Ver

G (µ̄) ∈ [D̄]Ver
G (µ̄),

which induces the vertical Hamilton-Poincaré equations:

Dµ̄

Dt
= ad ∗ξ̄ µ̄, ξ̄ =

∂h

∂µ̄
.
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Equivalence with the implicit Lagrange-Poincaré equations. We have es-
tablished the Hamilton-Poincaré equations in the context of Dirac cotangent bundle
reduction, where a Hamiltonian H is defined on the cotangent bundle T ∗Q via the
Legendre transformation FL : TQ → T ∗Q from a given regular Lagrangian L on the
tangent bundle TQ. On the other hand, one can define the reduced Hamiltonian h
on T ∗(Q/G)⊕ g̃∗ ∼= T ∗Q/G from the reduced Lagrangian l on T (Q/G)⊕ g̃ ∼= TQ/G,
which is given by, for each (x, u, η̄) ∈ T (Q/G)⊕ g̃,

h(x, y, µ̄) = 〈y, u〉+ 〈µ̄, η̄〉 − l(x, u, η̄),

where the reduced Legendre transformation

Fl : T (Q/G)⊕ g̃ → T ∗(Q/G)⊕ g̃∗

holds as (x, u, η̄) 7→ (x, y = ∂l/∂u, µ̄ = ∂l/∂η̄). Recall that the reduced Legendre
transformation can be expressed by a direct sum of the horizontal and vertical parts
as

Fl = FlHor ⊕ FlVer,

where the horizontal Legendre transformation FlHor : T (Q/G) → T ∗(Q/G) is given
by

(x, u) 7→
(

x, y =
∂l

∂u

)
,

while the vertical Legendre transformation FlVer : g̃ → g̃∗ is given by

η̄ 7→ µ̄ =
∂l

∂η̄
.

It follows from Theorems 6.4 and 7.4 that for the case in which a given Lagrangian
is regular, the horizontal implicit Lagrange-Poincaré equations are transformed into
the horizontal Hamilton-Poincaré equations via the horizontal Legendre transforma-
tion, while the vertical implicit Lagrange-Poincaré equations are transformed into
the vertical Hamilton-Poincaré equations via the vertical Legendre transformation.

Thus, we can show the equivalence between the implicit Lagrange-Poincaré equa-
tions and the Hamilton-Poincaré equations via the reduced Legendre transformation.

Example: Satellite with a rotor. Again, let us consider the same example as in
the Lagrange-Poincaré-Dirac reduction, namely, a satellite with a rotor aligned with
the third principal axis of the body. Recall the satellite with a rotor is modeled by
a rigid body of a carrier and a rigid rotor, whose configuration manifold is given by
Q = S1 × SO(3), with the first factor being the rotor relative angle and the second
factor the rigid body attitude. Consider the case in which there exists no torque at
the rotor. Then, the Lie group G = SO(3) only acts on the second factor of Q and
hence Q/G = S1 as before.

As was shown, let q = (θ, R) be local coordinates for Q = S1 × SO(3) and
(q, v) = (θ, R, u, U) for TQ. Let us take a trivialized connection on Q → Q/G
such that TQ/G ∼= T (Q/G) ⊕ g̃ = TS1 × so(3), while T ∗Q/G ∼= T ∗(Q/G) ⊕ g̃∗ =
T ∗S1 × so(3)∗.

Recall that a given Lagrangian L : TQ → R is regular in this example and a
left invariant Hamiltonian H : T ∗Q → R can be naturally defined from L via the
Legendre transformation. Hence, H is to be given by the total kinetic energy of the
system (rigid carrier plus rotor). By the G-invariance of H, it follows that, for each
(q, p) ∈ T ∗Q,

H(q, p) = h([q, p]G).
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In the above, h : T ∗S1× so(3)∗ → R is the reduced Hamiltonian, which is given by,
for [q, p]G = (θ, y,Π) ∈ T ∗S1 × (R3)∗ ∼= T ∗S1 × so(3)∗,

h(θ, y,Π) =
1
2

(
Π2

1

λ1
+

Π2
2

λ2
+

Π2
3

λ3
− 2Π3y

I3
− y2

I3
+

2λ3y
2

I3J3
− y2

J3

)
,

where I1 > I2 > I3 are the rigid body moments of inertia, J1 = J2 and J3 are the
rotor moments of inertia, λi = Ii + Ji, θ is the relative angle of the rotor, (θ, y) ∈
T ∗S1, and Π = (Π1,Π2,Π3) ∈ (R3)∗ ∼= so(3)∗ is the body angular momentum.

The quotient of the differential of the Hamiltonian, namely, [dH]G : T ∗S1 ×
so(3)∗ → T ∗T ∗S1 ⊕ (so(3)∗ × Ṽ ∗) is given by, for each (θ, y,Π) ∈ T ∗S1 × so(3)∗,

[dH]G(θ, y,Π) =
(

θ, y,
∂h

∂θ
,
∂h

∂y
,Π, 0,

∂h

∂Π

)
, (33)

where Ṽ ∗ = so(3)∗⊕so(3), while the reduction of the partial vector field X : T ∗Q →
TT ∗Q is the quotient map [X̄]G : T ∗S1 ⊕ so(3)∗ → TT ∗S1 ⊕ (so(3)∗× Ṽ ), which is
given by, for each (θ, y,Π) ∈ T ∗S1 × so(3)∗,

[X̄]G (θ, y,Π) =
(
θ, y, θ̇, ẏ, Π,Ω, Π̇

)
, (34)

where Ω̂ = R−1Ṙ ∈ so(3).
Then, reduction of the standard implicit Hamiltonian system (H,D,X) is a triple

(h, [D̄]G, [X̄]G),

which satisfies, for each (θ, y,Π) ∈ T ∗S1 ⊕ so(3)∗, the condition

([X̄]G(θ, y,Π), [dH̄]G(θ, y,Π)) ∈ [D̄]G(θ, y,Π). (35)

It follows from equation (23), (33), (34) and (35) that one can easily derive the
Hamilton-Poincaré equations for the satellite with a rotor, which consist of the
horizontal Hamilton-Poincaré equations

dy

dt
= 0,

dθ

dt
=

∂h

∂y
,

as well as the vertical Hamilton-Poincaré equations
dΠ
dt

= Π× Ω, Ω =
∂h

∂Π
.

In the above, notice that the momentum y = J3(Σ3 + u) = constant.

8. Conclusions and future directions. This paper has developed a Dirac re-
duction theory, called Dirac cotangent bundle reduction, which is applicable to the
reduction of a cotangent bundle T ∗Q with its canonical Dirac structure when one
has a Lie group G acting freely and properly on Q.

We have shown that Dirac cotangent bundle reduction accommodates Lagrangian,
Hamiltonian and a variational view simultaneously. Further, we have shown that
the resulting reduced structure is given by a gauged Dirac structure that consists of
the direct sum of a horizontal and a vertical Dirac structure. Associated with this
reduction procedure, we have developed a reduced Hamilton-Pontryagin variational
principle, which yields an implicit analogue of the Lagrange-Poincaré equations.
Correspondingly, we have established a reduction procedure for standard implicit
Lagrangian systems called Lagrange-Poincaré-Dirac reduction, including the case
of degenerate Lagrangians. This theory also allows one to develop horizontal and
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vertical implicit Lagrange-Poincaré equations in the context of gauged Dirac struc-
tures, which is consistent with the reduction of the Hamilton-Pontryagin variational
principle. We have also explored the Hamiltonian side (for the case in which the
given Lagrangian is regular); namely, we have developed a reduction procedure for
standard implicit Hamiltonian systems called Hamilton-Poincaré-Dirac reduction.
This can be also incorporated into the context of the Dirac cotangent bundle reduc-
tion, and, as with the Lagrangian side, one gets horizontal and vertical Hamilton-
Poincaré equations, consistent with the Hamilton-Poincaré variational principle.
We have finally demonstrated how the Dirac cotangent bundle reduction theory
accommodates Lagrange-Poincaré-Dirac reduction as well as Hamilton-Poincaré-
Dirac reduction. We have illustrated the theory using the example of a satellite
with a rotor.

In the future, we expect to be able to develop a similar theory for systems with
nonholonomic constraints as well as including the present theory into the broader
context of reduction theory for Dirac anchored vector bundles, as in [26]. We
will investigate some concrete examples of degenerate Lagrangian systems by the
present theory. We are also exploring Dirac structures and the Hamilton-Pontryagin
variational principle for field theories. Another interesting future direction would
be to develop these reduction methods for discrete Dirac structures as well as the
Hamilton-Pontryagin variational integrator, as shown in [12] and [52].
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