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Abstract The purpose of this paper is to extend the symmetric representation of the
rigid body equations from the group SO(n) to other groups. These groups are matrix
subgroups of the general linear group that are defined by a quadratic matrix identity.
Their corresponding Lie algebras include several classical semisimple matrix Lie al-
gebras. The approach is to start with an optimal control problem on these groups
that generates geodesics for a left-invariant metric. Earlier work by Bloch, Crouch,
Marsden, and Ratiu defines the symmetric representation of the rigid body equations,
which is obtained by solving the same optimal control problem in the particular case
of the Lie group SO(n). This paper generalizes this symmetric representation to a
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wider class of matrix groups satisfying a certain quadratic matrix identity. We con-
sider the relationship between this symmetric representation of the generalized rigid
body equations and the generalized rigid body equations themselves. A discretization
of this symmetric representation is constructed making use of the symmetry, which
in turn give rise to numerical algorithms to integrate the generalized rigid body equa-
tions for the given class of matrix Lie groups.

Keywords Geodesics · Optimal control · Generalized rigid body equations

Mathematics Subject Classification (2000) 34H05 · 70E40 · 49K15

1 Introduction

This paper treats an optimal control problem on some subgroups of the general and
special linear group that satisfy a quadratic matrix identity. These groups include
certain classical Lie groups and their corresponding Lie algebras.

The extremal solutions to this optimal control problem are obtained as geodesic
flows on the group with respect to a given positive definite metric, and are represented
on the product space of the group with itself. These equations generalize the symmet-
ric representation of the rigid-body equations given in [3] and some properties of rigid
body dynamics.

Variational and optimal control problems on Lie groups and symmetric spaces
have been treated before in the literature. The Euler equations on the n-dimensional
rigid body have been treated, for example, in [7, 13, 17], besides the symmetric rep-
resentation in [3].

The symmetric representation of the generalized rigid body equations on the
n-dimensional proper orthogonal group SO(n) (whose Lie algebra is denoted so(n))
is the set of equations

Q̇ = QΩ; Ṗ = PΩ. (1.1)

The notation in these equations is as follows: The matrices Q and P are the dynamical
variables, where Q ∈ SO(n) denotes the configuration of the body and P is a costate
variable associated with the optimal control problem associated to these equations.
For these equations to make sense as first order equations on SO(n) × SO(n), one
needs to specify how Ω = Q−1Q̇ ∈ so(n), the body angular velocity is a function
of Q and P , and thereby find a way to transform these equations to the usual Euler
equations for the n-dimensional rigid body. This will be explained in the body of the
paper below.

In this paper, we generalize these equations as well as the Euler equations for some
matrix subgroups of the general linear group that are defined by a quadratic matrix
identity. We introduce these matrix subgroups of GL(n) and give some of their prop-
erties in Sect. 2. We introduce the optimal control problem on these groups in Sect. 3,
and obtain the extremal solutions to this optimal control problem as a flow on the
product group. In Sect. 3, we also obtain a map that transforms the symmetric rep-
resentation to the Euler representation of the geodesic flows. In Sect. 4, we analyze
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the state space of extremal solutions in the symmetric representation, and introduce
a symplectic submanifold in the product group that is invariant with respect to the
extremal flows. In Sect. 5, we present some results on the discrete version of the
optimal control problem, and obtain the symmetric representation of the discrete ex-
tremal flows. Section 6 presents some conclusions and discusses planned extensions
of this work.

2 Quadratic Matrix Groups

We consider quadratic matrix groups of the form

G := {
g ∈ GL(n) | gTJg = J

}
, (2.1)

where gT is the transpose of the n × n matrix g, J 2 = αIn and J T = αJ for α =
±1. Taking determinants in the relation gTJg = J in (2.1), we note that for g ∈ G,
detg = ±1.

This class of groups includes standard classical groups of interest including the
symplectic group and O(p, q) (see below), and enables one to generalize the sym-
metric representation of the rigid body flows discussed in [3] to this class. This class
of matrix groups gives matrix representations of linear transformations on R

n that
leave the following symmetric, bilinear form invariant:

f (x, y) = xTJy, x, y ∈ R
n.

Thus, if g ∈ G, then

f (gx,gy) = xTgTJgy = xTJy = f (x, y).

Since J is not singular, the bilinear form f (x, y) is nondegenerate.
The conditions following the definition (2.1) imply that J T = J−1 = αJ . Some

examples of matrix groups covered by this definition are given below.

Examples

1. Choosing J = In (the n × n identity matrix) and α = 1, then G = O(n); this is
somewhat different from considering the component of the identity, namely the
case of SO(n), which was treated in [3].

2. If n = 2m is even and

J =
[

0 Im

−Im 0

]
,

then the above definition gives the group Sp(2m) of 2m×2m symplectic matrices.
We remark that the paper [4] considers a related class of flows on symplectic
groups with J generalized to be an arbitrary skew-symmetric invertible matrix.
Interestingly for integrability in that case, one typically does not use the case of
canonical J .
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3. If n = p + q and

J =
[

Ip 0
0 −Iq

]
,

then the above definition gives the group O(p, q) of matrices that leave the non-
degenerate, symmetric, bilinear form of signature (p, q) in R

n invariant.

The Lie algebra of the group G is given by

g = {
X ∈ gl(n) | XTJ + JX = 0

}
.

Note that for X ∈ g, J−1XTJ = −X and so

Trace(X) = −Trace
(
J−1XTJ

) = −Trace
(
XT) = −Trace(X)

and so Trace(X) = 0. Therefore, the Lie algebra g of G is a subalgebra of sl(n). The
following statement constructs an element of the Lie algebra g from a given element
in the group G.

Lemma 2.1 If g ∈ G, then gT ∈ G and g − g−1 ∈ g.

Proof Taking the matrix inverse of the relation gTJg = J and using the fact that
J−1 = αJ , we get

J−1 = g−1J−1(gT)−1 ⇒ J = g−1J
(
gT)−1

⇒ (
gT)−1 ∈ G ⇒ gT ∈ G.

If g ∈ G, then

(
g − g−1)T

J + J
(
g − g−1) = (

gTJ − Jg−1) + (
Jg − (

g−1)T
J
)
.

But from the relation gTJg = J , we get

gTJ = Jg−1 and Jg = (
gT)−1

J.

Hence, we have
(
g − g−1)T

J + J
(
g − g−1) = 0,

and thus g − g−1 ∈ g. �

The following statement combined with the previous statement leads to a trace
orthogonal decomposition of the group G.

Lemma 2.2 If g ∈ G and U ∈ g, then

Trace(gU) = −Trace
(
g−1U

)
. (2.2)
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Proof Using the identities J T = αJ = J−1 and UTJ + JU = 0, we obtain

Trace(gU) = −Trace
(
gJ−1UTJ

) = −Trace
(
JgJ−1UT)

= −Trace
(
U

(
J−1)T

gTJ T) = −Trace
((

J−1)T
gTJ TU

)

= −Trace
(
α−1J−1gTαJU

) = −Trace
(
J−1gTJU

) = −Trace
(
g−1U

)
,

using the identity gTJg = J in the last step. �

Thus, for any g ∈ G, we have

Trace
((

g + g−1)U
) = 0,

and hence,

g = 1

2

(
g + g−1) + 1

2

(
g − g−1)

provides a trace orthogonal decomposition of the group G. In the special case when
J = In, α = 1, G = SO(n), the above decomposition is the standard symmetric plus
skew-symmetric decomposition:

Q = 1

2

(
Q + QT) + 1

2

(
Q − QT)

,

where Q ∈ SO(n), Q + QT is symmetric, and Q − QT ∈ so(n) is skew-symmetric.
Note that if Λ = g + g−1 such that g ∈ G, then Λ satisfies JΛ − ΛTJ = 0. This

follows since if Λ = g + g−1 for some g ∈ G, then

JΛ = J
(
g + g−1) = Jg + Jg−1 = (

gT)−1
J + gTJ = (

g + g−1)T
J = ΛTJ.

In the next section, we will show how such a matrix Λ can be used to construct a
metric for g.

As a corollary of Lemma 2.2, we obtain the following result.

Corollary 2.3 If g ∈ G and U,V ∈ g, then

Trace(gV U) = Trace
(
g−1UV

)
. (2.3)

Proof We differentiate the identity (2.2) with respect to g in the direction gV . This
gives the identity:

Trace(gV U) = Trace
(
g−1gVg−1U

)
,

which is equivalent to

Trace(gV U) = Trace
(
g−1UV

)
,

which gives the stated result. �
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These algebraic relations will be helpful in the analysis of the geodesic flows in the
following section. In particular, they are useful in formulating a symmetric represen-
tation of the geodesic flows analogous to that for the generalized rigid body problem
on SO(n).

3 The Optimal Control Problem

This section recalls how to obtain geodesic flows using the maximum principle of
optimal control theory (as in [2, 8, 12]). Using this, an optimal control problem for
the quadratic matrix group G is introduced.

3.1 Optimal Control Problem on Quadratic Matrix Lie Groups

Let Σ : g → g be a symmetric positive definite operator with respect to the inner
product given by the trace pairing (which defines an inner product on both g and
gl(n)):

〈A,B〉 = Trace
(
ATB

)
. (3.1)

The optimal control problem of interest here is the following:

Optimal Control Problem on G Minimize the integral
∫ T

0

1

4

〈
U,Σ(U)

〉
dt (3.2)

over all curves Q(t) ∈ G with t ∈ [0, T ] and with fixed endpoints Q(0) = Q0 ∈ G

and Q(T ) = QT ∈ G, and where U is defined by Q̇ = QU , so that U ∈ g.

Since Σ defines a metric on g given by

〈U,V 〉Σ = 〈
U,Σ(V )

〉 = 〈
Σ(U),V

〉
, (3.3)

the problem (3.2) can be regarded as an optimal control problem with U ∈ g thought
of as the control. This optimal control viewpoint for this problem leads to an interest-
ing form of the corresponding geodesic equations as is developed in this section.

The point is that the problem (3.2) may be viewed as a geodesic problem in sev-
eral ways. If one directly seeks the curve Q(t) ∈ G, then one is clearly seeking a
geodesic on Q(t) ∈ G relative to the left invariant kinetic energy metric given at
the identity by (3.3). Alternatively, one can relax the “constraints” U = Q−1Q̇ and
put corresponding constraints on the allowed variations of U , which would result in
the Euler–Poincaré variational formulation of the problem (see, for instance, [14],
Chap. 13). Yet another way to view this problem is via the Pontryagin maximum
principle, which is closely related to the Hamilton–Pontryagin principle (see [20]);
we do this in the next subsection below.

The following result constructs an interesting class of positive definite symmetric
mappings Σ : g → g; it gives an explicit form of the operator which generalizes the
form used in the case of SO(n). However, the theory below holds for general positive
definite symmetric operators Σ .
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Proposition 3.1 Let Λ be a real n×n matrix satisfying ΛTJ = JΛ and be such that
the symmetric matrix Λ + ΛT is positive definite. Then Σ : g → g defined by

Σ(U) = 1

2

[
U

(
Λ + ΛT) + (

Λ + ΛT)
U

]
, (3.4)

is a symmetric positive definite operator.

Proof We first show that Λ also satisfies ΛJ = JΛT. This is shown as follows:

ΛJ = (
J TΛTJ

)
J = J TΛTJ 2 = αJ TΛT = JΛT.

If Σ is as defined in (3.4), then

(UΛ + ΛU)TJ + J (UΛ + ΛU)

= ΛTUTJ + UTΛTJ + JUΛ + JΛU

= ΛTUTJ + ΛTJU + UTJΛ + JUΛ

= ΛT(
UTJ + JU

) + (
UTJ + JU

)
Λ = 0,

and

(
UΛT + ΛTU

)T
J + J

(
UΛT + ΛTU

)

= ΛUTJ + UTΛJ + JUΛT + JΛTU

= ΛUTJ + ΛJU + UTJΛT + JUΛT

= Λ
(
UTJ + JU

) + (
UTJ + JU

)
ΛT = 0.

This shows that indeed Σ : g → g. Symmetry and positive definiteness is shown by
the following calculation:

〈
U,Σ(V )

〉 = 1

2
Trace

(
UT(

V
(
Λ + ΛT) + (

Λ + ΛT)
V

))

= 1

2
Trace

(
V

(
Λ + ΛT)

UT − UT(
Λ + ΛT)

V
)

= 1

2
Trace

((
V ΛUT + UTΛV

) + (
V ΛTUT + UTΛTV

))

= 1

2
Trace

((
V ΛUT + JUΛTV TJ T) + (

V ΛTUT + JUΛV TJ T))

= 1

2
Trace

(
2V ΛUT + 2V ΛTUT) = Trace

(
V

(
Λ + ΛT)

UT)
,

which is symmetric and positive definite since Λ + ΛT is positive definite. �

Thus, if Λ is J -symmetric (i.e., ΛTJ = JΛ) and positive definite, then Σ : g → g

as defined by (3.4) is a symmetric positive definite operator.
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Example For the case G = Sp(2m), let

Λ =
[

Λ0 0
0 Λ0

]
, where ΛT

0 = Λ0.

Recalling that for this group, J = [ 0 Im

−Im 0

]
, we see that Λ is J -symmetric; that is,

ΛTJ =
[

0 Λ0
−Λ0 0

]
= JΛ.

The condition that Λ + ΛT be positive definite that is required in Proposition 3.1
is equivalent to the condition that Λ0 is positive definite. This gives a choice for
Σ when G = Sp(2m). Interestingly, this choice of Λ works even in the case that
G = O(m,m), as can be easily verified using Proposition 3.1.

The remainder of this section determines the extremal equations for the optimal
control problem (3.2). To do this, we first relate the problem to a Hamiltonian flow
on the symplectic manifold gl(n) × gl(n) with the canonical symplectic form:

Ωcan
(
(X1, Y1), (X2, Y2)

) = 〈Y2,X1〉 − 〈Y1,X2〉. (3.5)

We then demonstrate that this flow leaves G × G invariant, and hence naturally re-
stricts. We further show that on an open submanifold S ⊂ G×G where Ωcan restricts
to a symplectic form, the flow is also Hamiltonian. Moreover, this restricted flow on
S ⊂ G × G is locally equivalent to the generalized Euler equations in G × g (or
equivalently in T �G) as we show in this section and the next.

3.2 Extremal Flow in Symmetric Representation

In this section, we consider the geodesic flow as a constrained optimization problem
and the corresponding equations are determined by using Pontryagin’s maximum
principle (see, for example, [2]). We begin by considering a related optimal control
problem.

Optimal Control Problem in gl(n) Minimize

∫ T

0

1

4

〈
U,Σ(U)

〉
dt (3.6)

over all curves Q(t) ∈ gl(n) with t ∈ [0, T ] and with fixed endpoints Q(0) = Q0 and
Q(T ) = QT , and where U satisfies the constraint Q̇ = QU with U ∈ g.

It will then be shown that one can restrict to the domain of interest, namely the
quadratic matrix group G. Let P ∈ gl(n) denote the costate variable (consisting of
Lagrange multipliers) used to impose the kinematic constraint Q̇ = QU . The Hamil-
tonian for the optimal control problem (3.6) is then defined as

H(P,Q,U) = 〈P,QU 〉 − 1

4

〈
U,Σ(U)

〉 = 〈
QTP,U

〉 − 1

4

〈
U,Σ(U)

〉
. (3.7)
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Since (Q,P ) ∈ gl(n) × gl(n) and U is an element of g, H is a mapping:

H : gl(n) × gl(n) × g → R.

The following result will be established using Pontryagin’s maximum principle.

Proposition 3.2 The optimal trajectories of the optimal control problem (3.6) are
given by the following system of Hamiltonian equations on the symplectic manifold
(gl(n) × gl(n),Ωcan):

Q̇ = QU, Q ∈ gl(n),

(3.8)
Ṗ = −PUT, P ∈ gl(n),

U = Σ−1(QTP − αJP TQJ
) ∈ g. (3.9)

Equation (3.9) can be interpreted as a projection of QTP from gl(n) to g. To show
that this is indeed a projection, we use the following lemma.

Lemma 3.3 The map P : gl(n) → g given by

P(A) = 1

2

(
A − αJATJ

)
, (3.10)

is a projection. Thus, (3.9) can be written as U = 2Σ−1P(QTP).

Proof of Lemma We compute

P2(A) = P
(
P(A)

) = 1

4

[
A − αJATJ − αJ

(
A − αJATJ

)T
J
]

= 1

4

[
A − αJATJ − αJ

(
AT − αJ TAJ T)

J
]

= 1

4

[
A − 2αJATJ + JJ TAJ TJ

]

= 1

2

[
A − αJATJ

] = P(A),

since JJ T = J TJ = αJ 2 = In. This proves the result. �

Now we are ready to prove the proposition.

Proof of Proposition From the necessary conditions for optimality, we get

Q̇ = gradP H(P,Q,U) = QU,

where we employ the gradient operator with respect to the inner product on gl(n),
〈 ·, ·〉 given by (3.1). The second of (3.8) is obtained similarly as

Ṗ = −gradQ H(P,Q,U) = −gradQ〈P,QU 〉 = −gradQ

〈
PUT,Q

〉 = −PUT.
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To complete the proof, we need to specify the optimal control U ∈ g. This is obtained
from the maximum principle (see p. 336 of [2]) as follows:

max
U∈g

H
(
Q(t),P (t),U

) = H
(
Q(t),P (t),U∗(t)

)
, (3.11)

where U∗(t) is the optimal control function; in fact, we show below that (3.11) does
result in a unique specification for U∗. Thus, in this case where H is defined by (3.7),
we must perform the following optimization problem:

max
U

(〈
QTP,U

〉 − 1

4

〈
U,Σ(U)

〉 + 1

2

〈
Π,UTJ + JU

〉)
, (3.12)

where Π is a Lagrange multiplier for the constraint that U lie in g; that is, UTJ +
JU = 0. Now

(
UTJ + JU

)T = UTJ T + J TU = α
(
UTJ + JU

)
.

So we choose Π to satisfy ΠT = αΠ . Thus,

〈
Π,UTJ + JU

〉 = 〈
ΠJ T,UT〉 + 〈

J TΠ,U
〉

= 〈
JΠT,U

〉 + 〈
J TΠ,U

〉 = 2α〈JΠ,U〉.
Therefore, we have

1

2

〈
Π,UTJ + JU

〉 = α〈JΠ,U〉.
Therefore, the necessary condition associated with (3.11) is

QTP − 1

2
Σ(U) + αJΠ = 0. (3.13)

Since U ∈ g, and Σ : g → g, the necessary condition (3.13) implies that QTP +
αJΠ ∈ g. Therefore, we have

J
(
QTP + αJΠ

) + (
QTP + αJΠ

)T
J = 0.

Thus,

Π = −1

2

(
JQTP + P TQJ

)
. (3.14)

Hence, (3.13) becomes

QTP − 1

2
Σ(U) − α

2
J
(
JQTP + P TQJ

) = 0

and therefore

Σ(U) = QTP − αJP TQJ. (3.15)
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Using the above lemma, we see that QTP − αJP TQJ ∈ g. Thus, the optimal
control for the control problem in Proposition 3.2 is given uniquely by

U∗ = 2Σ−1(P
(
QTP

)) ∈ g. (3.16)

�

Since U ∈ g, it follows that the extremal flow (3.8) and (3.9) has an invariant
set G × gl(n) ⊂ gl(n) × gl(n). It follows that the flow restricted to the invariant set
G × gl(n) captures all of the extremals of the original optimal control problem (3.2).

By Lemma 2.1, if U ∈ g, then UT ∈ g. So the system

d

dt
P̄ = −P̄UT, P̄ (0) = I

evolves in the Lie group G. Now setting P1(t) = P0P̄ (t), where P0 = P(0) is a
constant, we see that the time evolution of P1(t) and P(t) are governed by the same
equation (the second equation in (3.8)) and have the same initial condition P1(0) =
P(0) = P0. Therefore, P1(t) ≡ P(t) and P(t) = P0P̄ (t).

For Q0 ∈ G and denoting the initial costate P0 by R enables us to conclude the
following:

Proposition 3.4 All extremal trajectories for the problem (3.2) are realized from the
system

Q̇ = QU, Q(0) = Q0, Q ∈ G,

˙̄P = −P̄UT, P̄ (0) = I, P̄ ∈ G,

U = 2Σ−1
(
P
(
QTRP̄

)) ∈ g,

(3.17)

for suitable R ∈ gl(n).

However, it is also clear that the optimal flow (3.8) and (3.9) has an invariant set
G×G ⊂ gl(n)× gl(n). In Proposition 3.4, this corresponds to the restriction P(0) =
R to G. By restricting system (3.8) and (3.9) to G × G, we may miss some of the
extremal trajectories for problem (3.2) since we are restricting the costate trajectories
P to G. We elaborate on this statement at the end of Sect. 3.3 and in Sect. 4.

We now study the flow (3.8) and (3.9) restricted to G × G. In this case, since
(Q,P ) ∈ G × G, we have QTP ∈ G and P TQJ = J (QTP)−1 = (QTP)TJ so
the expression in (3.9) simplifies to Uext = Σ−1(QTP − (QTP)−1). Notice that by
Lemma 2.1 QTP − (QTP)−1 ∈ g for all (Q,P ) ∈ G × G, so U is well defined.

Because we have special interest in the extremal flow (3.8) and (3.9) restricted to
G × G, we write down the system

Q̇ = QU, Q ∈ G,

Ṗ = −PUT, P ∈ G, (3.18)

U = Σ−1P
(
QTP

) = Σ−1(QTP − (
QTP

)−1) ∈ g. (3.19)
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Now the Hamiltonian H in (3.7) may also be rewritten when it is restricted to
G × G × g since by Lemma 2.2

1

2

〈
QTP,U

〉 = −1

2

〈(
QTP

)−1
,U

〉
,

and so H becomes

H(P,Q,U) = 1

2

〈
QTP − (

QTP
)−1

,U
〉 − 1

4

〈
U,Σ(U)

〉
,

and on inserting the form of U in (3.19), we obtain

H = 1

4

〈
QTP − (

QTP
)−1

,Σ−1(QTP − (
QTP

)−1)〉
. (3.20)

While the system (3.8) and (3.9) is a Hamiltonian flow on gl(n) × gl(n) with the
canonical symplectic form, it is not obvious that the flow (3.18) and (3.19) on G ×G

is Hamiltonian. We now describe in what sense this restricted flow is Hamiltonian.
We denote by Ω the restriction of Ωcan to G × G. Further, we let Smax ⊂ G × G be
the maximal open submanifold in G × G where Ω is nondegenerate. Clearly Smax is
not empty as Ω = Ωcan at the identity in G × G.

The next result demonstrates that (3.18) and (3.19) restricted to the symplectic
manifold (Smax,Ω) is a Hamiltonian flow with the Hamiltonian given by (3.20).

Proposition 3.5 The restriction of the system (3.18) and (3.19) to Smax ∈ G × G

is Hamiltonian, with the Hamiltonian (3.20) and the flow described by (3.18) and
(3.19).

Proof Let XH denote the Hamiltonian vector field of this Hamiltonian, and let Z be
another vector field on G × G. Thus,

dH(Z) = Ω
(
XH ,Z

) = 〈
XH

Q,ZP

〉 − 〈
XH

P ,ZQ

〉
.

If we let Z = (ZQ,ZP ) = (QV,PV ), then

dH(QV ) = −〈
XH

P ,QV
〉
, dH(PV ) = 〈

XH
Q,PV

〉
.

Using (2.3), the first of these expressions can be expressed as

dH(QV ) = 1

2

〈
V TQTP,U

〉 + 1

2

〈
P −1(QT)−1

(QV )T(
QT)−1

,U
〉

= 1

2

〈
QV,PUT〉 + 1

2

〈(
QT)−1

V T,
(
P −1)T

U
〉

= 1

2

〈
QV,PUT〉 + 1

2
Trace

(
Q−1(P −1)T

UV
)

= 1

2

〈
QV,PUT〉 + 1

2
Trace

(
P TQV U

)
from (2.3)

= 1

2

〈
QV,PUT〉 + 1

2

〈
QV,PUT〉 = 〈

QV,PUT〉
.
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Similarly, the second expression can also be simplified as follows

dH(PV ) = 1

2

〈
QTPV,U

〉 + 1

2

〈
P −1(PV )P −1(QT)−1

,U
〉

= 1

2
〈QU,PV 〉 + 1

2

〈
V P −1(QT)−1

,U
〉

= 1

2
〈QU,PV 〉 + 1

2
Trace

(
Q−1(P −1)T

V TU
)

= 1

2
〈QU,PV 〉 + 1

2
Trace

(
P TQUV T)

from (2.3)

= 1

2
〈QU,PV 〉 + 1

2
〈QU,PV 〉 = 〈QU,PV 〉.

Hence, on the symplectic subset Smax of G × G, we get XH
P = −PUT and

XH
Q = QU . �

3.3 Extremal Flow in Terms of an Involution

We now give another formulation of the extremal flow (3.18) and (3.19) for the op-
timal control problem, in which we eliminate explicit reference to the transpose op-
erator. We introduce on GL(n) (the Lie group of invertible n × n real matrices), the
involution

σ : GL(n) → GL(n); σ(X) = (XT)−1
. (3.21)

Thus, σ is an automorphism which satisfies σ 2(·) = In, i.e., σ is an involution on
GL(n). Clearly, by Lemma 2.1, σ restricts to an automorphism of G as well.

The Lie group isomorphism σ induces a Lie algebra automorphism of g and gl(n),
given by

σ̂ : g → g; σ̂ (A) = −AT. (3.22)

Hence, σ̂ 2(·) = In is also an involution on gl(n), and it is easy to directly check
that g is mapped to itself by the involution σ̂ . If A ∈ g and X = exp(A) ∈ G where
exp : g → G is the exponential map, then1

σ(X) = exp
(−AT) = exp

(
σ̂ (A)

)
.

Now if Q̇ = QU , Q ∈ G and U ∈ g, then

d

dt
σ (Q) =: σ∗Q̇ = σ(Q)̂σ (U), (3.23)

1According to [19], σ̂ is a Cartan involution, since the fixed point set of σ̂ is so(n), which is the Lie algebra
of a maximal compact subgroup of SL(n), the adjoint group of [gl(n),gl(n)] = sl(n).
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since Q̇T = UTQT and ˙(QT)−1 = −(QT)−1UT. Similarly

d

dt
σ (P ) = σ�Ṗ = (

P T)−1
Ṗ T(

P T)−1 = (
P T)−1

U = σ(P )U, (3.24)

where we used (3.18) in the last step. We define

M � QTP − (
QTP

)−1 = QTP − P −1(QT)−1

which gives

M = σ
(
Q−1)P − P −1σ(Q).

Therefore, we can also express the extremal flow (3.18) and (3.19) as

Q̇ = QU, Ṗ = P σ̂ (U), U = Σ−1(M),

M = σ
(
Q−1

)
P − P −1σ(Q).

(3.25)

We now use (3.25) to obtain the flow of M .

Lemma 3.6 The flow of the quantity M along the extremal flow (3.25) is given by

Ṁ = [
M, σ̂ (U)

]
. (3.26)

Proof We have to evaluate

Ṁ = d

dt

(
σ
(
Q−1)P − P −1σ(Q)

)
.

Now σ(Q−1) = (σ (Q))−1, so using (3.23), we get

d

dt
σ
(
Q−1) = −σ̂ (U)σ

(
Q−1).

Hence, along the extremal flow (3.25) of the optimal control problem, we have

Ṁ = −σ̂ (U)σ
(
Q−1)P + σ

(
Q−1)P σ̂ (U) + σ̂ (U)P −1σ(Q) − P −1σ(Q)̂σ (U)

= [
σ
(
Q−1)P − P −1σ(Q), σ̂ (U)

] = [
M, σ̂ (U)

]
,

which proves the lemma. �

The following statement summarizes these results as a generalization of the
n-dimensional rigid body (the Euler–Poincaré) equations.

Theorem 3.7 The “generalized Euler” equations for the optimal control problem
(3.2) are given by

Q̇ = QU, Ṁ = [
M, σ̂ (U)

]
, U = Σ−1(M). (3.27)
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Clearly the optimal control problem (3.2) can be expressed as a variational prob-
lem on G, which gives rise to geodesics on G with a left invariant metric correspond-
ing to Σ on g. Reference [15] give a general form for the Euler–Poincaré equations
for semisimple Lie groups (generalized rigid body) as a Hamiltonian flow on T �G.
Equivalently, one could recast this as an optimal control problem on G directly re-
sulting in the same Hamiltonian flow on T �G, with the canonical symplectic form
on T �G.

Now if M satisfies the Lax equation in (3.27), then

ṀT = (
M

(−UT) − (−UT)
M

)T = MTU − UMT = [
MT,U

]
.

As in [1, 14], the Lax equations

ḣ = [h,u], u = Σ−1(h), u,h ∈ g,

represent the reduction of the geodesic flow on T �G to the Poisson flow of the
coadjoint equations on the dual of the Lie algebra. Our representation of these Lax
equations follows since we have employed the trace inner product on gl(n) with a
transpose, whereas this is not the case in the texts mentioned above. Hence, the sys-
tem (3.27) does recover the usual Euler–Poincaré equations for the geodesic flow on
G. Note that in the case of G = SO(n), we have σ̂ (U) = U for U ∈ so(n) and ei-
ther way we achieve the usual Euler–Poincaré equations for the n-dimensional rigid
body.

Since the system (3.27) does capture all extremals for the optimal control problem
(3.2), and we know that the system on G × G given by the flow (3.18) and (3.19)
does not necessarily do so, the relationship between the two flows is not expected to
be straightforward. To develop this relationship, we introduce the mapping

Φ: G × G → G × g, (Q,P ) 
→ (Q,M) (3.28)

defined by M = σ(Q−1)P − P −1σ(Q). Clearly by construction, the mapping Φ

maps every trajectory of the flow (3.18) and (3.19) on G × G onto a trajectory of
the flow of the generalized Euler equations (3.27). To explore the inverse of Φ , we
introduce the mapping sinh : g → g defined by

sinhX = 1

2

(
exp(X) − exp(−X)

)
.

We note that sinh(·) does indeed restrict to a map from g to g since if X ∈ g,
exp(X) ∈ G, and hence exp(X) − exp(−X) ∈ g, by Lemma 2.1. Now if we set

P = σ(Q) exp

(
sinh−1 M

2

)
(3.29)

in the expression for M , we obtain

M = exp

(
sinh−1 M

2

)
− exp

(
−sinh−1 M

2

)
.
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Thus, as long as sinh−1 is defined, the expression (3.29) does indeed define an in-
verse for Φ . We investigate the domain of this inverse in the next section. In the
case that J = In, α = 1 and G = SO(n), (3.25) and (3.27) reduce to the symmet-
ric representation of the rigid body equations in SO(n) given in [3], where the map
sinh : so(n) → so(n) was first introduced.

3.4 A Conserved Quantity Along the Extremal Flow

From (3.18) or (3.25), we see that the quantity

γ = PQT = Pσ(Q)−1

is conserved along the extremal flow (3.18) and (3.19) or (3.25), since

γ̇ = ṖQT + PQ̇T = −PUTQT + PUTQT = 0.

We define the quantity

m � γ − γ −1 = PQT − (
PQT)−1

, (3.30)

which is also conserved along the extremal flow (3.18) and (3.19) or (3.25). It follows
that where sinh−1 is defined, we obtain

γ = exp

(
sinh−1 m

2

)
,

and that from (3.30), we obtain

P = exp

(
sinh−1 m

2

)
σ(Q) = γ σ(Q). (3.31)

It follows that expressions (3.31) and (3.29) are equivalent expressions for P , but the
expression (3.31) is expressed in terms of the invariant m, as opposed to M which is
not invariant. Now let g = QTP , so we can write

γ = (
QT)−1(

QTP
)
QT = σ(Q)gσ(Q)−1,

which implies that

γ = Intσ(Q) g, (3.32)

where for s, g ∈ G, the inner automorphism Ints(g) = sgs−1 is an analytic isomor-
phism of G onto itself (see [10]). If we denote the algebra elements

a = sinh−1 m

2
and A = sinh−1 M

2
,

then (3.32) can also be expressed as

expa = Intσ(Q) expA = exp(Adσ(Q) A),
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since the exponential map relates the inner automorphism on the group G with the
adjoint action of the group on its algebra g (see [10, 18]). This shows that

a = Adσ(Q) A ⇒ m = Adσ(Q) M, (3.33)

which relates the quantities m and M through the adjoint action of the group G on its
algebra g via the involution σ . As we show in the following section, the quantity m

is essential to defining an invariant open submanifold of G × G where the extremal
flows given by (3.18) and (3.19) are Hamiltonian.

4 Symplectic Submanifolds

In this section, we exhibit domains on which the mapping Φ : G × G → G × g has a
well-defined inverse and on which Φ is naturally symplectic. We obtain a symplectic
submanifold of G × G (that is, maximal in a norm-bounded sense) and show that it
is symplectomorphic to G × g or T �G. Therefore, Φ maps the optimal trajectories
given by the symmetric representation (3.18) and (3.19) in Proposition 3.5 in this
submanifold to corresponding trajectories of the generalized Euler equations given
by (3.27) in Theorem 3.27. We state the main result of this section below, but delay
the proof until later in the section.

Theorem 4.1 The set (S2,Ω) is a symplectic submanifold of (gl(n) × gl(n),Ωcan)

where

S2 �
{
(Q,P ) ∈ G × G | m = Pσ

(
Q−1) − σ(Q)P −1, ‖m‖ < 2

}
, (4.1)

and ‖ · ‖ is the operator norm on gl(n).

4.1 Non-degeneracy Condition for the Canonical Symplectic Form

The restriction of the canonical symplectic form Ωcan to G × G is given by

Ω
(
(QA1,PB1), (QA2,PB2)

) = Ωcan |G×G

(
(QA1,PB1), (QA2,PB2)

)

= 〈PB2,QA1〉 − 〈PB1,QA2〉
= Trace

(
BT

2 P TQA1 − BT
1 P TQA2

)
, (4.2)

for (Q,P ) ∈ G × G and (A1,B1), (A2,B2) ∈ g × g.
Let Smax be the maximal submanifold (with respect to inclusion) of G × G

on which Ωcan restricts to a nondegenerate symplectic form Ω . For a given point
(Q,P ) ∈ Smax, nondegeneracy of Ω at (Q,P ) is equivalent to the condition: if

Trace
(
BT

2 P TQA1 − BT
1 P TQA2

) = 0

for all (A2,B2) ∈ g × g, then (A1,B1) = (0,0). This is equivalent to requiring that
for A ∈ g,

Trace
(
BTP TQA

) = 0
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for all B ∈ g implies that A = 0. Using the projection P in Lemma 3.3, we know that
for A ∈ gl(n),

A = P(A) + (I − P)(A)

where

P(A) = 1

2

(
A − αJATJ

)
, (I − P)(A) = 1

2

(
A + αJATJ

)
.

Moreover, since P = P�, we have
〈
(I − P)(A),P(B)

〉 = 〈
J (I − P)(A), JP(B)

〉 = 〈(
P − P2)(A),B

〉 = 0.

Thus,

gl(n) = JP
(
gl(n)

) ⊕ J (I − P)
(
gl(n)

)
. (4.3)

is an orthogonal decomposition. Note that

(
JP(A)

)T = 1

2
α
(
A − αJATJ

)T
J = 1

2
α
(
AT − αJAJ

)
J

= 1

2
J
(
JATJ − αA

) = −1

2
αJ

(
A − αJATJ

) = −αJP(A)

and similarly

(
J (I − P)(A)

)T = 1

2
α
(
A + αJATJ

)T
J = 1

2
α
(
AT + αJAJ

)
J

= 1

2
J
(
JATJ + αA

) = 1

2
αJ

(
A + αJATJ

) = αJ (I − P)(A).

Let g = QTP ∈ G so that

Trace
(
BTP TQA

) = Trace
(
BTgTA

) = Trace
(
(JB)TJgTA

) = 〈
JB,JgTA

〉
.

Now JB ∈ JP(gl(n)) for all B ∈ g, and so 〈JB,JgTA〉 = 0 for all B ∈ g implies by
(4.3) that JgTA ∈ J (I − P)(gl(n)). Thus, from the above

(
JgTA

)T = αJgTA ⇒ ATgJ = JgTA ⇒ −JAJ TgJ = JgTA

However, gTJg = J ⇒ (gT)−1 = J TgJ so −A(gT)−1 = gTA, or simply

σ(g)Aσ(g) = −A, A ∈ g. (4.4)

We conclude that if (Q,P ) ∈ Smax and g = QTP , then (4.4) must imply that A = 0.
We, therefore, have the following characterization of Smax, the maximal symplec-

tic submanifold of G × G with the symplectic form induced from Ωcan:

Smax = {
(Q,P ) ∈ G × G : g = QTP, σ(g)Aσ(g) = −A for A ∈ g ⇒ A = 0

}
.

We next look at the condition (4.4) in more detail to obtain a symplectic submanifold
of G × G with a computable boundary.
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4.2 A Symplectic Submanifold of G × G

To begin with, we give some basic results related to the matrix functions exp and
sinh. Let the matrices Ψ and V be the matrices of eigenvalues and eigenvectors,
respectively, of C; i.e., CV = V Ψ . Then we have:

exp(C)V =
{
I + C + 1

2
C2 + 1

3!C
3 + · · ·

}
V

= V + CV + 1

2
C2V + 1

3!C
3V + · · ·

= V + V Ψ + 1

2
V Ψ 2 + 1

3!V Ψ 3 + · · ·

= V

{
I + Ψ + 1

2
Ψ 2 + 1

3!Ψ
3 + · · ·

}
= V D,

where D = exp(Ψ ). Similarly, it can be shown that

exp(−C)V = V exp(−Ψ ).

Combining these two results, we obtain:

(sinhC)V = 1

2

(
exp(C) − exp(−C)

)
V

= 1

2
V

(
exp(Ψ ) − exp(−Ψ )

) = V sinhΨ.

If B = sinhC, then this means that BV = V Λ, where Λ = sinhΨ . We use the oper-
ator norm ‖ · ‖ on gl(n) defined by

‖A‖ = sup
{‖Ax‖ | ‖x‖ = 1

}
.

We know that the function sinh : C → C has an inverse sinh−1(u) = ln(u+√
u2 + 1 )

with a convergent power series expansion for |u| < 1 (see [11]). This power series
expansion can be used to show that the map sinh : g → g has an inverse on the set
U = {A ∈ g | ‖A‖ < 1}, and we denote this inverse sinh−1 : U → g as in [3]. The
following lemma gives a sufficient condition under which condition (4.4) implies
that A = 0 where A ∈ g.

Lemma 4.2 For A, B ∈ g, if ‖B‖ < 1 and

exp
(
sinh−1 B

)
A exp

(
sinh−1 B

) = −A, (4.5)

then A = 0.

Proof Note that we do not make any assumptions on the diagonalizability of B ∈ g.
Let {v1, v2, . . . , vm}, m ≤ n, be the set of independent eigenvectors of B , and let
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λk ∈ C denote the eigenvalue of B corresponding to the eigenvector vk ∈ C
n. Then

we have
(
sinh−1 B

)
vk = (

sinh−1 λk

)
vk, k = 1, . . . ,m.

If we denote g = exp(sinh−1 B), then from the above equation, we get

gvk = dkvk, k = 1, . . . ,m,

where dk = exp(sinh−1 λk) ∈ C is the eigenvalue of g corresponding to the eigen-
vector vk . Now right-multiplication of (4.5) with vk gives gAgvk = −Avk ; that is,
gA(dkvk) = −Avk , i.e., dk(gfk) = −fk . In other words,

g−1fk = −dkfk, (4.6)

where fk = Avk .
Hence, the vector fk = Avk and the scalar quantity −dk form an eigenvector-

eigenvalue pair for g−1 = exp(−sinh−1B). But since g ∈ G is a nonsingular matrix,
g−1vl = 1

dl
vl , i.e., the eigenvalues of g−1 are also given by the reciprocals of the dl .

Equation (4.6) is trivially satisfied if A = 0, since in that case, fk = Avk = 0. For
A �= 0, we have at least one nonzero eigenvector-eigenvalue pair. Since the number
of independent eigenvectors and the corresponding eigenvalues of g−1 are unique,
(4.6) is equivalent to the presence of at least one pair (k, l) ∈ {1, . . . ,m} such that
(1 + dkdl) = 0. Now if λk = rk exp(iθk) are the eigenvalues of B , then the corre-
sponding eigenvalues of C = sinh−1 B are

sinh−1 λk = αk + iβk, where rk cos θk = sinhαk cosβk, rk sin θk = coshαk sinβk,

and dk = (expαk)(cosβk + i sinβk) are the eigenvalues of g. Thus, we have

r2
k = sinh2 αk cos2 βk + cosh2 αk sin2 βk

= sinh2 αk cos2 βk + (
1 + sinh2 αk

)
sin2 βk = sinh2 αk + sin2 βk.

We know that ‖B‖ is the square root of the maximum eigenvalue of BTB , which is
also the largest singular value of B; we also know that the largest absolute eigenvalue
is less than or equal to the largest singular value [9]. Hence, if ‖B‖ < 1, then the
eigenvalues of B satisfy |λk| = rk < 1 for all k ∈ {1, . . . , n}. Thus, from the previous
expression for r2

k , we have

sin2 βk = r2
k − sinh2 αk < 1 − sinh2 αk < 1 ⇒ |sinβk| < 1,

which ensures that the principal value of βk ∈ (−π
2 , π

2 ). It is easy to verify that if
|βk| < π

2 for all k ∈ {1, . . . , n}, then

dkdl = exp(αk + αl) exp
(
i(βk + βl)

)

is never a negative real number, and thus 1+dkdl �= 0 for any pair (k, l) ∈ {1, . . . , n}.
This implies that if (4.6) (alternatively (4.5)) is satisfied, then we must have F = 0,
and thus A = 0. This completes the proof. �
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Define the subset S̆ ⊂ G × G by

S̆ �
{
(Q,P ) ∈ G × G | M = σ

(
Q−1)P − P −1σ(Q),

∥∥∥∥
σ̂ (M)

2

∥∥∥∥ < 1 ⇒ ‖M‖ < 2

}
.

Note that by (3.29), if ‖M‖ < 2, then

P = σ(Q) exp

(
sinh−1 M

2

)

is well defined, and with g = exp(sinh−1 M
2 ) so σ(g) = exp(sinh−1 σ̂ (M)

2 ) and

‖ σ̂ (M)
2 ‖ < 1. Thus, by Lemma 4.2 and (4.4) we deduce that on the set S̆, Ω is nonde-

generate, and hence (Ω, S̆) is a symplectic submanifold. Unfortunately, the dynamics
of M given by (3.27) does not preserve ‖M‖ in general since it evolves by conjuga-
tion by elements of G, and G may not be SO(n). Thus, S̆ is not an invariant set for
the flow (3.25) or (3.18) and (3.19).

This difficulty is overcome by expressing the nondegeneracy condition (4.4), in
terms of the conserved quantity m, rather than M . To do this, we will utilize some of
the relations developed in Sect. 3.4. From relation (3.32), we have

g = σ(Q)−1γ σ(Q) = Intσ(Q)−1 γ,

which yields

σ(g) = Q−1σ(γ )Q = IntQ−1 σ(γ ). (4.7)

Now we rewrite the nondegeneracy condition (4.4) replacing g with γ , as follows:

IntQ−1 σ(γ )A IntQ−1 σ(γ ) = −A,

which gives

Q−1σ(γ )QAQ−1σ(γ )Q = −A;
that is,

σ(γ )AdQ Aσ(γ ) = −AdQ A. (4.8)

Now we prove the main result of this section, Theorem 4.1.

Proof Note first that if ‖m‖ < 2, then γ = exp(sinh−1 m
2 ) is well defined and

‖ σ̂ (m)
2 ‖ < 1, so

σ(γ ) = exp

(
sinh−1 σ̂ (m)

2

)

is also well defined. Thus, if (Q,P ) ∈ S2 we may apply Lemma 4.2 to (4.8) and
deduce that AdQ A = 0. However, since Q ∈ G, we deduce that A = 0 and so Ω is
nondegenerate at (Q,P ), and we conclude that Ω is nondegenerate on all of S2. �

We now show that if G = Sp(2n), then the norm bound giving the symplectic
submanifold S2 ⊂ G × G in Theorem 4.1 is indeed a tight bound. To show this, we
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investigate the condition gBg = −B where g ∈ Sp(2n) and B ∈ sp(2n), and find an
example where this condition is satisfied for B �= 0. Now if

J =
[

0 In

−In 0

]
, B =

[
X Y

Z W

]
∈ sp(2n),

then Z = ZT, Y = Y T, and W = −XT, since BTJ + JB = 0. If

g =
[

A B

C D

]
∈ Sp(2n),

then ATC = CTA, BTD = DTB , and ATD − CTB = In. Take g = J , then A = D =
0, B = In, C = −In. Now the condition gBg = −B requires

[−W Z

Y −X

]
= −

[
X Y

Z W

]
,

so W = X and Z = −Y . Also since B ∈ sp(2n) we have that B = [
X Y

−Y X

]
where

X = −XT, Y = Y T. This indeed gives us a nonzero B ∈ sp(2n) such that gBg = −B

for g = J ∈ Sp(2n).
We would like to express g = exp(sinh−1 m

2 ) for m ∈ sp(2n). Note that
exp(αJ ) = I2n cosα + J sinα. Thus, exp(π

2 J ) = J and exp(−π
2 J ) = −J . Hence,

we have

sinh

(
π

2
J

)
= 1

2

(
J − (−J )

) = J,

and, therefore, we write π
2 J = sinh−1 J noting that sinh−1 is multi-valued outside

U ⊂ sp(2n), where sinh−1 is uniquely defined. Note also that J ∈ Sp(2n) ∩ sp(2n),
and so J = exp(sinh−1 J ). Therefore, we may identify m = 2J ∈ sp(2n) and J =
exp(sinh−1 m

2 ) ∈ Sp(2n). The condition in Lemma 4.2 states that if gBg = −g where
g = exp(sinh−1 m

2 ) and ‖m/2‖ < 1, then B = 0. In this case, m = 2J and clearly
‖m/2‖ = 1, since the spectral radius of J is 1 as all eigenvalues are ±i. Thus, our
choice of g = J is not included in the sufficient condition of Theorem 4.1 as g /∈ S2.
Therefore, we conclude that the norm bound provided in Theorem 4.1 for the sym-
plectic submanifold S2 ⊂ G × G is tight.

4.3 Symplectic Nature of the Map from G × G to G × g

Recall the map Φ : G×G → G× g given by (3.28). We may identify G× g with the
cotangent bundle T �G by the map

ı: G × g → T �G; ı(Q,M) = (
Q,

〈(
QT)−1

M, ·〉).
If ω denotes the natural symplectic form on T �G then its pullback ı�ω is a symplectic
form on G × g. The symplectic form ı�ω is easily described, as in [14], for example,
as

(ı�ω)(Q,M)

(
(QU1,N1), (QU2,N2)

) = 〈N2,U1〉 − 〈N1,U2〉 + 〈
M, [U1,U2]

〉
, (4.9)
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where (U1,U2), (N1,N2) ∈ g × g. Set

SM �
{
(Q,M) ∈ g × g | ‖m‖ < 2, m = Adσ(Q)M

}
. (4.10)

Then clearly Φ maps S2 onto SM . Also, S2 is an invariant set for the system (3.27).
Thus, Φ maps trajectories of the extremal flow (3.18) and (3.19) in S2 onto trajecto-
ries of (3.27) in SM . Moreover, on SM , Φ has an unique inverse map

Φ−1 : SM ⊂ G × g → S2 ⊂ G × G,

(Q,M) → (Q,P ); P = σ(Q) exp

(
sinh−1 M

2

)
.

We conclude this section by demonstrating that Φ is indeed a symplectic map from
S2 to SM .

Theorem 4.3 The map Φ : S2 ⊂ G × G → SM ⊂ G × g is a symplectomorphism of
(Ω,S2) onto (ı�ω,SM) with Φ�(ı�ω) = 2Ω .

Proof Let Z1 = (QU1,−PV T
1 ) and Z2 = (QU2,−PV T

2 ) be two vectors in TQG ×
TP G. We need to show that

(ı�ω)(Φ�Z1,Φ�Z2) = 2Ω(Z1,Z2).

From (3.5), we see that

Ω(Z1,Z2) = 〈−PV T
2 ,QU1

〉 − 〈−PV T
1 ,QU2

〉

= −〈
QTP,U1V2

〉 + 〈
QTP,U2V1

〉
.

By Corollary 2.3, we find that

Ω(Z1,Z2) = 1

2

〈
QTP,U2V1 − U1V2

〉 + 1

2

〈(
QTP

)−1
,V1U2 − V2U1

〉
. (4.11)

Let N = Ṁ = d
dt

(QTP − (QTP)−1), and computing along (3.18)

d

dt

(
QTP

)−1 = V T(
QTP

)−1 − (
QTP

)−1
UT.

Thus, Φ�Zk = (QUk,Nk) for k = 1,2, where

Nk = UT
k QTP − QTPV T

k − (
V T

k

(
QTP

)−1 − (
QTP

)−1
UT

k

)
.

Thus, from (4.9),

(ı�ω)(Φ�Z1,Φ�Z2) = 〈U1,N2〉 − 〈U2,N1〉 + 〈
M, [U1,U2]

〉

where M = QTP −(QTP)−1. One concludes from (4.11) that (ı�ω)(Φ�Z1,Φ�Z2) =
2Ω(Z1,Z2). �
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We can now give a complete answer to the question we posed earlier in Sect. 3.2;
whether or not the extremal flows (3.8) and (3.9) of problem (3.6) restricted to G×G,
namely the extremal flows (3.18) and (3.19), capture all or some optimal trajectories.
We know that the generalized Euler flow on G×g given by (3.27) does capture all op-
timal trajectories. The nature of the mapping Φ : S2 ⊂ G×G → SM ⊂ G×g demon-
strates that only the extremal flows evolving on SM , or equivalently with ‖m‖ < 2,
are manifested within the dynamics (3.18) and (3.19). In the case G = SO(n), the
condition ‖m‖ < 2 is equivalent to ‖M‖ < 2, and hence directly limits the magnitude
of “velocity” U = Σ−1(M) in the kinematic equation Q̇ = QU . For fixed Q0 ∈ G,
the geodesic neighborhood of final states Q(T ), corresponding to each choice of m,
‖m‖ < k, can be made arbitrarily small by choosing T suitably small. Denote this
set by R(T ,Q0, k) ⊂ G. If we now try to solve the optimal control problem (3.2)
when QT /∈R(T ,Q0,2), it is clear that the optimal trajectory must correspond to an
extremal trajectory which does not satisfy ‖m‖ < 2. Thus, the extremal flow (3.18)
and (3.19) on S2 ⊂ G × G cannot capture this optimal trajectory. However, this can
be circumvented through Proposition 3.4, in which the control function is modified
or rescaled.

5 The Discrete Optimal Control Problem

In this section, we briefly treat the discrete version of the continuous optimal control
problem (3.2). We first define the discrete optimal control problem on the quadratic
group G and then provide its solution in terms of the optimal trajectories and the
optimal controls.

Let Λ be a matrix satisfying the conditions of Proposition 3.1, i.e., Λ satisfies
ΛTJ = JΛ and Λ + ΛT is positive definite. Let Q0, QN ∈ G be given fixed end-
points. We define the optimal control problem

min
Uk

N∑

k=1

〈Δ,Uk〉, Δ = 1

2

(
Λ + ΛT)

, (5.1)

subject to the dynamics and initial and final data

Qk+1 = QkUk, Q0 = Q0,QN = QN, (5.2)

for Qk, Uk ∈ G. Note that we may restrict ourselves here to Uk in a neighborhood of
the identity element in the group G if we take the iteration procedure to be such that
steps are small, giving rise to small increments in Qk .

5.1 The Discrete Hamiltonian

The discrete Hamiltonian corresponding to the discrete optimal control problem (5.1)
subject to the constraints (5.2) is given by

H(Pk+1,Qk,Uk) = 〈Pk+1,QkUk〉 − 〈Δ,Uk〉 = 〈
QT

kPk+1 − Δ,Uk

〉
, (5.3)
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where Pk+1 ∈ gl(n) is the costate variable used to impose the kinematic constraint
(5.2). Note that this Hamiltonian functional is linear in the controls, unlike the Hamil-
tonian (3.7) for the continuous optimal control problem. Before we obtain the main
result giving discrete extremal trajectories corresponding to this Hamiltonian, we give
a lemma below that is used to obtain the main result.

Lemma 5.1 The map ΣD : G → g defined by

ΣD(Uk) � gΔ − Δg−1, g ∈ G, (5.4)

is a diffeomorphism from a neighborhood of the identity in G to a neighborhood of
0 ∈ g.

Proof Note that the derivative of ΣD at the identity along

ġ = gU

is Σ : g → g defined earlier by (3.4). Since Σ is an invertible map, ΣD is, therefore,
a diffeomorphism from a neighborhood of the identity in G to a neighborhood of 0
in g. �

Therefore, ΣD : G → g is in this sense the discrete version of the continuous map
Σ : g → g. The inverse of the map ΣD , when it exists, is given in Sect. 5.2. The
following result gives the discrete extremal trajectories corresponding to the Hamil-
tonian (5.3).

Theorem 5.2 A solution of the discrete optimal control problem (5.1) is given by a
sequence of matrices (Qk,Pk) in G×gl(n) satisfying the optimal evolution equations

Qk+1 = QkUk, Pk+1 = Pkσ(Uk), (5.5)

where σ : GL(n) → GL(n) is the involution defined by (3.21), and Uk is given by

Uk = Σ−1
D

(
P T

k Qk − (
P T

k Qk

)−1)
, (5.6)

when Uk is in the neighborhood of the identity in G where Σ−1
D exists.

Proof From the discrete Hamiltonian (5.3), we get

Pk = ∇Qk
H = (

UkP
T
k+1

)T = Pk+1U
T
k , (5.7)

from which we obtain the discrete evolution (5.5). Note that as in the continuous case,
the discrete extremal flow can be naturally restricted to G × G since if Pk ∈ G, then
(5.7) implies that Pk+1 ∈ G.

We now need to find the critical points of H(Pk+1,Qk,Uk) where UT
k JUk = J

since Uk ∈ G. This Hamiltonian is of the form 〈Ak,Uk〉 where Ak = QT
kPk+1 − Δ.

Applying Pontryagin’s principle, we maximize the functional

Ha(Pk+1,Qk,Uk) = 〈Ak,Uk〉 + 1

2

〈
Π,UT

k JUk − J
〉
,
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with respect to Uk , where Π is a Lagrange multiplier for the constraint UT
k JUk = J .

Since (UT
k JUk − J )T = α(UT

k JUk − J ), we require that ΠT = αΠ . We set the dif-
ferential with respect to Uk to be zero:

δUk
Ha = 〈Ak, δUk〉 + 〈αJUkΠ, δUk〉 = 0.

Therefore, the gradient ∇Uk
Ha = 0 when

Ak + αJUkΠ = QT
kPk+1 − Δ + αJUkΠ = 0,

from which we get Π = −U−1
k JAk . Utilizing the property that ΠT = αΠ , we get:

(
QT

kPk+1 − Δ
)T

Jσ(Uk) = U−1
k J

(
QT

kPk+1 − Δ
)

⇒ (
P T

k+1Qk − Δ
)
UkJ = JUT

k

(
QT

kPk+1 − Δ
)
.

Equivalently, making the substitutions Uk → UT
k , P T

k+1Qk → QT
kPk+1, we get:

(
QT

kPk+1 − Δ
)
UT

k J = JUk

(
P T

k+1Qk − Δ
)

⇒ (
QT

kPk − ΔUT
k

)
J = J

(
P T

k Qk − UkΔ
)

using (5.7)

⇒ JUkΔ − ΔUT
k J = JP T

k Qk − QT
kPkJ

⇒ J
(
UkΔ − ΔU−1

k

) = J
(
P T

k Qk − (
P T

k Qk

)−1) since Uk ∈ G and ΔJ = JΔ.

This gives us the relation

UkΔ − ΔU−1
k = P T

k Qk − (
P T

k Qk

)−1
, (5.8)

which is equivalent to (5.6) when Uk is in the neighborhood of the identity in G

where Σ−1
D exists as given by Lemma 5.1. �

The above result generalizes Theorem 6.5 in [3], which gives the symmetric rep-
resentation of the extremal flows of the discrete optimal control problem in SO(n), to
the quadratic groups G. Equation (5.6) can be written as

ΣD(Uk) = P T
k Qk − (

P T
k Qk

)−1
. (5.9)

ΣD can be inverted to obtain Uk from (5.9) as long as Uk remains in a neighborhood
of the identity. Therefore, the discrete optimal equations can be used in a computa-
tional routine to obtain the discrete extremal trajectory in G × G, where we obtain
Uk given (Qk,Pk) ∈ G × G using (5.6) and then use (5.5) to obtain (Qk+1,Pk+1).
More generally in the Moser–Veselov setting of G = SO(n), the identity component
of O(n), it is possible to find a global unique solution of Uk from (5.9). For details
see [3, 5, 16] and also [6]. We now show that in the more general situation where
G is one of the quadratic groups (2.1), there are at most two possible solutions for
Uk when ΣD is invertible. For G = O(n), only one of these two solutions is in the
identity component (SO(n)), which accounts for the Moser–Veselov result mentioned
above.
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5.2 Solutions for the discrete optimal control

Consider (5.9) for obtaining the optimal control Uk , and rewrite it as follows:

UkΔ − ΔU−1
k = Mk, (5.10)

where Mk = P T
k Qk − (P T

k Qk)
−1. From (5.5), we see that the sequence {Mk} satisfies

Mk+1 = U−1
k MkUk. (5.11)

Equations (5.10) and (5.11) form the discrete version of the continuous generalized
Euler equations (3.27). We are now concerned with the solution of this discrete sys-
tem of equations.

Equation (5.10) is an algebraic equation of the form

gΔ − Δg−1 = A, g ∈ G, A ∈ g. (5.12)

We first obtain from this equation an equivalent equation on g. Let κ be a square root
matrix of the positive definite matrix Δ, i.e., Δ = κ2, so that Jκ = κJ and κ = κT.
Then from (5.12), we get

κ−1gκ − κg−1κ−1 = κ−1Aκ−1.

Substituting g = exp(X) where X ∈ g in the above expression, we obtain

exp
(
κ−1Xκ−1Δ

) − exp
(−Δκ−1Xκ−1) = κ−1Aκ−1. (5.13)

Note that if A ∈ g, then κ−1Aκ−1 ∈ g, since
(
κ−1ATκ−1)J + J

(
κ−1Aκ−1) = κ−1(ATJ + JA

)
κ−1 = 0.

Then (5.13) becomes

exp(XΔ) − exp(−ΔX) = A, (5.14)

where X = κ−1Xκ−1, A = κ−1Aκ−1 ∈ g. We can also verify that X ∈ g ⇒
exp(XΔ) − exp(−ΔX) ∈ g, as shown below:

(
exp(XΔ) − exp(−ΔX)

)T
J + J

(
exp(XΔ) − exp(−ΔX)

)

= (
exp

(
ΔXT) − exp

(−XTΔ
))

J + J
(
exp(XΔ) − exp(−ΔX)

)

= (
exp

(−ΔJXJ−1) − exp
(
JXJ−1Δ

))
J + J

(
exp(XΔ) − exp(−ΔX)

)

= (
exp

(−JΔXJ−1) − exp
(
JXΔJ−1))J + J

(
exp(XΔ) − exp(−ΔX)

)

= J
(
exp(−ΔX) − exp(XΔ)

)
J−1J + J

(
exp(XΔ) − exp(−ΔX)

) = 0.

Therefore, (5.14) is indeed a system on g. If we define

sinh+ X � 1

2

(
exp(XΔ) − exp(−ΔX)

)
,
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then sinh+ is a mapping from g to g. A solution of (5.14) is then obtained as

X = sinh−1+
(

A

2

)
, (5.15)

and, therefore, a solution of (5.13) is given by

X = κ sinh−1+
(

1

2

(
κ−1Aκ−1)

)
κ (5.16)

where sinh−1+ is defined. This gives us a solution of the algebraic equation (5.12) as

g1 = exp

(
κ sinh−1+

(
A

2

)
κ

)
. (5.17)

We obtain a second solution of the algebraic equation (5.12) if we substitute ĝ =
−g−1 or g = −(ĝ)−1 in this equation to get

Δĝ − (ĝ)−1Δ = A.

Further, substitute ĝ = exp(X̂), X = κ−1Xκ−1, and A = κ−1Aκ−1, in the above
expression to obtain the equation below:

exp
(
ΔX

) − exp
(−XΔ

) = A. (5.18)

Note that ĝ ∈ G, and hence X̂,X ∈ g. One can also similarly show that if X ∈ g then
exp(ΔX) − exp(−XΔ) ∈ g. Therefore, we can define the following mapping from g

to g:

sinh− X � 1

2

(
exp(ΔX) − exp(−XΔ)

)
.

We then obtain a solution of (5.18) as

X = sinh−1−
(

A

2

)
, (5.19)

and, therefore, we get

X̂ = κ sinh−1−
(

1

2

(
κ−1Aκ−1)

)
κ (5.20)

where sinh−1− is defined. This gives us the second solution of the algebraic equation
(5.12) as

g2 = −(ĝ)−1 = − exp

(
−κ sinh−1−

(
A

2

)
κ

)
. (5.21)

Thus we obtain two solutions to the algebraic equation (5.12), which are given by
the inverse mappings of sinh+ and sinh−. The mappings sinh+ and sinh− are indeed
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different mappings on g, as can be seen from their expansions:

sinh± X = 1

2
(XΔ + ΔX) ± 1

2

1

2!
(
(XΔ)2 − (ΔX)2) + 1

2

1

3!
(
(XΔ)3 + (ΔX)3)

± 1

2

1

4!
(
(XΔ)4 − (ΔX)4) + · · · .

From these expansions and the definitions of the sinh+ and sinh− maps, we note the
following two properties:

(1) − sinh±(X) = sinh∓(−X), and
(2) for Δ = ρI (a positive multiple of the identity), all the even terms in the above

expansions for sinh+ and sinh− vanish and reduce to the usual series expression
for sinh: i.e., sinh±(X) = sinh(ρX).

The first property shows how the sinh+ and sinh− mappings are related. From this
property, we also get the relation between the inverse mappings, where these inverses
exist; e.g., − sinh−1− (−A) = sinh−1+ (A). The second property leads to a simpler re-
lation between the two solutions (5.17) and (5.21) of the algebraic equation, in the
special case that Δ is a positive multiple of the identity matrix.

The case Δ = ρI includes the case G = O(n). In this case, A = sinh+(X) =
sinh(ρX) and

sinh−1+ (A) = X = 1

ρ
sinh−1(A) ⇒ ρ sinh−1+ = sinh−1 .

Similarly, in this case, we can also show that

ρ sinh−1− = sinh−1 .

Therefore, the two solutions of the algebraic equation (5.12) take the following forms:

g1 = exp

(
ρ sinh−1+

(
A

2

))
= exp

(
sinh−1

(
A

2ρ

))
,

g2 = − exp

(
−ρ sinh−1−

(
A

2

))
= − exp

(
− sinh−1

(
A

2ρ

))
= −g−1

1 ,

since A = 1
ρ
A. Therefore, in this case, the algebraic equation (5.12) becomes

g − g−1 = 1

ρ
A = ĝ − (ĝ)−1,

where ĝ = −g−1, from which we can read of the solutions g = g1 and g = g2 =
−g−1

1 immediately. Note that if G = O(n), then one of the solutions is in the identity
component SO(n), which is the solution described in [3].

Finally, we note that the system

Uk+1Δ − ΔU−1
k+1 = Mk+1 = U−1

k MkUk (5.22)
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therefore, has two possible solutions. These solutions are given by

Uk+1 = exp

(
κ sinh−1+

(
1

2
Mk+1

)
κ

)
, (5.23)

Uk+1 = − exp

(
−κ sinh−1−

(
1

2
Mk+1

)
κ

)

= − exp

(
κ sinh−1+

(
−1

2
Mk+1

)
κ

)
, (5.24)

where Mk+1 = κ−1Mk+1κ
−1. Note that the system Mk+1 = U−1

k MkUk is isospec-
tral. Therefore, the domain under which (5.22) is solvable for Uk+1 in a neighborhood
of 0 ∈ g is the same as that for which (5.10) is solvable for Uk , if this domain is mea-
sured by a given bound on the spectral radius of Mk+1 =spectral radius of Mk . Note
that this is exactly the domain where ΣD is invertible in (5.9), and, therefore, we can
obtain Uk from (5.6) in this domain.

5.3 The Example of Sp(2)

For the two-dimensional symplectic group G = Sp(2), we have

n = 2, α = −1, J =
[

0 1

−1 0

]
.

In this case, it is easy to obtain the two solutions of the algebraic equation (5.12)
explicitly when

Δ = ρI =
[

ρ 0

0 ρ

]
, ρ > 0.

If g ∈ Sp(2), then one can verify that

g =
[

α γ

δ β

]
, where αβ − δγ = 1.

Therefore, Sp(2) = SL(2), the group of real 2 × 2 matrices with determinant 1.
The Lie algebra sp(2) = sl(2) of Sp(2) consists of real traceless 2 × 2 matrices.

Therefore, (5.12) can be represented as the matrix equation

ρ

[
α − β 2γ

2δ β − α

]
=

[
a c

b −a

]
= A,

so that γ = c
2ρ

, δ = b
2ρ

, and α − β = a
ρ

. Since αβ − δγ = 1, we have

β

(
β + a

ρ

)
− cb

4ρ2
= 1 ⇒ β2 + aβ

ρ
− cb

4ρ2
− 1 = 0.
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This gives us two possible solutions for β and α:

β = − a

2ρ
±

√
a2

4ρ2
+ cb

4ρ2
+ 1,

α = a

2ρ
±

√
a2

4ρ2
+ cb

4ρ2
+ 1.

Using the fact that detA = −(a2 + cb), from the above expressions we obtain

g = 1

2ρ
A ± I

√

1 − detA

4ρ2
. (5.25)

Thus, (5.12) for G = Sp(2) has solution(s) if and only if 4ρ2 ≥ detA. Note that

−g−1 =
[−β γ

δ −α

]
= 1

2ρ
A ∓ I

√

1 − detA

4ρ2
.

Hence, if 4ρ2 > detA there are two solutions of (5.12) given by (5.25), and the map-
ping g 
→ −g−1 permutes between these two solutions.

6 Conclusions and Future Directions

In this paper, we generalize the Euler equations and the symmetric representation of
the n-dimensional rigid body equations to some quadratic matrix subgroups G of the
general linear groups GL(n). These matrix groups are defined through a quadratic
matrix identity.

In addition, we describe the relationship between the symplectic structures on
G×G and the cotangent bundle T �G � G× g� and find symplectic submanifolds of
G × G and T �G that are invariant with respect to these extremal flows. Results on the
discrete version of the symmetric representation of the extremal flows on G × G and
on G × g�, which generalize the Moser–Veselov equations to these quadratic groups,
are also presented. These discrete results can be used as numerical algorithms to
time-propagate the extremal flows. We also obtained some possible solutions to the
optimal control for both the continuous and the discrete extremal flows.

Further developments on the discrete extremal equations, including bounds on
the discrete momentum for which solutions to the discrete optimal control can be
obtained are among future research plans in this area. We also intend to analyze the
complete integrability, and explore Lax pair formulations in the setting of symmetric
representations of these extremal flows.

In a future paper, we intend to work on an extension of this work to the special
linear groups, and obtain the extremal flows of the optimal control problem on SL(n).
This would generalize both the Euler equations and the symmetric representation
of the extremal flows in the quadratic groups G to SL(n). Discrete versions of the
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extremal flows on SL(n) and their use as numerical algorithms to propagate these
flows will also be investigated. These flows on the special linear group are interesting
as models of deformable bodies and finite-dimensional models of fluids.
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