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Variational r -adaption in elastodynamics
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SUMMARY

We develop a variational r -adaptive finite element framework for solid dynamic applications and explore
its conceptual links with the theory of dynamic configurational forces. The central idea underlying the
proposed approach is to allow Hamilton’s principle of stationary action to determine jointly the evolution of
the displacement field and the discretization of the reference configuration of the body. This is accomplished
by rendering the action stationary with respect to the material and spatial nodal coordinates simultaneously.
However, we find that a naive consistent Galerkin discretization of the action leads to intrinsically unstable
solutions. Remarkably, we also find that this unstable behavior is eliminated when a mixed, multifield
version of Hamilton’s principle is adopted. Additional features of the proposed numerical implementation
include the use of uncoupled space and time discretizations; the use of independent space interpolations for
velocities and deformations; the application of these interpolations over a continuously varying adaptive
mesh; and the application of mixed variational integrators with independent time interpolations for
velocities and nodal parameters. The accuracy, robustness and versatility of the approach are assessed and
demonstrated by way of convergence tests and selected examples. Copyright q 2007 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

This work is concerned with the exploration and development of a variational finite element mesh
adaption framework for non-linear solid dynamics and its conceptual links with the concept of
dynamic configurational forces. The distinctive attribute of this methodology is that the underlying
variational principle, namely, Hamilton’s principle of stationary action, governs both the evolution
discretized fields and the mesh on which the discretization is defined.
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Dynamic solutions may exhibit moving discontinuities, and it is sometimes advantageous to
adapt the resolution of the computational grid so as to resolve the discontinuities with a minimum
degrees of freedom. For linear-elliptic problems, a natural adaption strategy consists of optimizing
the mesh so that an error bound is minimized. This strategy may formally be extended to dynamics
and finite deformations by recourse to time discretization and linearization [1], but in this case
the coercivity of the linearized energy norm and the regularity of the solution can no longer be
guaranteed in general. The existence, uniqueness and regularity properties of solutions in non-linear
elastodynamics are not completely understood at present and the entire conceptual framework of
energy-norm errors and error bounds as a basis for mesh adaption simply collapses in that setting.

An alternative approach that applies naturally to non-linear variational problems and generalizes
the conventional energy-norm error framework for linear problems is to rely on the variational
principle to supply both the solution and the optimal mesh. This approach is error-estimate free
and thus applies with great generality to strongly non-linear problems for which error estimation
is not possible. For static problems, the concept of using the underlying variational principle to
optimize the discretization enjoys a long tradition dating back, at least, to [2–4] in the special
context of structural and two-dimensional linearized elasticity. By contrast, the connection between
mesh optimization and configurational or energetic forces (see [5, 6]) has only been recognized
recently [7–14]. A variety of solution strategies have recently been proposed for static problems
based on the notion of configurational equilibrium [8, 10, 11, 13, 15, 16], and the robustness and
scope of the approach have been demonstrated in a number of areas of applications.

The objective of this paper is to extend the paradigm of variational mesh adaption to dynamics. In
principle, this extension appears to be deceptively straightforward. Thus, for conservative dynam-
ical systems, the governing variational principle is Hamilton’s principle of stationary action. By
adopting a space–time viewpoint, the notion of configurational force and configurational force
balance can be extended to elastodynamics ([17–20] and references therein). It is readily veri-
fied that for a homogeneous body the equations of linear momentum balance and configurational
force balance are not independent, but one follows from the other. However, the introduction
of a discretization breaks the homogeneity of the body and the equations of linear momentum
balance and configurational force balance, obtained by varying the action with respect to spatial
and material nodal positions, become independent for general deformations. One may think of the
equations of linear momentum balance as governing the motion of the spatial configuration and
of the equations of configurational force balance as governing the motion of the mesh, although
this intuition is somewhat misleading as both systems of equations are tightly coupled in general.
In this variational approach, both the motion and the evolution of the mesh render the action
stationary and follow jointly from the governing variational principle.

While the possibility of using configurational force equilibrium for mesh adaption in elasto-
dynamics has been speculated within the past [17–21], only one actual implementation restricted
to one-dimensional problems had been attempted to date [10]. However, in attempting a general
implementation, an unexpected essential difficulty arises: A direct space–time discretization of the
action results in unstable discrete systems in general. The resolution of this essential difficulty is
critical to the feasibility and success of the approach. The instabilities that plague naive space–time
discretizations may be traced to inaccuracies in the velocity field introduced by the motion of
the mesh. In order to overcome this essential difficulty, we resort to a mixed, multifield, version
of Hamilton’s principle that allows for independent interpolation of velocities and deformations.
This mixed Hamilton’s principle is closely linked to the Hamilton–Pontryagin, or HP, variational
principle (the principle incorporates extra fields in the same way as is done in optimal control
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theory and the Pontryagin maximum principle; see [22] and also [23] for a historical overview
and the link with Dirac constraint theory and [24] for another application of the HP principle).
It is also in the spirit of mixed methods in computational mechanics, which are derived from the
de Veubeke–Hu–Washizu-mixed variational principle (see [25, 26]). Interestingly, unlike the naive
single-field formulation, when this mixed version of Hamilton’s principle is used to determine the
time evolution of nodal displacements, velocities and the mesh, the resulting solutions are found
to be stable.

This paper is structured as follows. In Section 2 we begin by illustrating the essential difficulty
and its root cause by means of a simple one-dimensional example. The mixed action and Hamilton’s
principle are introduced in Section 3 in a semi-discrete setting. Time discretization is introduced
in Section 5 by means of variational integrators. For simplicity, asynchronous time discretization
is not considered since that degree of generality is not necessary to illustrate the main features
of variational mesh adaption. Finally, a number of numerical examples are presented in Section 6
that demonstrate the increased accuracy and stability of scope of the method.

2. AN ILLUSTRATION OF THE ESSENTIAL DIFFICULTY

We proceed to illustrate the essential difficulty of variational r -adaption in dynamics by means
of a simple one-dimensional example: a bar discretized into two linear elements. This example
suffices to reveal a strikingly different behavior between a naive Galerkin reduction and the mixed
formulation. In particular, the Galerkin formulation turns out to be unstable in an essential way.

2.1. One-dimensional vibrating bar

As a first illustrative example, we consider a one-dimensional body B=[0, L] fixed on both sides
and free of body forces. The deformation of the body over the time interval (t0, t f ) is described
globally by the deformation mapping � : [0, L]×(t0, t f )→R, and locally by the material velocity
field V (X, t)= �̇(X, t) and the deformation gradient F(X, t)=∇�(X, t). We assume that the body
is homogeneous hyperelastic with total energy density W (F) and that the mass density R is
constant. The motion of the body is governed by Hamilton’s principle of stationary action:

�S=0 (1)

where

S(�)=
∫ t f

t0
L(�, �̇)dt (2)

is the action of the body, and

L(�, �̇)=
∫ L

0

{
1

2
R�̇2(X, t)−W (F(X, t))

}
dX (3)

is its Lagrangian. Alternatively, the trajectory and velocity field of the body follow simultaneously
from the stationary condition:

�Smix=0 (4)
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where

Smix(�,V )=
∫ t f

t0
Lmix(�,V )dt (5)

is the mixed action of the body, and

Lmix(�,V )=
∫ L

0

{
1

2
RV 2(X, t)−W (F(X, t))+RV (X, t)[�̇(X, t)−V (X, t)]

}
dX (6)

its mixed action. In the preceding equation, the field V is assumed a priori to be independent from
the consistent velocity field �̇. For now we simply remark that, evidently, the Euler–Lagrange
equations corresponding to this mixed formulation are the equation of motion and the a posteriori
identification of the assumed velocity with the consistent velocity field:

d

dt
{RV } = d

dX
{DW (F)}

V −�̇ = 0

We shall return to this mixed principle in more generality in Section 3. Already Equation (6) has
shown the similarity and difference with the HP principle: in the HP principle, the term RV (X, t) on
the right-hand side would be replaced with another field, namely, with P , the material momentum
density. Varying V in the resulting HP principle equates P to RV and varying P produces the
equation V −�̇=0. The HP principle and the mixed action principle (6) are clearly analogous
to the de Veubeke–Hu–Washizu principle, in which the field F is introduced as an independent
variable and a term �·(F−∇�) is introduced in the variational principle, where now the ‘Lagrange
multiplier’ �, or the conjugate variable to F , is the stress.

2.1.1. Spatial discretization. The body is discretized into two piecewise linear finite elements with
one internal free node. Both the nodal coordinate of the internal node in the deformed configuration
x1(t) and its nodal coordinate in the reference configuration X1(t) are taken as unknowns. The
corresponding interpolated deformation mapping is

�h(X, t)=

⎧⎪⎪⎨
⎪⎪⎩

X

X1(t)
x1(t) if 0< X < X1(t)

L−X

L−X1(t)
x1(t)+ X−X1(t)

L−X1(t)
L if X1(t)< X < L

(7)

Differentiating the deformation mapping �h(X, t) with respect to position X at constant time t ,
we find the deformation gradient Fh :

Fh(X, t)=

⎧⎪⎪⎨
⎪⎪⎩

x1(t)

X1(t)
if 0< X < X1(t)

L−x1(t)

L−X1(t)
if X1(t)< X < L

(8)
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In addition, differentiating the deformation mapping �h(X, t) with respect to time t at constant
position X , we find a discretization of the material velocity field �̇h :

�̇h(X, t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X

X1(t)

[
ẋ1(t)−

(
x1(t)

X1(t)

)
Ẋ1(t)

]
if 0< X < X1(t)

L−X

L−X1(t)

[
ẋ1(t)−

(
L−x1(t)

L−X1(t)

)
Ẋ1(t)

]
if X1(t)< X < L

(9)

which we refer to as the consistent velocity field. Alternatively, the material velocity field can be
interpolated independently from the interpolation for the deformation mapping as

Vh(X, t)=

⎧⎪⎪⎨
⎪⎪⎩

X

X1(t)
V1(t) if 0< X < X1(t)

L−X

L−X1(t)
V1(t) if X1(t)< X < L

(10)

where V1(t) is the velocity of the internal node, assumed a priori independent from both Ẋ1 and
ẋ1. We remark that if Ẋ1(t) �=0, then the consistent velocity field (9) becomes discontinuous across
elements, whereas the assumed velocity field (10) remains continuous for every time t .

2.1.2. Standard Galerkin reduction. A set of semi-discrete equations of motion can be obtained
by a standard Galerkin reduction of the action, effected by inserting discretizations (7), (8) and
(9) into action (2) and rendering the resulting discrete action stationary with respect to X1(t) and
x1(t). The result is

d

dt

{
M

(
Ẋ1

ẋ1

)}
+ R

6

⎛
⎜⎜⎜⎝

− x21
X2
1

+ (L−x1)2

(L−X1)2

2

(
x1
X1

− L−x1
L−X1

)
⎞
⎟⎟⎟⎠ Ẋ2

1 =
([E]

[P]

)
(11)

where

M= RL

3

⎛
⎜⎝1+

(
L

X1
+ L

L−X1

)(
x1−X1

L

)2

−1

−1 1

⎞
⎟⎠ (12)

is an extended mass matrix, and [C] and [F] are the jumps in the static Eshelby and Piola–Kirchhoff
stress tensors E(F)=W (F)−PF and P(F)=DW (F), respectively. We note that the extended
mass matrix is configuration dependent.

The stationarity of the action functional supplies a coupled system of differential equations for
the motion of the node in both the reference and the deformed configurations. The first equation
of motion governs r -adaption, i.e. the location of the nodes in the reference configuration. It may
be regarded as defining configurational dynamics for the mesh. The second equation of motion
governs the trajectory of the node in the deformed configuration by establishing the classical
D’Alembert equilibrium between mechanical and inertia forces.
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2.1.3. Mixed Lagrangian formulation. An alternative set of semi-discrete equations of motion can
be obtained by reduction of the mixed formulation, effected by inserting discretizations (7), (8)
and (10) into the mixed action (5) and rendering the resulting discrete mixed action stationary
with respect to X1(t), x1(t) as before and, in addition, with respect to V1(t). The result is

RL

3
V̇1=[E] (13)

− RL

3
V̇1=[P] (14)

V1= ẋ1− Ẋ1 (15)

or, eliminating V1,

M

(
Ẍ1

ẍ1

)
=
([E]

[P]

)
(16)

where

M= RL

3

(
1 −1

−1 1

)
(17)

is the mixed extended mass matrix. We note that in this example the extended mass matrix is
constant, but this is not the case in general. It should also be carefully noted that the mixed
extended mass matrix is singular. However, adding (13) and (14) we obtain the constraint

[E]+[P]=0 (18)

to which the trajectory of the system must be confined. It is remarkable that, although in the
continuum setting the classical and mixed stationary action principles are equivalent, in the discrete
setting they lead to markedly different equations of motion. The behavior of the solutions is also
remarkably different, as demonstrated by the following examples.

2.1.4. Comparison of standard and mixed formulations. Figure 1 shows corresponding motions
of the one-dimensional body as determined by the standard and mixed equations of motion when
the body is released from rest from some initial deformation. For definiteness, in calculations we
use the energy density:

W (F)= 1

2
�

(
F2+ 2

F
−3

)
(19)

Remarkably, although the mixed solution traces a stable cycle, the Galerkin solution goes imme-
diately unstable and the solution breaks down without completing a single cycle. This strikingly
different behavior is also clearly apparent in a phase view of the two systems, Figure 2, which
concerns the plane (X1, P1) with

P1= �Lmix
h

�Ẋ1
=− RL

3
V1= RL

3
(Ẋ1− ẋ1)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 74:1162–1197
DOI: 10.1002/nme



1168 M. G. ZIELONKA, M. ORTIZ AND J. E. MARSDEN

0 1 2 3 4
X

3

2

1

0

1

2

3
U

0 1 2 3 4
X

3

2

1

0

1

2

3

U

(a) (b)

Figure 1. Vibration of a one-dimensional bar discretized into two linear elements. Displacements
U as a function of position X at succeeding times: (a) mixed Lagrangian formulation and

(b) Galerkin Lagrangian formulation.

for the mixed Lagrangian formulation and

P1= �Lh

�Ẋ1
= RL

3
(Ẋ1− ẋ1)+ R

3

(
1

X1
+ 1

L−X1

)
(x1−X1)Ẋ1

for the standard Lagrangian formulation. Thus, although the mixed solution traces a closed bounded
cycle, the Galerkin solution exhibits clearly unstable behavior.

An additional illustration of this difference in behavior is shown in Figure 3, which collects
computed trajectories for bars discretized into an increasing number of elements and set to oscillate
by imposing a sinusoidal initial velocity. The energy density in this case is assumed to be of the
form:

W (F)= 3
2�(F−1)2 (20)

As in the case of the single node released from rest, the mixed formulation returns stable cyclic
trajectories of the nodes independently of the initial condition, whereas the Galerkin formulation
is catastrophically unstable for almost any initial condition. Remarkably, the final stable location
of the nodes in the mixed formulation is not uniform, but approximately sinusoidal, as would
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Figure 2. Vibration of a one-dimensional bar discretized into two linear elements.
Position–momentum-phase diagram for mixed Lagrangian formulation (stable cycle)

and Galerkin Lagrangian formulation (unstable cycle).

be expected from error minimization. The reduction of error resulting from mixed variational
r -adaption is further illustrated in Section 6.

2.1.5. Stability analysis. Some preliminary insight into the strikingly unstable behavior of the
Galerkin system may be derived from a linearized stability analysis of the equations. Introducing
the new variables (U,u) through the relations

x1 = X1+uL (21a)

X1 = L

2
+�UL (21b)

and expanding the Galerkin equations of motion up to leading order in � give

RL2

3

(
1 −1

−1 1

)(
�Ü

ü+�Ü

)
+ 4RL2

3

(
�(u2Ü+2uu̇U̇ )−�2uU̇ 2

�2uU̇ 2

)
=
([E]

[P]

)
(22)

Projecting these equations on the tangential direction (1,1), i.e. adding both equations, leads to
the equation:

4RL2

3
(u2�Ü+2uu̇�U̇ )+[E]+[P]=0 (23)
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Figure 3. Oscillation of a bar discretized by means of linear elements. Displacements u(X, t) as a function
of position at succeeding times for a linear elastic material. Left column: mixed Lagrangian formulation;

right column: Galerkin Lagrangian formulations.

which may be contrasted with the corresponding algebraic constraint arising the mixed Lagrangian
formulation, namely,

[E]+[P]=0 (24)
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We note immediately that the term 2uu̇ in (23), which effectively functions as a non-linear viscosity
coefficient, is of undefined sign and, in particular, becomes negative as the system moves toward its
undeformed configuration, i.e. when uu̇<0, resulting in the observed divergence of the solutions.

3. CLASSICAL AND MIXED HAMILTON’S PRINCIPLES

With the preceding examples by way of motivation and backdrop, we turn to the formulation of a
general mixed, or two-field, variational principle for dynamics that allows for independent variations
of deformations � and velocities V . We will refer to this principle as the mixed Hamilton’s prin-
ciple. The construction of this mixed variational principle follows a standard—Lagrange multiplier
argument to enforce the time-compatibility identity V = �̇ between the assumed V and compatible
�̇ velocity fields. In the subsequent section we extend this formulation to account for variations
with respect to defect rearrangements or horizontal variations. The resulting mixed three-field
formulation simultaneously delivers the equations of balance of mechanical forces, configurational
forces and time compatibility.

The mixed formulation for dynamics is introduced as an approach to overcome instabilities
inherent to the use of the standard or single-field Hamilton’s principle with moving meshes. More
specifically, as illustrated by the examples in the previous section, the consistent discretized velocity
field �̇h is discontinuous across element boundaries, in general when the nodes are allowed to move
in the reference configuration. These discontinuities may grow unstably and the approximation
scheme breaks down. These instabilities are effectively controlled by making use of a conforming,
i.e. continuous, assumed velocity interpolation Vh in lieu of the consistent interpolation �̇h and by
adopting the mixed Hamilton’s principle as the underlying variational framework.

The mixed variational formulation presented here may be considered as a temporal analog of the
de Veubeke–Hu–Washizu mixed variational principle for statics (cf., e.g. [25, 26]). Furthermore,
both variational principles may be combined together to establish a single mixed space–time
variational principle for non-linear dynamics that accounts for independent variations of all fields,
namely, displacements, deformations, velocities, stresses and momenta. However, this degree of
generality will not be pursued in this paper in the interest of simplicity.

3.1. Classical Hamilton’s principle

We recall by way of background that the classical action functional of elastodynamics is

S[�]=
∫ t f

t0

{∫
B
L(X, t,�, �̇,∇�)dV +

∫
�B1

T̄ ·�dS

}
dt (25)

where B⊂R3 is the reference or undeformed configuration of the body; �B is the boundary of B;
�B1⊂�B is the Neumann or traction boundary; � : B×(t0, t f )→R3 is the deformation mapping;
T̄ :�B1×(t0, t f )→R3 are the applied tractions; and L(X, t,�, �̇,∇�) is the Lagrangian density
per unit undeformed volume. The deformation mapping is subject to essential boundary conditions:

�(X, t)= �̄(X, t), X ∈�B0 (26)

over the Dirichlet or displacement boundary �B0=�B\�B1, where �̄(X, t) is the prescribed
deformation mapping. The trajectories of the system having fixed initial and final conditions,
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i.e. such that

�(X, t0) = �0(X) (27a)

�(X, t f ) = � f (X) (27b)

follow from Hamilton’s principle of stationary action

�S=0 (28)

where, in accordance with (27), the variations of � must satisfy homogeneous initial and final
conditions:

��(X, t0) = 0 (29a)

��(X, t f ) = 0 (29b)

A standard derivation then gives the corresponding Euler–Lagrange equations as

��L−∇ ·�∇�L− d

dt
��̇L = 0 in B×(t0, t f ) (30a)

�F LN+ T̄ = 0 on �B1×(t0, t f ) (30b)

A specific class of Lagrangian densities that we consider in calculations is

L(X, t,�, �̇,∇�)= 1
2 R(X)|�̇|2−U (X, t,�,∇�) (31)

where R(X) is the material mass density per unit undeformed volume, and U (X, t,�,∇�) is the
potential energy density per undeformed volume. In the case of body forces of the dead-load type,
U (X, t,�,∇�) further reduces to the form:

U (X, t,�,∇�)=W (X,∇�)−B(X, t) ·� (32)

where W (X,∇�) is the strain-energy density per unit undeformed volume and B(X, t) the body
force density per unit undeformed volume. This class of Lagrangians suffices to describe the
standard case of an inhomogeneous elastic material undergoing finite deformations under the action
of applied body forces and tractions. For Lagrangians of form (31), the classical equations of
motion reduce to the familiar form:

B+∇ ·�∇�W −R�̈ = 0 in B×(t0, t f ) (33a)

−�∇�WN+ T̄ = 0 on �B1×(t0, t f ) (33b)

where we recognize the classical equations of motion of elastodynamics and the traction boundary
conditions, respectively. In these equations, �̈ is the acceleration field and �∇�W is the Piola–
Kirchhoff stress tensor.
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3.2. Mixed Hamilton’s principle

In the classical action (25), the velocity field �̇ follows strongly from the deformation mapping �
by pointwise differentiation in time. Motivated by the example of Section 2, instead we wish the
velocity field to be an independent field bearing a weak relation to the deformation mapping. To this
end, proceeding according to the HP principle and by analogy with the de Veubeke–Hu–Washizu
principle, we consider the following three-field mixed action functional for elastodynamics:

Smix[�,V, P]=
∫ t f

t0

{∫
B
[L(X, t,�,V,∇�)+P ·(�̇−V )]dV +

∫
�B1

T̄ ·�dS

}
dt (34)

where V : B×(t0, t f )→R3 is the material velocity field; P : B×(t0, t f )→R3 is the material linear
momentum density per unit undeformed volume; and L(X, t,�,V,∇�) is the Lagrangian density
per unit undeformed volume. The material momentum density P may be regarded as the Lagrange
multiplier that enforces weakly the time-compatibility condition �̇=V . As in the classical setting,
the trajectories of the system satisfying the initial and final conditions (27) follow by enforcing the
stationarity of the mixed action (34). Assuming sufficient regularity, a straightforward derivation
then gives the corresponding Euler–Lagrange equations as

��L−∇ ·�∇�L− Ṗ = 0 in B×(t0, t f ) (35a)

�V L−P = 0 in B×(t0, t f ) (35b)

�̇−V = 0 in B×(t0, t f ) (35c)

�∇�L+ T̄ = 0 on �B1×(t0, t f ) (35d)

which correspond to the mechanical equations of motion, time compatibility and traction boundary
conditions, respectively.

The preceding three-field formulation can be reduced to a simpler two-field formulation by
enforcing identity (35b) pointwise, resulting in the reduced action:

Smix[�,V ]=
∫ t f

t0

{∫
B
Lmix(X, t,�, �̇,V,∇�)dV +

∫
�B1

T̄ ·�dS

}
dt (36)

where

Lmix(X, t,�, �̇,V,∇�)≡ L(X, t,�,V,∇�)+ �L
�V

·(�̇−V ) (37)

which we regard as a mixed Lagrangian density. The corresponding Euler–Lagrange equations now
follow as

��[L+�V L(�̇−V )]−∇ ·�∇�[L+�V L(�̇−V )]− d

dt
�V L = 0 (38a)

�V �V L(�̇−V ) = 0 (38b)

∇ ·�∇�[L+�V L(�̇−V )]N+ T̄i = 0 (38c)
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We verify that these Euler–Lagrange equations are indeed equivalent to (30). For Lagrangian
densities of form (31), the Euler–Lagrange equations reduce to

B+∇ ·�∇�W −RV̇ = 0 (39a)

R(�̇−V ) = 0 (39b)

−[�∇�W ]N+ T̄ = 0 (39c)

which are also equivalent to (33).

3.3. Configurational force balance

In analogy to the single-field Hamilton’s principle, the mixed Hamilton’s principle can be general-
ized in a way leading to a statement of balance of dynamical configurational forces. To this end, we
introduce a reference manifold M whose points are identified with objects that move with respect
to material particles (Figure 4). These include material defects such as dislocations and vacancies,
and, in the case of r -adaption, the nodes of the finite element mesh. In addition, we introduce
an embedding � :M×(t0, t f )→ B⊂R3 describing the arrangement of defects in the reference
or material configuration B, and an embedding � :M×(t0, t f )→R3 describing the placement of
defects in the deformed or spatial configuration; and the deformation mapping

�=�◦�−1 : B→R3 (40)

The points of B are identified with the material particles. Finally, we introduce the defect velocity
field �=V ◦� :M→R3. The mappings � and � are sometimes referred to as the horizontal
and vertical motions of the body (see [17–19, 27]). The identification of deformable bodies as
embedded manifolds, with a careful differentiation between coordinate systems, material particles
and the region of space occupied by the body, is one of the standard formalisms of continuum
mechanics [28]. Truesdell and Noll attribute their introduction to Lodge [29]. This distinction also
supplies a framework for the definition of configurational forces (see, e.g. [18, 30]).

Inserting representation (40) into the mixed action (36) gives

S[�,�,�]=
∫ t f

t0

∫
M

{L(�, t,�,�,∇�∇�−1)+R�[�̇−(∇�∇�−1)�̇−�]}det(∇�)d�dt (41)

where we have assumed �1=∅ for simplicity and we have made use of the identity

�̇◦�= �̇−(∇�∇�−1)�̇ (42)

We now regard action (41) as an independent functional of the horizontal motion �, the vertical
motion � and the particle velocity field �. Assuming sufficient regularity, the stationarity of (41)
with respect to each of its arguments gives the Euler–Lagrange equations

B+∇ ·�∇�W −R V̇ = 0 (43a)

C+∇ ·E−R
d

dt
(−FTV )−R∇[V ·(�̇−V )] = 0 (43b)

R(�̇−V ) = 0 (43c)
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Figure 4. Reference manifold, reference configuration, deformed configuration and related embedding.

where we have restricted the attention to Lagrangians of the form (31); for simplicity,

C=�X L|exp= 1
2�X R |V |2−�XW |exp (44)

is the inhomogeneity force field and

E=−(L I −FT�∇�L)=(W − 1
2 R|V |2)I −FT�∇�W (45)

is the dynamical Eshelby energy–momentum tensor field (see [5, 6]). In (44) the label exp denotes
the derivative with respect to the explicit dependence on X .

In (43a) and (43b) we recognize the vertical Euler–Lagrange equations of the mixed action. If
the body is homogeneous and free of defects, a straightforward differentiation shows that the field
equation (43b) is automatically satisfied as a consequence of (43a) and (43c). Otherwise, Equation
(43b) furnishes an additional field equation that governs the dynamic rearrangement of defects and
homogeneities in the body.

We note that the approach we have followed above for the definition of configurational forces
is the so-called ‘variational approach’. Alternative formulations are (i) the ‘pull-back’ approach
[31–34], in which configurational force balance is regarded as the projection (pull-back) of the
mechanical force balance equations onto the material manifold and configurational forces are
related to the concept of material uniformity and homogeneity [28, 35] as the forces behind
continuous distribution of inhomogeneities (see [36–40]); (ii) the basic primitive objects approach
of Gurtin (see [41–44]), where configurational forces are postulated as primitive physical entities,
independent of mechanical forces, and their balance is derived using invariance arguments; (iii)
Noether’s theorem approach (see [17, 19, 34, 45–47]), where conservation (alternatively, lack of
conservation) of configurational forces arises as the conservation law associated with material
translational symmetry (alternatively, lack of symmetry) of the Lagrangian density; and (iv) the
inverse motion approach (see [31, 48–50]) for which the equations of balance of configurational
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forces follow from the stationarity of the energy or action functional with respect to the reference
configuration keeping the current configuration fixed.

3.4. Geometrical interpretation

The variational approach just outlined admits the following useful geometrical interpretation.
Consider the space–space bundle, i.e. the set E= B×S where S=Rn is the ambient space, Figure 5.
Local coordinates for any point in this bundle are (X, x) and its projection map is 	 :E→ B given
in coordinates by 	(X, x)= X . For a fixed time t , consider the graph ft (X)=(X,�(X, t)) of the
deformation mapping � at time t . This graph is an n-dimensional manifold immersed in an 2n-
dimensional space, the space–space bundle B×S, and is one of its sections, i.e. 	◦ ft = I d : B→ B,
the identity map in B. This situation is shown graphically in Figure 5, where the horizontal axis
represents the material manifold B and the vertical axis the space S. The graph ft (X) for a given
time t can be then represented as a curve in B×S with X acting as a parameter.

We note now that ft (X)=(X,�(X, t)) is only one particular parametrization of the graph
manifold at time t , i.e. a parametrization with parameter X . Consider any alternative parametrization
gt (�)=(�(�, t),�(�, t)) of the same manifold, where �∈M is a new parameter and M is a new
parameter set. For ft (X) and gt (�) to be two different parametrizations of the same graph, the
component functions must be related by

�(�(�, t), t)=�(�, t) (46)

which is nothing else but Equation (40). It follows that the reference manifold M can be reinterpreted
as a reparametrization of the base space B and that the mappings (�(�, t),�(�, t)) are, respectively,
the horizontal and vertical coordinates of any point on the graph manifold parametrized with the
new parameter �. Furthermore, a variation (0,��) can be interpreted as a vertical perturbation of
the graph manifold or vertical variation and a variation (��,0) as an horizontal perturbation or
horizontal variation.

4. SPATIAL DISCRETIZATION

The classical and mixed Lagrangians introduced in the foregoing sections call for two different
types of discretizations of the velocity field. In the case of the classical Lagrangian, the velocity
field is computed by direct differentiation with respect to time of the deformation mapping, whereas
in the case of the mixed Lagrangian, the velocity field can be interpolated independently of the
deformation mapping. In this section we briefly describe these two types of interpolations and the
structure of the resulting semi-discrete equations of motion.

We consider a time-dependent family of triangulations Th(t) of the reference configuration
B. For simplicity, we confine attention to the case in which the node set of Th(t) is allowed to
move continuously in time within the reference configuration while the mesh topology, i.e. the
connectivity and number of nodes and elements, remains unchanged. We additionally consider
finite element interpolations of the deformation mapping �(X, t) of the form:

�h(X, t)=
N∑

a=1
Na(X, t)xa(t)=

E∑
e

n∑
a=1

Ne
a (X, t)xea(t) (47)
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Figure 5. Graph of the deformation mapping as a manifold (section) of the space–space bundle.

where N is the total number of nodes; E is the total number of elements; n is the total number
of nodes per element; Na(X, t) is the global shape function for node a at time t ; Ne

a (X, t) is the
local shape function for node a and element e at time t , extended to be zero outside element e;
xa(t) are the spatial coordinates of the node in the deformed configuration at time t ; and xea(t) are
the spatial coordinates of node a of element e at time t . It should be carefully noted that the shape
functions Na(X, t) are time dependent in general due to the motion of the nodes in the reference
configuration.

We restrict attention throughout to isoparametric finite element interpolation. In particular, we
introduce the time-dependent horizontal and vertical isoparametric mappings:

�h(�, t) =
E∑
e

n∑
a=1

N̂a(�)Xe
a(t) (48a)

�h(�, t) =
E∑
e

n∑
a=1

N̂a(�)xea(t) (48b)

mapping the standard element domain �̂ to the material and spatial domains of element e at time
t , respectively (Figure 6). In this expression N̂a are the standard shape functions over �̂. Then,
the isoparametric shape functions are Ne

a = N̂a ◦�e−1, or, explicitly,

Ne
a (X, t)= N̂a(�

e−1(X, t)) (49)

and the deformation mapping admits the representation

�h =�h ◦�−1
h (50)

which should be carefully contrasted with representation (40). We emphasize that the nodal coordi-
nates in the reference configuration Xa are assumed to be time dependent and regarded as unknowns
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Figure 6. An isoparametric moving element and related mappings. Note that nodes are assumed to move
continuously in time within the reference configuration, simultaneously with the motion of the body.

to be solved jointly with the nodal spatial motion xa(t). This results in an isoparametric moving
element that migrates continuously in time within the reference configuration, simultaneously with
the body motion. This situation is depicted in Figure 6.

One key virtue of the isoparametric representation is to reduce time-dependent interpolations to
time-independent interpolations over the standard domain, which greatly facilitates taking proper
rates of time-dependent fields. This aspect of the isoparametric representation is particularly useful
when dealing with time-dependent interpolations, such as those considered here. Another benefit
of adopting the isoparametric representation is that, by virtue of identity (50), the mappings �h
and �h may naturally be regarded as discrete horizontal and vertical motions in the sense discussed
in Section 3.3 and used as a basis for defining a discrete configurational force system.

Next we consider the consistent material velocity field �̇h . Differentiating the discretized defor-
mation mapping (47) gives, after the straightforward calculation in the Appendix,

�̇h(X, t)=
E∑
e

n∑
a=1

Ne
a (ẋ

e
a−Fe Ẋe

a) (51)

where

Fe
i I (X, t)=(∇�e

h)i I (X, t)=
n∑

a=1
xeai (t)

�Ne
a

�XI
(X, t) (52)

is the local deformation gradient field. It should be carefully noted that the consistent velocity
�̇h exhibits jumps across element boundaries resulting from its dependence on the discretized
deformation gradient ∇�h , which is also discontinuous across elements.

As illustrated by the examples in Section 2, the jumps of the consistent velocity field (51) across
elements may grow unbounded as a result of numerical instabilities, whereupon the approximation
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scheme breaks down. In order to sidestep this difficulty, within the framework of the mixed-
Lagrangian formulation (36), (37), we introduce an independent finite element interpolation of the
velocity field of the form:

Vh(X, t)=
N∑

a=1
Na(X, t)Va(t)=

E∑
e

n∑
a=1

Ne
a (X, t)V e

a (t) (53)

where Va(t) is the velocity of node a at time t , and V e
a (t) is the velocity of node a of element

e at time t . It bears emphasis that the discretized deformation mapping and velocity field are
interpolated by conforming shape functions and that, in particular, the discretized velocity field
remains continuous at all times.

A semi-discrete mixed action functional may now be defined by restricting the continuous
mixed action functional (36) to deformation mappings and velocity fields of form (47) and (53),
respectively, with the result

Smix
h [Xh, xh,Vh]=

∫ t f

t0
Lmix
h (Xh(t), xh(t), Ẋh(t), ẋh(t),Vh(t))dt (54)

where xh(t)={xa(t),a=1, . . . ,N }, Xh(t)={Xa(t),a=1, . . . ,N } and Vh(t)={Va(t),a=1, . . . ,N }
are the global arrays of nodal coordinates in the reference and deformed configurations and nodal
velocities, respectively, and Lh is a semi-discrete mixed Lagrangians given by

Lmix
h (Xh, xh, Ẋh, ẋh,Vh)=

E∑
e

∫
�e(Xe

h)

Lmix(X, t,�e
h, �̇

e
h,V

e
h ,∇�e

h)dV (55)

where Lmix(X, t,�, �̇,V,∇�) is the mixed Lagrangian density (37). For a Lagrangian density of
the form (31), the local semi-discrete mixed Lagrangian takes the form

Lmix
h = 1

2V
T
h mh(Xh)Vh− Ih(t, Xh, xh)+V T

h (mh(Xh)ẋh+Mh(Xh, xh)Ẋh−mh(Xh)Vh) (56)

where the horizontal and vertical mass matrices Mh and mh are assembled from element contri-
butions as

MaibJ (Xh, xh) = −
E∑

e=1

∫
�e(Xe

h)

RFe
i J N

e
a N

e
b dV (57a)

maibj (Xh) =
E∑

e=1

∫
�e(Xe

h)

R�i j N
e
a N

e
b dV (57b)

respectively, and

Ih(t, Xh, xh)=
E∑

e=1

{∫
�e(Xe

h)

[W (X,∇�e
h)−B(X, t) ·�e

h]dV −
∫

�e(Xe
h)∩�B1

T̄h ·�e
h dS

}
(58)

is the discretized potential energy. Taking variations of the semi-discrete action functional and
enforcing stationarity, a lengthy but straightforward calculation gives the Euler–Lagrange equations:

d

dt
(mT

h Vh) = fh (59a)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 74:1162–1197
DOI: 10.1002/nme



1180 M. G. ZIELONKA, M. ORTIZ AND J. E. MARSDEN

d

dt
(MT

h Vh) = Fh (59b)

mhẋh+Mh Ẋh =mhVh (59c)

where

Fa =
E∑

e=1

{∫
�e(Xe

h)

(Ce−static
h Ne

a −Ee−static
h ∇Ne

a )dV +
∫

�e(Xe
h)

R(FeT
h V e

h )(∇Ne
a · Ẋ e

h)dV

+
∫

�e(Xe
h)

∇(RNe
a )

(
1

2
|V e

h |2+V e
h ·(ẋ eh−∇�e

h Ẋ
e
h−V e

h )

)
dV

}
(60a)

fa =
E∑

e=1

{∫
�e(Xe

h)

(Be
hN

e
a −�∇�W

e
h∇Ne

a )dV −
∫

�e(Xe
h)

RV e
h (∇Ne

a · Ẋ e
h)dV

}
(60b)

are the nodal configurational and mechanical forces, respectively; Ce-static
h and Ee-static

h are the
static inhomogeneity force and static Eshelby stress tensor, i.e. those derived from the energy
density W instead of the Lagrangian density L; Be

h is the local body-force field and �∇�We
h is the

local Piola–Kirchhoff tensor field, and we express

Ẋ e
h =

n∑
a=1

Ẋ e
aN

e
a (61a)

ẋ eh =
n∑

a=1
ẋ ea N

e
a (61b)

In Equations (59a) we recognize the discrete counterpart of the Euler–Lagrange Equations (43a).

5. TIME DISCRETIZATION

The final step in the discretization of the mixed action (36) is to effect a time discretization
of the corresponding semi-discrete action (54). It is, of course, possible to discretize the semi-
discrete Euler–Lagrange equations directly by means of a conventional time-stepping algorithm
such as Newmark’s. However, Newmark’s algorithm family is not well suited to the systems with
configuration-dependent mass matrices of interest here. In addition, variational integrators (see,
for instance, [18, 19] for a review), in which the semi-discrete action is discretized in time directly,
have been shown to possess superior conservation and accuracy properties than conventional time-
stepping algorithms and therefore immediately suggest themselves. We begin by collecting all
dynamical variables into the generalized coordinate array qh =(Xh, xh) in order to streamline the
notation. Next, we partition the time interval [t0, t f ] into discrete times (t0, . . . , tk, . . . , tK = t f )
where K is the number of time steps. On the basis of this time partition, we interpolate the
trajectories qh(t) and velocities Vh(t) by means of piecewise linear functions of time and piecewise
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constant functions, respectively, i.e

qh(t) = qk

(
tk+1− t

tk+1− tk

)
+qk+1

(
t− tk

tk+1− tk

)
, t ∈[tk, tk+1] (62a)

Vh(t) = Vk+
, t ∈[tk, tk+1] (62b)

where Vk+
 is constant in the interval (tk, tk+1). This choice of interpolation is natural from the
standpoint of mixed methods, since it places the space of deformation mapping histories, modulo
time shifts and the space of velocity histories in one-to-one correspondence. Inserting interpolation
(62a) into the semi-discrete action (54) and evaluating all integrals by the trapezoidal rule give the
fully discrete action:

Smix
d (. . . , tk,qk,V

k+

h , . . .)=

K∑
k=0

Lmix
d (tk, tk+1,qk,qk+1,V

k+

h ) (63)

where

Lmix
d (tk, tk+1,qk,qk+1,Vk+
)

=(tk+1− tk)

[
1

2
V T
k+
mk+
Vk+
− 1

2
(Ik+
+ Ik+1−
)

]

+(tk+1− tk)

[
V T
k+
mk+


(
m−1

k+
(Mk+
,mk+
)
qk+1−qk
tk+1− tk

−Vk+


)]
(64)

is the discrete action. The discrete trajectories are now obtained by rendering the discrete action
stationary, i.e. from the discrete mixed Hamilton principle

�Smix
d =0 (65)

The discrete Euler–Lagrange equations corresponding to this principle take the form

�qk L
mix
d (tk, tk+1,qk,qk+1,Vk+
)+�qk L

mix
d (tk−1, tk,qk−1,qk,Vk−1+
) = 0 (66a)

�Vk+
L
mix
d (tk, tk+1,qk,qk+1,Vk+
) = 0 (66b)

which constitutes a coupled system of three equations for the determination of the update of
the referential nodal coordinates, spatial nodal coordinates and velocity qk+1,Vk+
 in terms of
the current configuration qk and velocity Vk−1+
. Taking variations with respect to tk yields
an additional discrete energy-balance equation, which, when solvable, can be used to determine
optimal time steps [51]. However, this extension of the method will not be pursued here in the
interest of simplicity. The discrete Euler–Lagrange equations evaluate to

Mk+
Vk+
−Mk−1+
Vk−1+
 =(1−
)(tk+1− tk)Fk+
+
(tk− tk−1)Fk−1+
 (67a)

mk+
Vk+
−mk−1+
Vk−1+
 =(1−
)(tk+1− tk) fk+
+
(tk− tk−1) fk−1+
 (67b)

(Mk+
,mk+
)
qk+1−qk
tk+1− tk

−mk+
Vk+
 =0 (67c)
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6. NUMERICAL TESTS

In this section we present a suite of tests and examples designed to assess the performance of the
methodology developed in the foregoing. The first example is designed to measure the accuracy
of the method and concerns a problem involving gas dynamics in a shock tube configuration for
which the exact analytical solution can be obtained in closed form. This problem has been used
as a benchmark to study the convergence and accuracy of other mesh adaption strategies (cf. [1]).
The second example involves a block of non-linear elastic material subjected to the application
of a moving point load. The third and last example concerns the propagation of a crack along a
predetermined crack path.

6.1. Shock propagation example

We consider a viscous gas undergoing uniaxial dynamic deformation in the direction of the X1 axis.
Then the motion may be fully described by a deformation mapping of the form �(X1, X2, X3, t)=
(�1(X1, t), X2, X3). The corresponding deformation gradient is

F=
⎛
⎝�1,1 0 0

0 1 0
0 0 1

⎞
⎠

with rate of deformation

d= Ḟ F
−1=

⎛
⎜⎜⎝

�̇1,1

�1,1
0 0

0 0 0
0 0 0

⎞
⎟⎟⎠

For simplicity, we assume that there are no body forces and that the material is homogeneous.
Then, the action is of the form:

S(�1)=
∫ t f

t0

∫ ∞

−∞

(
R

2
�̇2
1−W (�1,1)

)
dX dt

where we assume the body to be unbounded in the X1 direction. In this case, the equations of
mechanical and configurational force balance reduce to

R�̈1 = Pe
11,1+Pv

11,1 (68)

R(−�1,1)�̈1 =C11,1+(−�1,1)P
v
11,1 (69)

where Pe
11 and C11 are, respectively, the equilibrium part of the first Piola–Kirchhoff stress and

the dynamic Eshelby stress given by

Pe
11 = �W

��1,1

C11 =
(
W − R

2
�̇2
1

)
−�1,1

�W
��1,1
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Figure 7. Propagation of a planar isothermal compression shock. Time evolution of (a) displacement, (b)
velocity, (c) deformation gradient and (d) acceleration fields. Analytical solution.

and Pv
11 is the viscous Newtonian stress, which in this one-dimensional case simplifies to

Pv
11= 4

3
�

�̇1,1

�1,1

where � is the Newtonian viscosity of the gas.
We note that, owing to the presence of viscous stresses, (68) and (69) represent extensions of the

formulation developed in the foregoing to dissipative continua. This extension can be effected in a
straightforward manner by recourse to the Lagrange–d’Alembert principle. The interested reader
is referred to [27] for details.

Inserting the previous into (68) and (69) leads to the governing equations:

R�̈1 =
(

�W
��1,1

+ 4

3
�

�̇1,1

�1,1

)
,1

d

dt
(R(−�1,1)�̇1) =

((
W − R

2
�̇w
1

)
−�1,1

�W
��1,1

)
,1

+(−�1,1)

(
4

3
�

�̇1,1

�1,1

)
,1
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Figure 8. Time evolution of: (a) displacement; (b) velocity profile; and (c) nodal position in the
reference configuration. Node trajectories and analytical solution are also displayed. The shock

advances from right to left in the figure.

Remarkably, this problem admits exact analytical solutions for certain particular materials. A case
in point is a gas characterized by the energy density:

W (J )= K

4
(J 2−1−2log(J ))

where J =det(F). In this case, the analytical solution is of the form

�1(X1, t)−X1

l
= f

(
X1−ct

l

)
where

f (�) =
(
J++ J−

2
−1

)
�+(J+− J−) log

(
1

2
cosh

(�

2

))
(70)

c2 = K

2R

(
1+ 1

J− J+

)
(71)

l = 8�c

3K

J− J+

J+− J− (72)
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Figure 9. Convergence plot for isothermal compressive shock example: (a) displacement field; (b) velocity
field; and (c) deformation gradient.

and J+ and J− are given boundary conditions:

J± = lim
X1→±∞ �1,1(X1, t)

The velocity field is given by

�̇1=−c f ′
(
X1−ct

l

)

where

f ′(�)=
(
J++ J−

2
−1

)
+ J+− J−

2
tanh

(�

2

)
The analytical solution for the displacement u1=�1−X1, velocity �̇1, deformation gradient �1,1
and acceleration fields �̈1 is shown in Figure 7 for the following parameters: R=1, K =1, �=
0.025, J− =1, J+ =0.1. The corresponding shock velocity is c=√

5.5�2.3452, and the shock
thickness is l=1.7372×10−2.
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Figure 10. Propagation of a compression wave down a cylinder. Adapted 3D meshes at different
times. Reference configuration.

We solve the problem numerically in one and three dimensions. The domain of analysis is
discretized using linear elements in one dimension and four-noded linear tetrahedral elements in
three dimensions. The governing equations are discretized in time using the mixed variational
integrator described in Section 5 with integration parameter 
= 1

2 . The resulting system of non-
linear equations for the update of referential and spatial nodal coordinates is solved using the
Polak–Ribiere variant of the non-linear conjugate-gradient method. The stable time step is estimated
as �t�hmin/c, where hmin is the minimum element size and c is the shock velocity. The length
of the domain of analysis is L=70l or 70 times the width l of the shock.

The time evolution of the displacement and velocity fields and of the nodes in the reference
configuration computed from the one-dimensional example is shown in Figures 8(a)–(c), respec-
tively. In Figure 8(a) and (b), the node trajectories and the exact solution are also shown for
reference. It is remarkable how nodes cluster through the shock front, thus providing the optimal
(in the sense of the action) resolution of the shock structure permitted by the number of nodes
in the calculation. The smoothness and non-dispersive qualities of the computed solution are also
noteworthy. The later property is evidenced by the nearly steady translation of the shock profile. It
is also evident from the figures that the shock velocity is well captured by the numerical solution.
It bears emphasis that this performance is obtained without the use of artificial viscosity or other
shock-capturing techniques.
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Figure 11. Propagation of a compression wave down a cylinder. Adapted 3D meshes at different
times. Deformed configuration.

Figure 9 shows computed convergence curves for the one-dimensional solution expressed in
terms of the L2(B×[t0, t f ])-norm of the difference between the analytic and finite element displace-
ment, velocity and deformation-gradient fields. These errors are plotted against the number of
degrees of freedom in a log–log axis. As is evident from Figure 9, the gain in accuracy afforded
by adaption is quite considerable for coarse meshes, less so for fine meshes.

Figures 10 and 11 show a sequence of snapshots of the adapted mesh during the three-
dimensional simulation in both reference and the deformed configurations. It can be observed that
the nodes cluster in the neighborhood of the shock front and follow the shock as it propagates
along the domain. The motion of the nodes relative to the material is most clearly shown in
Figure 10. The large size of the deformations, which are well into the finite kinematics range, is
strikingly evident in Figure 11. As noted in the Introduction, even when regularity can be counted
on, meaningful and tight error bounds for dynamical, dissipative and strongly non-linear problems,
such as the present example are not likely to ever be available in general. In view of this essential
difficulty, the ability of the variational approach to deliver high-quality adaptivity under those
conditions is all the more remarkable.

Figure 12 depicts the evolution of the velocity profile computed from the three-dimensional mesh
on a plane containing the axis of the cylinder. As in the one-dimensional case, the smoothness of
the profiles, obtained without the use of artificial viscosity or any other shock-stabilization tricks,
and the absence of dispersion, as evidenced by the steady translation of the computed profile, are
quite remarkable.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 74:1162–1197
DOI: 10.1002/nme



1188 M. G. ZIELONKA, M. ORTIZ AND J. E. MARSDEN

vz

0.00
-0.21
-0.42
-0.63
-0.84
-1.05
-1.26
-1.47
-1.68
-1.89
-2.10

vz

0.00
-0.21
-0.42
-0.63
-0.84
-1.05
-1.26
-1.47
-1.68
-1.89
-2.10

vz

0.00
-0.21
-0.42
-0.63
-0.84
-1.05
-1.26
-1.47
-1.68
-1.89
-2.10

Figure 12. Profile and contour plot of axial velocity at different times of the simulation on a plane that
contains the axis of the cylinder.

An interesting variation in the present example concerns a shock tube with an abrupt change
in its cross section. A shock wave is introduced at the narrow end of the tube. The material and
material parameters are identical to those used in the preceding calculations. Figure 13 shows
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Figure 13. Propagation of a plane wave down a cylinder with a sudden expansion. Snapshots of the
instantaneous mesh (in the reference configuration) at different time steps.

a sequence of snapshots of the evolution of the adapted mesh in the reference configuration at
different times. As is evident from the figure, the mesh, while coarse, does track the gross motion
of the shock as it turns the corner in the cross section and bows into the wide part of the shock
tube. Again, the ability of the method to adapt to rapidly changing transients and complex spatial
patterns in the solution is noteworthy. This ability notwithstanding, it is also clear from this example
that in order to accurately resolve the full structure of the corner-turning solution r -adaption must
be combined with h-adaption, or adaptive mesh refinement and unrefinement. For static problems,
variational hr -adaption schemes have been discussed in [52].
6.2. Neohookean block under a moving point load

Our next example concerns a three-dimensional elastic block deforming under the action of a
moving point load applied to its surface. The block dimensions are 1×1×0.5 and zero normal
displacement boundary conditions are enforced on the base and on the face closest to the initial
point of application of the load. Only half of the block is simulated due to the symmetry of
the loads and geometry. The material is Neohookean extended to the compressible level and is
characterized by the strain-energy density:

W (X,F)= �0(X)

2
log(det(F))2−�0(X) log(det(F))+ �0(X)

2
tr(FTF)

where �0 and �0 are Lame constants. In calculations, the Lame constants are given the values:
�0=1.73×106 and �0=106 corresponding to a Poisson ratio �0=0.3. The mass density per unit
of undeformed volume is R=100. The load moves at 1

10 of the undeformed shear wave speed
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Figure 14. Neohookean block subjected to a moving point load. Reference configuration and adapted
mesh at different times of the simulation.

of the material. The mesh consists of 2160 tetrahedral linear finite elements and 637 nodes. In
order to maintain the geometry of the block during the computation, the motion of the nodes
within the reference configuration is constrained so that each face node remains within its face
and each edge node remains within its edge and. The vertex nodes are not allowed to move in the
reference configuration. Figure 14 shows snapshots of the adapted mesh at different times during
the simulation. Figure 15 shows the deformed configuration, the adapted mesh and contour plot
of the vertical displacement. As expected, the nodes tend to cluster near the point of application
of the load. It is also noteworthy that the mesh is too coarse to resolve the elastic waves radiated
from the moving point load. Indeed, an examination of the configurational forces reveals that
the static contribution to these forces greatly outweighs the dynamic contribution. As a result,
in this case the clustering of the nodes closely matches that which would arise under statics
conditions.
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Figure 15. Neohookean block subjected to a moving point load. Adapted mesh in the deformed configu-
ration at different times of the simulation and contour plot of vertical displacements.

6.3. Crack propagation example

Our final example concerns the dynamic propagation of a mode I crack in a square plate, Figure 16.
Owing to the symmetry of the geometry and loading, only the upper half of the body is simulated.
As in the preceding example, the motion of the surface nodes is constrained so as to preserve
the geometry of the plate. The material is compressible Neohookean with Lame constants �0=
1.73×106 and �0=106, and the mass density per unit undeformed volume is R=2300. The mesh
consists of 720 linear tetrahedral finite elements and 273 nodes. Displacement boundary conditions
corresponding to a linear elastic KI -field are applied to the boundary for a stress-intensity factor
KI =1E5. The crack front is advanced by assuming a constant crack tip velocity equal to 1

10 of
the undeformed shear wave speed of the material. In order to simulate the crack advance, nodes
on the crack plane are released when the nominal crack front reaches the downstream nearest-
neighbor node. Figure 17 shows the adapted mesh within the reference configuration at different
times during the simulation. Figure 18 shows the adaptive mesh in the deformed configuration
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Figure 16. Dynamic propagation of a crack along a slab of Neohookean material: (a) reference configuration
and (b) schematic of deformed configuration at time t .

Figure 17. Propagation of a crack along a slab of Neohookean material. Adapted mesh in the reference
configuration at different time steps of the simulation.

and contour plots of vertical displacement. As expected, nodes tend to cluster near the moving
crack tip. A close examination of the solution reveals that the nodes also move in an oscillatory
fashion so as to facilitate the radiation of elastic waves from the crack tip. This example again
illustrates that the motion of the nodes is sensitive to the detailed spatial and transient structure of
the solution, including moving singularities and elastic waves.
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Figure 18. Crack propagation along a Neohookean body. The nodes cluster following the crack tip. Contour
plots indicate vertical displacements.

7. CONCLUDING REMARKS

We have developed a variational finite element mesh adaption framework for solid dynamic
applications and its conceptual links with the theory of dynamic configurational forces. A mixed,
multifield version of Hamilton’s principle and a mixed extended version of Lagrange–d’Alembert
principle are proposed as underlying variational principles for the formulation. Additional building
blocks include: the use of uncoupled space and time discretizations; the use of independent
space interpolations for velocities and deformations; the application of these interpolations over
a continuously varying adaptive mesh; and the application of mixed variational integrators with
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independent time interpolations for velocities and nodal parameters. The result is a robust adaptive
finite element formulation for dynamic applications that satisfies balance of mechanical forces (or
balance of spatial momentum) and the balance of dynamic configurational forces (or balance of
material momentum). In addition, owing to their variational nature the solutions exhibit excellent
long-term stability behavior.

It bears additional emphasis that the need to adopt a mixed formulation stems from the unstable
behavior that results from a direct consistent or Galerkin discretization of the classical action. After
careful examination and testing, it is concluded that these instabilities are caused by the inaccuracy
of the consistent velocity field, and in particular by its discontinuous nature. Remarkably, this
unstable behavior is eliminated when a mixed multifield version of Hamilton’s principle is adopted.

Whereas the focus of this paper is the development of numerical algorithms in the context of
elastodynamics, the general framework can be extended to include viscosity, transport phenomena,
such as heat conduction, and inelastic behavior, such as plasticity. A detailed exposition of these
extensions may be found in [27]. The inclusion of viscosity in the formulation is accomplished
within the framework of the Lagrange–d’Alembert principle. Here again, the stability of the
solutions requires the formulation of a mixed multifield version of this principle. Heat conduction
may be given a variational structure through the use of thermal displacements [44, 53–57], in place
of temperature, as the fundamental thermal field. By recourse to this representation, the heat flux
possesses a structure that is in analogy to the equilibrium/viscous additive decomposition of stress
and that can, therefore, be given a similar treatment within the Lagrange–d’Alembert framework.
A comprehensive treatment of configurational forces in the presence of viscosity, heat conduction
and inelasticity may be found in [27].

In this paper, we have eschewed all geometrical aspects of the mixed Hamilton principle in
favor of numerical issues. Some of these geometrical aspects are analyzed in detail in [27]. Suffice
it to say here that, while not obvious from their form, the joint equations of mechanical and
configurational momentum balance define a flow on a constraint manifold that links the motion of
the nodes in the reference and deformed configurations. This constrained manifold may be regarded
as a submanifold of the material–spatial product configuration manifold. For instance, in the one-
dimensional example of Section 2.1, the constraint manifold is defined by Equation (18). No
such constraint manifold exists for naive consistent discretizations of the action. The geometrical
structure of the mixed dynamical system provides considerable insight into the properties of the
solutions. In particular, the good stability properties of the solution may be traced to the existence
of a constrained manifold.

APPENDIX A: CALCULATION OF THE CONSISTENT VELOCITY FIELD

Differentiation of (47) with respect to time t yields the identity

�̇e(X, t)=
n∑

a=1
(Ne

a (X, t)ẋ ea(t)+ Ṅ e
a(X, t)ẋ ea(t)) (A1)

where a superposed dot denotes partial differentiation with respect to time. In order to evaluate
the rate Ṅ e

a , we resort to the isoparametric representation of the shape functions and express

Ne
a (�

e(�, t), t)= N̂a(�) (A2)
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Differentiation of this identity with respect to time gives

�Ne
a

�t
◦�e+

(
�Ne

a

�XI
◦�e

)
�̇e
I =0 (A3)

whereas differentiation of (48a) gives

�̇e
I (�, t)=

n∑
a=1

N̂a(�)Ẋ e
a I (t) (A4)

From these identities, we find

�Ne
a

�t
◦�e=−

(
�Ne

a

�XI
◦�e

)
n∑

a=1
N̂a(�)Ẋ e

a I (A5)

which, after composition with �e−1 and use of relation (48a), yields the identity

�Ne
a

�t
=−�Ne

a

�XI

n∑
a=1

Ne
a Ẋ

e
aI (A6)

Inserting this identity into (A1) further gives

�̇e
i (X, t) =

n∑
a=1

Ne
a ẋ

e
ai −

(
n∑

a=1

�Ne
a

�XI
xeai

)
n∑

b=1
Ne
b Ẋ

e
bI

=
n∑

a=1
Ne
a ẋ

e
ai −Fe

i I

n∑
b=1

Ne
b Ẋ

e
bI

=
n∑

a=1
Ne
a (ẋ

e
ai −Fe

i I Ẋ
e
a I ) (A7)

where

Fe
i I (X, t)=

n∑
a=1

xeai (t)
�Ne

a

�XI
(X, t) (A8)

is the local deformation gradient field.
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