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report on numerical experiments on the rigid body and chaotic dynamics of an under-
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1 Introduction

Overview This paper is concerned with efficient, structure-preserving time integra-
tors for mechanical systems whose configuration space is a Lie group, based on the
Hamilton–Pontryagin (HP) variational principle [11, 12, 20, 34, 35]. This HP princi-
ple has many attractive theoretical properties; for instance, how it handles degenerate
Lagrangian systems. The present paper shows that the HP viewpoint also provides a
practical way to design discrete Lagrangians, which are the cornerstone of variational
integration theory. This overview explains the central idea of this paper in the context
of vector spaces and shows how this idea extends to Lie groups.

The HP principle states that a mechanical system traverses a path that extremizes
the following HP action integral:

S =
∫ b

a

L(q, v)dt

︸ ︷︷ ︸
Lagrangian

+
∫ b

a

〈p, q̇ − v〉dt

︸ ︷︷ ︸
kinematic constraint

. (1.1)

The integrand of the HP action integral consists of two terms: the Lagrangian and a
kinematic constraint paired with a Lagrange multiplier (the momentum). The kine-
matic constraint relates the mechanical system’s velocity to a curve on the tangent
bundle. In this principle, the curves q(t), v(t), and p(t) are all varied independently.
If p(t) is varied first, it collapses to the usual Hamilton principle. If on the other
hand, v(t) is varied first, it defines the (negative of the) Hamiltonian as the extrema
of the terms involving v and then the principle reduces to Hamilton’s phase space
principle. This HP form of the action integral makes it amenable to discretization.

In particular, one can implement an s-stage Runge–Kutta (RK) discretization of
the kinematic constraint and enforce this discretization as a constraint in a discrete
action sum. The motivation is that the theory, order conditions, and implementation
of such methods are mature. For this purpose, let [a, b] and N be given, and define the
fixed step size h = (b − a)/N and tk = hk + a, k = 0, . . . ,N . Let s be the number of
internal stages in the RK method. In analogy with the continuous system, the discrete
HP action sum takes the following form:

Sd =
N−1∑
k=0

s∑
i=1

hbiL
(
Qi

k,V
i
k

)
︸ ︷︷ ︸

discrete Lagrangian

+
N−1∑
k=0

s∑
i=1

h

〈
pi

k,
Qi

k − qk

h
−

s∑
j=1

aijV
j
k

〉
+ h

〈
pk,

qk+1 − qk

h
−

s∑
j=1

bjV
j
k

〉

︸ ︷︷ ︸
discrete kinematic constraint

.

(1.2)

It consists of two parts: a weighted sum of the Lagrangian using the weights from the
Butcher tableau of the RK scheme, and pairings between discrete internal and exter-
nal stage Lagrange multipliers and the discretized kinematic constraint. This strategy
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yields a Lagrangian analog of a well-known class of symplectic partitioned Runge–
Kutta methods including the Lobatto IIIA-IIIB pair which generalize to higher-order
accuracy [8, 23, 32].

In the Lie group context, one can generalize this strategy using either constrained
or generalized coordinates. To use constrained coordinates, one treats the system as a
holonomically constrained mechanical system. In this approach, one assumes that G

can be written as the level set of some function g : R
n → R

k , embeds G in a larger
linear space, and uses Lagrange multipliers to enforce the constraint. The correspond-
ing constrained action takes the following form:

Sc
d =

N−1∑
k=0

s∑
i=1

h

[
biL

(
Qi

k,V
i
k

)+
〈
pi

k,
Qi

k − qk

h
−

s∑
j=1

aijV
j
k

〉

+
〈
pk+1,

qk+1 − qk

h
−

s∑
j=1

bjV
j
k

〉
+ bi

〈
�i

k, g
(
Qi

k

)〉]
. (1.3)

In the present paper, a second approach based on generalized coordinates is pre-
sented. First, the paper introduces the following left-trivialized action:

s =
∫ b

a

�(g, ξ)dt

︸ ︷︷ ︸
left-trivialized Lagrangian

+
∫ b

a

〈
μ,g−1ġ − ξ

〉
dt

︸ ︷︷ ︸
reconstruction equation

. (1.4)

Then an equivalence is established between critical points of s and S. If the La-
grangian is left-invariant, it is shown that this principle unifies the system’s Lie–
Poisson and Euler–Poincaré descriptions [6, 22]. Since the reconstruction equation
is a differential equation on a Lie group, one cannot directly discretize it by an RK
method. However, one can discretize it using an s-stage Runge–Kutta–Munthe-Kaas
(RKMK) method [26–29]. The integral of the left-trivialized Lagrangian is approx-
imated using a weighted sum given by the b-vector in the Butcher tableau of the
RKMK scheme. This approach is shown to yield a novel class of variational parti-
tioned Runge–Kutta (VPRK) methods on Lie groups; including generalizations of
symplectic Euler and Störmer–Verlet methods on flat spaces.

2 Background and Setting

In the next paragraphs, we will give some background material for the reader’s con-
venience as well as to put the paper into context.

2.1 Variational Integrators

Variational integration theory derives integrators for mechanical systems from dis-
crete variational principles. The theory includes discrete analogs of the Lagrangian,
Noether’s theorem, the Euler–Lagrange equations, and the Legendre transform. Vari-
ational integrators can readily incorporate holonomic constraints (via Lagrange mul-
tipliers or the discrete null-space method [18]) and nonconservative effects (via
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(a) RK4, h = 0.025 (b) RK4, h = 0.05

(c) VE, h = 0.025 (d) VE, h = 0.05

Fig. 1 Underwater vehicle dynamics. This figure shows a computation of Poincaré sections using a sec-
ond-order accurate variational Euler integrator (VE) as compared to fourth-order accurate Runge–Kutta
(RK4). Both methods agree with the benchmark at the finer stepsize h = 0.025. However, at the coarser
stepsize h = 0.05, RK4 corrupts chaotic invariant sets while the lower-order accurate VE method preserves
the structure of the benchmark

their virtual work [23]), as well as discrete optimal control (see [19] and references
therein). Altogether, this description of mechanics stands as a self-contained theory
of mechanics akin to Hamiltonian, Lagrangian, or Newtonian mechanics.

One of the distinguishing features of variational integrators is their ability to com-
pute statistical properties of mechanical systems, such as Poincaré sections, the in-
stantaneous temperature of a system, etc. For example, as a consequence of their
variational design, variational integrators are symplectic. A single-step integrator ap-
plied to a mechanical system is called symplectic if the discrete flow map it defines
exactly preserves the canonical symplectic form and is otherwise called standard.
Using backward error analysis, one can show that symplectic integrators applied to
Hamiltonian systems nearly preserve the energy of the continuous mechanical sys-
tem for exponentially long periods of time and that the modified equations are also
Hamiltonian [8]. Standard integrators often introduce spurious dynamics in long-time
simulations, e.g., artificially corrupt chaotic invariant sets as is well illustrated in
a computation from [4], namely of a Poincaré section of an underwater vehicle in
Fig. 1 using a fourth-order accurate Runge–Kutta (RK4) method and a variational
Euler (VE) method designed for rigid-body type systems.

In addition to correctly computing chaotic invariant sets and long-time excellent
energy behavior, evidence is mounting that variational integrators correctly compute
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other statistical quantities in long-time simulations. For example, in a simulation of
a coupled spring-mass lattice, Lew et al. [15] found that variational integrators ac-
curately compute the time-averaged instantaneous temperature (mean kinetic energy
over all particles) over long-time intervals, whereas RK4 exhibits a artificial drift in
this statistical quantity.

2.2 Structure-Preserving Lie Group Integrators

For a mechanical system on a Lie group that possesses the symmetry of that Lie
group, in addition to the symplectic structure, the resulting flow preserves a mo-
mentum map associated with the Lie group symmetry. In this context, there are sev-
eral different strategies available to derive structure-preserving Lie group integrators;
some of these are discussed here.

One strategy involves generalizations of the classical Newmark algorithms to Lie
groups due to [30, 31]. It was not apparent that the proposed Lie–Newmark methods
had the necessary structure-preserving properties. In fact, Simo and Wong proposed
another set of algorithms which preserve momentum by using the coadjoint action
on SO(3) to advance the flow. Such integrators will be referred to as coadjoint-orbit
preserving methods. Later, Austin et al. [1] showed that the midpoint rule member
of the Lie–Newmark family with a Cayley reconstruction procedure was, in fact, a
coadjoint-orbit preserving method for SO(3). They also numerically demonstrated
the method’s good performance crediting it to third-order accuracy in the discrete ap-
proximation to the Lie–Poisson structure. In related work, Mclachlan and Scovel [24]
construct reduced, coadjoint-orbit preserving integrators by reducing G-equivariant
integrators on T∗G obtained by embedding G in a linear space using holonomic con-
straints.

Coadjoint-orbit and energy preserving methods of the Simo and Wong type that
further preserve the symplectic structure were developed for SO(3) by Lewis and
Simo [16, 17]. This was done by defining a one-parameter family of coadjoint and
energy-preserving algorithms of the Simo and Wong type in which the free parame-
ter is a functional. The function was specified so that the resulting map defined a
transformation which preserves the canonical symplectic form.

Endowing coadjoint-orbit preserving methods with energy-preserving properties
was also the subject of Engø and Faltinsen [7]. Specifically, they introduced inte-
grators of the Runge–Kutta–Munthe-Kaas type that preserved coadjoint orbits and
energy using the coadjoint action on SO(3) and a numerical estimate of the gradient
of the Hamiltonian.

Variational integration techniques have been used to derive structure-preserving
integrators on Lie groups; see [2, 3, 21, 25, 33]. Moser and Veselov derived a vari-
ational integrator for the free rigid body by embedding SO(3) in the linear space
of 3 × 3 matrices, R

9, and using Lagrange multipliers to constrain the matrices to
SO(3). This procedure was subsequently generalized to mechanical systems on more
general configuration manifolds by the introduction of a constrained discrete Hamil-
ton’s principle in [33].

Another approach is to use reduction to derive variational integrators on reduced
spaces. Marsden et al. [21] developed a discrete analog of EP reduction theory from
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which one could design reduced numerical algorithms. They did this by construct-
ing a discrete Lagrangian on G × G that inherited the G-symmetry of the continu-
ous Lagrangian, and restricting it to the reduced space (G × G)/G ∼ G. Using this
discrete reduced Lagrangian and a discrete EP (DEP) principle, they derived DEP
algorithms on the discrete reduced space. They also considered using generalized co-
ordinates to parametrize this discrete reduced space, specifically the exponential map
from the Lie algebra to the Lie group. These techniques were applied to bodies with
attitude-dependent potentials, discrete optimal control of rigid bodies, and extended
to higher-order accuracy in [13, 14].

Bobenko and Suris [2] considered a more general case where the symmetry group
is a subgroup of the Lie group G in the context of semidirect Euler–Poincaré theory
(see [9]). They did this by writing down the discrete Euler–Lagrange equations for
this system and left-trivializing them. For the case when the symmetry group is G

itself, one recovers the DEP algorithm as pointed out in [21]. In addition, Bobenko
and Suris [3] used this theory to derive an elegant, integrable discretization of the
Lagrange top.

2.3 Organization of the Paper

In Sect. 3, continuous HP mechanics and its left-trivialization are presented. In partic-
ular, it is shown that the HP variational principle and its left-trivialization are equiva-
lent to Hamilton’s and the EP variational principles. Moreover, the symplectic prop-
erty of the resulting flow map is detailed. In Sect. 4, the discrete analog of the contin-
uous HP theory is developed.

Part II of this Paper The second installment of this paper will be devoted to the
numerical analysis of HP methods along with numerical experiments on a class of
nonreversible mechanical systems on Lie groups as well as the chaotic dynamics of
an underwater vehicle. A specific outline of that paper is given in the conclusion
section of the present paper.

3 HP Mechanics on Lie Groups

This section develops basic mechanics on Lie groups from the Hamilton–Pontryagin
perspective.

The HP Principle Consider a mechanical system whose configuration space is a Lie
group G. Let its tangent and cotangent bundles be denoted TG and T∗G, respectively,
and its Lie algebra and dual be given by g and g∗, respectively. In this paragraph, the
left-trivialization of the HP principle for a Lagrangian L : TG → R will be derived.

Definition 3.1 (Pontryagin bundle) The Pontryagin bundle of a manifold M is de-
fined as PM = TM ⊕ T∗M.
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The HP principle unifies the Hamiltonian and Lagrangian descriptions of a me-
chanical system, as shown in [34, 35]. It states the following critical point condition
on PG,

δ

∫ b

a

[
L(g, v) + 〈p, ġ − v〉]dt = 0,

where (g(t), v(t),p(t)) ∈ PG are varied arbitrarily and independently with endpoint
conditions g(a) and g(b) fixed. This builds in the Legendre transformation as well as
the Euler–Lagrange equations into one principle.

Definition 3.2 Following standard conventions, the left action of G on TG or T∗G
is denoted by simple concatenation. The left-trivialized Lagrangian � : G × g → R is
defined as:

�(g, ξ) = L(g,gξ).

The HP principle for mechanical systems on Lie groups is equivalent to the left
trivialized HP principle:

δ

∫ b

a

[
�(g, ξ) + 〈

μ,g−1ġ − ξ
〉]

dt = 0

where there are no constraints on the variations; that is, the curves ξ(t) ∈ g, μ(t) ∈ g∗
and g(t) ∈ G can be varied arbitrarily and independently with endpoint conditions
g(a) and g(b) fixed. To see this, we proceed as follows.

Definition 3.3 (Path spaces) Fixing the interval [a, b] and ga, gb ∈ G, define path
space as

C(PG) = {
(g, v,p) ∈ C∞([a, b],PG

) | g(a) = ga, g(b) = gb

}
.

Let S : C(PG) → R denote the HP action integral and defined as

S(g, v,p) =
∫ b

a

[
L(g, v) + 〈

p, ġ − v
〉]

dt.

Then a simple calculation shows that

S(g, v,p) =
∫ b

a

[
L(g,gξ) + 〈

p,gg−1(ġ − v)
〉]

dt

=
∫ b

a

[
�(g, ξ) + 〈

gp,g−1(ġ − v)
〉]

dt

=
∫ b

a

[
�(g, ξ) + 〈

μ,g−1ġ − ξ
〉]

dt

= s(g, ξ,μ)
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where s is the left-trivialized HP action integral, ξ(t) = g(t)−1v(t) ∈ g, and μ(t) =
g(t)p(t) ∈ g∗. From this equality, one can derive the following key theorem.

Theorem 3.4 Consider a Lagrangian system on a Lie group G with Lagrangian
L : TG → R. Let � : G × g → R be its left-trivialization. Then the following are
equivalent:

1. Hamilton’s principle for L on G

δ

∫ b

a

L(g, ġ)dt = 0

holds, for arbitrary variations g(t) with endpoint conditions g(a) and g(b) fixed.
2. The following variational principle holds on g:

δ

∫ b

a

�(g, ξ)dt = 0

using variations of the form

δξ = η̇ + adξ η

where η(a) = η(b) = 0 and ξ = g−1ġ; i.e., ξ = TLg−1 ġ.
3. The HP principle

δ

∫ b

a

[
L(g, v) + 〈

p, ġ − v
〉]

dt = 0

holds, where (g(t), v(t),p(t)) ∈ PG, can be varied arbitrarily and independently
with endpoint conditions g(a) and g(b) fixed.

4. The left-trivialized HP principle

δ

∫ b

a

[
�(g, ξ) + 〈

μ,g−1ġ − ξ
〉]

dt = 0

holds, where (g(t), ξ(t),μ(t)) ∈ G × g ⊕ g∗ can be varied arbitrarily and inde-
pendently with endpoint conditions g(a) and g(b) fixed.

Remark If the Lagrangian is left-invariant, i.e., L(g, v) = L(hg,hv) for all h ∈ G,
then the left-trivialized Lagrangian simplifies. In particular, taking h = g−1, �(ξ) =
L(g,gξ) = L(e, ξ), where e is the identity element of the group. In this case, the
left-trivialized HP principle unifies the Euler–Poincaré and Lie–Poisson descriptions
on g and g∗, respectively, consistent with the results of [6, 22].

The HP flow From the left-trivialized HP principle, the variations of s with respect
to ξ and μ give

varying μ gives ξ = g−1ġ (reconstruction equation), (3.1)

varying ξ gives μ = ∂�

∂ξ
(g, ξ) (Legendre transform). (3.2)
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Also, setting the variation of s with respect to g equal to zero gives

∫ b

a

[〈
∂�

∂g
, δg

〉
+ 〈

μ,δ
(
g−1ġ

)〉]
dt

=
∫ b

a

[〈
g

∂�

∂g
,g−1δg

〉
+ 〈

μ,−g−1δgg−1ġ + g−1δġ
〉]

dt = 0. (3.3)

Observe that
∫ b

a

[〈
μ,δ

(
g−1ġ

)〉]
dt =

∫ b

a

[〈
μ,−g−1δgg−1ġ + g−1δġ

〉]
dt.

Let η = g−1δg. Using the product rule and (3.1), we see that

d

dt
η = −ξη + g−1 d

dt
δg, which implies g−1 d

dt
δg = d

dt
η + ξη.

Substituting this relation into (3.3) gives

∫ b

a

[〈
g

∂�

∂g
,η

〉
+
〈
μ,

d

dt
η + adξ η

〉]
dt = 0.

Integration by parts and using the boundary conditions on g yields

∫ b

a

[〈
− d

dt
μ + ad∗

ξ μ + g
∂�

∂g
,η

〉]
dt = 0.

Since the variations are arbitrary, one arrives at

d

dt
μ = ad∗

ξ μ + g
∂�

∂g
. (3.4)

In sum, the left-trivialized HP equations are given by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d

dt
g = gξ,

d

dt
μ = ad∗

ξ μ + g
∂�

∂g
,

μ = ∂�

∂ξ
(g, ξ).

(3.5)

Assuming that the Legendre transform is invertible, (3.5) describes an IVP on the
left-trivialized Pontryagin bundle G × g ⊕ g∗.

Definition 3.5 Let IHP ⊂ PG be defined as,

IHP :=
{
(g, v,p) ∈ PG

∣∣∣ p = ∂L

∂v
(g, v)

}
. (3.6)
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Let Ihp ⊂ G × g ⊕ g∗ denote the left-trivialization of IHP and be defined as,

Ihp :=
{
(g, ξ,μ) ∈ G × g ⊕ g

∗
∣∣∣ μ = ∂�

∂ξ
(g, ξ)

}
. (3.7)

The natural projection is denoted by πHP : PG → T∗G and defined as,

πHP(g, v,p) := (g,p), π−1
HP (g,p) = (g, v,p), (g, v) = FL−1(g,p)

where FL is the Legendre transform.

Given a time-interval [a, b] and an initial (g(a), ξ(a),μ(a)) ∈ Ihp, one can solve
for (g(b), ξ(b),μ(b)) ∈ Ihp by eliminating ξ using the left-trivialized Legendre trans-
form (3.2) and solving the ODEs (3.1) and (3.4) for g and μ. Let this map on Ihp be
called the left-trivialized HP flow map, Fhp : Ihp → Ihp.

The flow map Fhp is equivalent to the HP flow on IHP through left trivialization
which defines a diffeomorphism between PG and G × g ⊕ g∗, and hence, between
IHP and Ihp. Through πHP, the HP flow is identical to the Hamiltonian flow for the
Hamiltonian of this mechanical system on T∗G obtained via the Legendre transfor-
mation. Although πHP is not a diffeomorphism from PG to T∗G, it is a diffeomor-
phism when its domain is restricted to IHP. Thus, the left-trivialized HP, and the HP
and Hamiltonian flows of this mechanical system are all equivalent. This observation
makes the subsequent proof of symplecticity seem superfluous, since this structure
obviously follows from the standard theory of Hamiltonian systems with symmetry.
However, this verification is still important since it serves as a model for the less
obvious discrete theory.

It will be helpful to define πIHP = πHP|IHP . The manifold PG is a presymplectic
manifold with the HP presymplectic form, ΩHP = π∗

HPΩ , and the manifold IHP is
a symplectic manifold with the HP symplectic form, ΩIHP = π∗

IHP
Ω . Similarly, the

manifold G × g ⊕ g∗ is a presymplectic manifold with the presymplectic form ωHP
that is obtained by pulling-back the HP presymplectic form by the left trivialization
of PG, φ : G×g⊕g∗ → PG, i.e., ωHP = φ∗ΩHP. However, if the left-trivialization is
restricted to Ihp, φIhp = φ|Ihp , then Ihp is a symplectic manifold with the symplectic
form given by ωIhp = φ∗

Ihp
ΩIHP .

Symplecticity The symplectic structure of left-trivialized HP flows is obvious from
the standard theory of Hamiltonian systems with symmetry, but reviewing the proof
will help since it parallels the discrete case.

Consider the restriction of the left-trivialized HP action integral to solutions
of (3.5): ŝ. Since the space of solutions of (3.5) can be identified with Ihp, ŝ :
Ihp → R. The differential of ŝ can be written as,

dŝ · (δg(a), δξ(a), δμ(a)
)

=
∫ b

a

[(
g−1ġ − ξ

) · δμ +
(

μ − ∂�

∂ξ

)
· δξ

]
dt

+
∫ b

a

[(
− d

dt
μ + ad∗

ξ μ + g
∂�

∂g

)
· g−1δg

]
dt + 〈

μ,g−1δg
〉∣∣b

a

= 〈
μ,g−1δg

〉∣∣b
a
.
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Since d2ŝ = 0, observe that

d2ŝ = (Fhp)
∗ωIhp − ωIhp = 0.

And hence, as a map on Ihp, Fhp is symplectic.

Proposition 3.6 Left-trivialized HP flows preserve the symplectic two-form ωIhp .

4 Lie Group VPRK Integrators

The purpose of this section is to use the general HP methodology to derive a variety
of integrators of variational partitioned Runge–Kutta (VPRK) type for Lie groups.
Recall the left-trivialized HP action integral is given by:

s =
∫ b

a

�(g, ξ)dt

︸ ︷︷ ︸
left-trivialized Lagrangian

+
∫ b

a

〈
μ,g−1ġ − ξ

〉
dt

︸ ︷︷ ︸
reconstruction equation

. (4.1)

To approximate s by an action sum the reconstruction equation is discretized using a
Runge–Kutta–Munthe-Kaas (RKMK) approximant and in terms of this discretization
an approximant to the integral of the left-trivialized Lagrangian is introduced. The
section shows this approach leads naturally to VPRK Integrators on Lie groups. These
integrators include an attractive generalization of the Störmer–Verlet method to Lie
groups, symplectic Euler methods on Lie groups, and Euler–Poincaré integrators.

Canonical Coordinates of the First Kind To setup the discrete HP principle, we
introduce a map τ : g → G. Let e ∈ G be the identity element of the group. The
map τ is assumed to be a local diffeomorphism mapping a neighborhood of zero
on g to one of e on G with τ(0) = e, assumed to be analytic in this neighborhood,
and assumed to satisfy τ(ξ) · τ(−ξ) = e. Thereby, τ provides a local chart on the
Lie group. By left translation, this map can be used to construct an atlas on G. An
example of a τ is the exponential map on G, but there are other interesting examples
as well, as we shall see shortly.

Definition 4.1 The local coordinates associated with the map τ are called canonical
coordinates of the first kind or just canonical coordinates.

For an exposition of canonical coordinates of the first and second kind, and their
applications, the reader is referred to [10]. In what follows, we will prove some prop-
erties of these coordinates that will be needed shortly.

Derivative of τ and Its Inverse To derive the integrator that comes from a discrete
left-trivialized HP principle, we will need to differentiate τ−1. The right trivialized
tangent of τ and its inverse will play an important role in writing this derivative in an
efficient way. The following is taken from Definition 2.19 in [10].
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Definition 4.2 Given a local diffeomorphism τ : g → G, we define its right trivial-
ized tangent to be the function dτ : g × g → g which satisfies,

D τ(ξ) · δ = TRτ(ξ) dτξ (δ).

The function dτ is linear in its second argument.

Figure 2 illustrates the geometry behind this definition. From this definition, the
following lemma is deduced.

Lemma 4.3 The following identity holds:

dτξ (δ) = Adτ(ξ) dτ−ξ (δ).

Proof Differentiation of τ(ξ) · τ(−ξ) = e gives

D τ(−ξ) · δ = −TLτ(−ξ)TRτ(−ξ)

(
D τ(ξ) · δ).

While the chain rule yields

D τ(−ξ) · δ = −TRτ(−ξ) dτ−ξ (δ).

Fig. 2 Derivatives of τ and
τ−1. Definition 4.2 splits the
differential of τ into a map on
the Lie algebra (the right
trivialized tangent of τ ) and
right multiplication to the
tangent space at τ(ξ), while
Definition 4.4 splits the
differential of τ−1 into right
multiplication to the Lie algebra
and a map on the Lie algebra
(the right trivialized tangent
of τ−1)

(a) dτξ

(b) dτ−1
ξ
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Combining these two identities and using the definition above,

−TRτ(−ξ) dτ−ξ (δ) = −TLτ(−ξ)TRτ(−ξ)TRτ(ξ) dτξ (δ).

Simplifying this expression gives

TLτ(ξ) dτ−ξ (δ) = TRτ(ξ) dτξ (δ),

which proves the identity. �

We will also need a simple expression for the differential of τ−1.

Definition 4.4 The inverse right trivialized tangent of τ is the function dτ−1 : g ×
g → g which satisfies for g = τ(ξ),

D τ−1(g) · δ = dτ−1
ξ (TRτ(−ξ)δ), dτ−1

ξ

(
dτξ (δ)

)= δ.

The function dτ−1 is always linear in its second argument.

Figure 2 illustrates the geometry behind this definition.
The following lemma follows from this definition and Lemma 4.3 above.

Lemma 4.5 The following identity holds:

dτ−1
ξ (δ) = dτ−1

−ξ (Adτ(−ξ) δ).

Proof This follows directly from Lemma 4.3. Let δ → dτ−1
ξ (δ) in that identity to

obtain

δ = Adτ(ξ) dτ−ξ

(
dτ−1

ξ (δ)
)
.

And now solve this equation for dτ−1
ξ (δ),

dτ−1
ξ (δ) = dτ−1

−ξ

(
Adτ(−ξ) δ

)
. �

RKMK Discretization of Reconstruction Equation Let [a, b] and N be given, let
h = (b − a)/N be a fixed integration time step and tk = hk + a for k = 0, . . . ,N .
A good candidate for discretizing the reconstruction equation is given by a gener-
alization of s-stage Runge–Kutta methods to differential equations on Lie groups,
namely Runge–Kutta–Munthe-Kaas (RKMK) methods introduced in the following
series of papers: [26–29]. The idea behind these papers is to use canonical coordi-
nates on the Lie group to transform the differential equation on TG, e.g., given by,

ġ(t) = g(t)f
(
t, g(t)

)
, g(a) = ga, g(t) ∈ G, f

(
t, g(t)

) ∈ g, t ∈ [a, b], (4.2)

to a differential equation on g. Specifically, substitute the following parametrization
g(t) = g0τ(Θ(t)) into (4.2) to obtain,

ġ = TLg0 TRτ(Θ) dτΘΘ̇ = TLg0TLτ(Θ)f.
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Using Lemma 4.3, this equation can be rewritten as

TLτ(−Θ)TRτ(Θ) dτΘΘ̇ = Adτ(−Θ) dτΘΘ̇ = dτ−ΘΘ̇ = f.

Solving for Θ̇ gives

Θ̇ = dτ−1
−Θf, Θ(a) = 0, Θ(t) ∈ g, t ∈ [a, b]. (4.3)

As described in the following definition, a RKMK method is obtained by applying an
s-stage RK method to (4.3).

Definition 4.6 Consider the first-order differential equation ġ(t) = f (t, g(t)) for the
curve (g(t), f (t, g(t))) ∈ TG. Given coefficients bi, aij ∈ R (i, j = 1, . . . , s) and
set ci = ∑s

j=1 aij . An s-stage Runge–Kutta–Munthe-Kaas (RKMK) approximant
to (4.2) is given by

Gi
k = gkτ(hΘi

k), (4.4)

Θi
k = h

s∑
j=1

aij dτ−1
−hΘ

j
k

f
(
tk + cjh,G

j
k

)
, i = 1, . . . , s, (4.5)

gk+1 = gkτ

(
h

s∑
j=1

bj dτ−1
−hΘ

j
k

f
(
tk + cjh,G

j
k

))
. (4.6)

If aij = 0 for i ≤ j the RKMK method is called explicit, and implicit otherwise. The
variables gk and Gi

k are called external and internal stage configurations, respectively.

It follows that for given τ , an s-stage RKMK method is determined by its a-matrix
and b-vector which are typically displayed using the so-called Butcher tableau:

c1 a11 . . . a1s

...
...

...

cs as1 . . . ass

b1 . . . bs

Suppose that ξ(t), t ∈ [a, b], is a given vector field on g. From the definition above,
it is clear that an s-stage RKMK method applied to ġ = gξ can be written as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ−1(g−1
k Gi

k)

h
=

s∑
j=1

aij dτ−1
−hΘ

j
k

Ξ
j
k = Θi

k, i = 1, . . . , s,

τ−1(g−1
k gk+1)

h
=

s∑
j=1

bj dτ−1
−hΘ

j
k

Ξ
j
k

(4.7)

where Ξi
k = ξ(tk + cih). In practice, one often truncates the series expansion as-

sociated to the map dτ−1
−hΘ

j
k

. The following theorem guides how to do this without

degrading the order of accuracy of the RKMK method [8].
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Theorem 4.7 Given an rth-order approximant to the exact exponential map: τ :
g → G. Suppose the underlying RK method in (4.7) is of order p with r ≥ p. If
the truncation index of dτ−1

Θ in (4.7) satisfies q ≥ p − 2, then the RKMK method is
of order p as well.

VPRK Integrators on Lie Groups The discrete HP principle states that the discrete
path the discrete system takes is one that extremizes an action sum that will be intro-
duced shortly. To discretize the left-trivialized HP action integral (cf. (4.1)), the re-
construction equation is discretized using (4.7). This discretized reconstruction equa-
tion is (analogous to the continuous HP principle) treated as a constraint in the action
sum. The integral of the left-trivialized Lagrangian is approximated by the following
quadrature whose weights are determined by the b-vector in the RKMK method:

∫ tk+h

tk

�(g, ξ)dt ≈
s∑

i=1

hbi�
(
Gi

k,Ξ
i
k

)
. (4.8)

The truncation index of dτ−1
Θ in (4.7) is chosen to be q = 0. By Theorem 4.7, the

resulting RKMK method is at most second-order accurate. In the sequel to this paper,
we will show if an RKMK method is of order p, then its associated VPRK scheme is
of order p as well.

Definition 4.8 Let [a, b] and N be given, let h = (b − a)/N be a fixed integration
time step and tk = hk + a for k = 0, . . . ,N . Given ga, gb ∈ G and an s-stage RKMK
method with bj �= 0 for j = 1, . . . , s, define its associated discrete path space as

Cd = {(
g, μ̂,

{
Θi,Ξi,μi

}s
i=1

)
d : {tk}Nk=0 → (G × g

∗) × (g × g × g
∗)s |

g(t0) = ga, g(tN ) = gb

}
,

and its associated action sum sd : Cd → R as

sd =
N−1∑
k=0

s∑
i=1

h

[
bi�
(
Gi

k,Ξ
i
k

)+
〈
μi

k,
τ−1(g−1

k Gi
k)

h
−

s∑
j=1

aijΞ
j
k

〉

+
〈
μ̂k+1,

τ−1(g−1
k gk+1)

h
−

s∑
j=1

bjΞ
j
k

〉]
. (4.9)

Let (gk, μ̂k, {Θi
k,Ξ

i
k,Ψ

i
k }) = (g, μ̂, {Θi,Ξi,μi}si=1)d(tk) for i = 1, . . . , s and k =

0, . . . ,N . Observe that sd is an approximation of the left-trivialized HP action integral
by numerical quadrature. The definition of τ as a map from g to G ensures that the
pairings sd are well defined. The discrete left trivialized HP principle states that

δsd = 0

for arbitrary and independent variations of the external stage variables (gk, μ̂k) ∈
G × g∗ and the internal stage variables (Θi

k,Ξ
i
k,Ψ

i
k ) ∈ g × g × g∗ for i = 1, . . . , s
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and k = 0, . . . ,N subject to fixed endpoint conditions on {gk}Nk=0. The following
theorem states this discrete principle and its relation to the HP symplectic form ωIhp .

Theorem 4.9 Let � : G × g → R be a smooth, left-trivialized Lagrangian. A discrete
curve cd ∈ Cd is a critical point of the function sd : Cd → R if and only if it shadows a
solution to the following VPRK scheme:

τ−1(g−1
k Gi

k)

h
=

s∑
j=1

aijΞ
j
k = Θi

k, (4.10)

τ−1(g−1
k gk+1)

h
=

s∑
j=1

bjΞ
j
k = ξk+1, (4.11)

(
dτ−1

hξk+1

)∗
Mi

k

= μk + h

s∑
j=1

(
bj

(
dτ−1

hΘ
j
k

)∗ − bjaji

bi

(
dτ−1

hξk+1

)∗
)

(dτ−hΘ
j
k

)∗Gj
k

∂�

∂g

(
G

j
k,Ξ

j
k

)
,

(4.12)

μk+1 = μk + h

s∑
j=1

bj

(
dτ−1

hΘ
j
k

)∗
(dτ−hΘ

j
k

)∗Gj
k

∂�

∂g

(
G

j
k,Ξ

j
k

)
, (4.13)

Mi
k = ∂�

∂ξ

(
Gi

k,Ξ
i
k

)
. (4.14)

for i = 1, . . . , s and k = 0, . . . ,N − 1. Moreover, assuming the discrete flow, Fd
hp :

Ihp → Ihp, defined by this VPRK scheme exists; then

(
Fd

hp

)∗
ωIhp = ωIhp .

That is, the discrete flow is symplectic.

Remark Consider the case when G is the Euclidean space R
n with ordinary vector

addition as the group operation. Set τ(ξ) = exp(ξ), so that dτξ δ = dτ−1
ξ δ = δ. In

this case, (4.10–4.14) become the well-known symplectic partitioned Runge–Kutta
methods [8, 23].

Proof of Theorem 4.9 Set ηk = g−1
k δgk and Hi

k = Gi
k

−1
δGi

k . The differential of
sd(cd) in the direction z = ({δgk, δμ̂k}, {δGi

k, δΞ
i
k, δμ

i
k}si=1) is given by

dsd · z =
N−1∑
k=0

s∑
i=1

hbiG
i
k

∂�

∂g

(
Gi

k,Ξ
i
k

) · Hi
k + hbi

∂�

∂ξ

(
Gi

k,Ξ
i
k

) · δΞi
k

+ h

〈
δμi

k,
τ−1(g−1

k Gi
k)

h
−

s∑
j=1

aijΞ
j
k

〉
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+ h

〈
δμ̂k+1,

τ−1(g−1
k gk+1)

h
−

s∑
j=1

bjΞ
j
k

〉

+ h

〈
μi

k,−
dτ−1

hΘi
k

ηk

h
+

dτ−1
−hΘi

k

H i
k

h
−

s∑
j=1

aij δΞ
j
k

〉

+ h

〈
μ̂k+1,−

dτ−1
hξk+1

ηk

h
+ dτ−1

−hξk+1
ηk+1

h
−

s∑
j=1

bj δΞ
j
k

〉
.

Collecting terms with the same variations and summation by parts using the boundary
conditions δg0 = δgN = 0 gives

dsd · z =
N−1∑
k=1

s∑
i=1

h

〈
δμi

k,
τ−1(g−1

k Gi
k)

h
−

s∑
j=1

aijΞ
j
k

〉

+ h

〈
δμ̂k+1,

τ−1(g−1
k gk+1)

h
−

s∑
j=1

bjΞ
j
k

〉

+ h

〈
bi

∂�

∂ξ

(
Gi

k,Ξ
i
k

)−
s∑

j=1

ajiμ
j
k − biμ̂k+1, δΞ

i
k

〉

+
〈(

dτ−1
−hΘi

k

)∗
μi

k + hbiG
i
k

∂�

∂g

(
Gi

k,Ξ
i
k

)
,H i

k

〉

+
〈
−(dτ−1

hξk+1

)∗
μ̂k+1 + (

dτ−1
−hξk

)∗
μ̂k −

s∑
j=1

(
dτ−1

hΘ
j
k

)∗
μ

j
k, ηk

〉
.

Since dsd(cd) = 0 if and only if dsd · z = 0 for all z ∈ TcdCd, one arrives at the desired
equations by elimination of μi

k and introduction of the internal stage momenta Mi
k =

∂�/∂ξ(Gi
k,Ξ

i
k) for i = 1, . . . , s and the external stage momenta μk = (dτ−1

−hξk
)∗μ̂k

for k = 0, . . . ,N − 1. For h sufficiently small, this change of variables is invertible
by the implicit function theorem. Conversely, if cd satisfies (4.10–4.14) under the
aforementioned change of variables, then dsd(cd) = 0.

Consider the subset of Cd consisting of solutions of (4.10–4.14) under the afore-
mentioned change of variables. Let ŝd denote the restriction of sd to this space. Since
each of these solutions is determined by a point in Ihp, one can identify this space
with Ihp, and hence, ŝd : Ihp → R. Since ŝd is restricted to solution space,

dŝd · ẑ = 〈
μN,g−1

N δgN

〉− 〈
μ0, g

−1
0 δg0

〉
.

Preservation of ωIhp follows from d2ŝd = 0. �

The external and internal stages of (4.10–4.14) define update schemes on G × g∗
and (g × g × g∗)s , respectively.
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Störmer–Verlet Integrators on Lie Groups A generalization of the Störmer–Verlet
method to Lie groups is given by evaluating (4.10)–(4.14) at the following two-stage
RK tableau (implicit trapezoidal rule),

0 0 0
1 1/2 1/2

1/2 1/2

Suppose for simplicity the left-trivialized Lagrangian is separable, i.e., �(g, ξ) =
T (ξ) − U(g). Given h and (gk,μk), the method determines (gk+1,μk+1) by solv-
ing the following system of equations:

M
1/2
k = ∂T

∂ξ

(
Ξ

1/2
k

)
, (4.15)

(
dτ−1

hΞ
1/2
k

)∗
M

1/2
k = μk − h

2
gk

∂U

∂g
(gk), (4.16)

gk+1 = gkτ
(
hΞ

1/2
k

)
, (4.17)

μk+1 = (
dτ−1

−hΞ
1/2
k

)∗
M

1/2
k − h

2
gk+1

∂U

∂g
(gk+1). (4.18)

In particular, one uses the following algorithm:

Step 1. Solve for M
1/2
k and Ξ

1/2
k using (4.15) and (4.16). This update is implicit.

Step 2. Update gk+1 using (4.17). This update is explicit.
Step 3. Solve for μk+1 using (4.18). This update is explicit.

Remark Recall, the Störmer–Verlet integrator for separable Lagrangian systems on
flat spaces is explicit, symmetric, and second-order accurate. Although this general-
ization of Störmer–Verlet to Lie groups is no longer explicit because a key point is
that the nonlinearity in step 1 does not involve the potential force field; as is easy to
confirm the integrator is also symmetric and second-order accurate.

Variational Euler on Lie Groups Variational Euler schemes can be derived from the
following VPRK action sums:

s
f

d =
N−1∑
k=0

h
[
�(gk+1, ξk) + 〈

μk, τ
−1(g−1

k gk+1
)
/h − ξk

〉]
,

sb
d =

N−1∑
k=0

h
[
�(gk, ξk+1) + 〈

μk+1, τ
−1(g−1

k gk+1
)
/h − ξk+1

〉]
.
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Given h and (gk,μk), the forward variational Euler method comes from stationarity
of s

f

d and determines (gk+1,μk+1) by solving the following system of equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gk+1 = gkτ(hξk),

(
dτ−1

hξk+1

)∗
μk+1 = (

dτ−1
−hξk

)∗
μk + hgk+1

∂�

∂g
(gk+1, ξk),

μk = ∂�

∂ξ
(gk+1, ξk).

(4.19)

The backward variational Euler method comes from stationary of sb
d and determines

(gk+1,μk+1) by solving the following system of equations:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gk+1 = gkτ(hξk+1),

(
dτ−1

hξk+1

)∗
μk+1 = (

dτ−1
−hξk

)∗
μk + hgk

∂�

∂g
(gk, ξk+1),

μk+1 = ∂�

∂ξ
(gk, ξk+1).

(4.20)

Euler–Poincaré Integrators In the case when the Lagrangian is G-left-invariant, the
body angular momentum updates in the above variational Euler schemes are given by:

(
dτ−1

hξk+1

)∗
μk+1 = (

dτ−1
−hξk

)∗
μk. (4.21)

Examples 1 We now exhibit some Euler–Poincaré integrators by evaluating (4.21) at
some specific maps τ .

(a) Matrix exponential. Suppose

τ = exp(ξ), τ : g → G,

which is a local diffeomorphism.
Using standard convention the right trivialized tangent of the exponential map

and its inverse are denoted by dexp : g × g → g and dexp−1 : g × g → g, and are
explicitly given by

dexp(x)y =
∞∑

j=0

1

(j + 1)! adj
x y, dexp−1(x)y =

∞∑
j=0

Bj

j ! adj
x y (4.22)

where Bj are the Bernoulli numbers; see Sect. 3.4 of [8] for a detailed exposition
and derivation.

Hence, (4.21) takes the form
(
dexp−1(hξk)

)∗
μk = (

dexp−1(−hξk−1)
)∗

μk−1. (4.23)

(b) Padé (1,1) approximant. Suppose

τ(ξ) = cay(ξ) = (e − ξ/2)−1(e + ξ/2), (4.24)
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which is the Padé (1,1) approximant to the matrix exponential and better known
as the Cayley transform. The Cayley transform maps to the group for quadratic
Lie groups (SO(n), the symplectic group Sp(2n), the Lorentz group SO(3,1))
and the special Euclidean group SE(3).

The right-trivialized tangent of the Cayley transform and its inverse are written
below

dcay(x)y = (e − x/2)−1y(e + x/2)−1, dcay−1(x)y = (e − x/2)y(e + x/2).

(4.25)

For a derivation and exposition, the reader is referred to Sect. 4.8.3 of [8]. Using
these expressions (4.21) can be written as

μk = μk−1 + h

2
ad∗

ξk
μk + h

2
ad∗

ξk−1
μk−1 + h2

4

(
ξ∗
k μkξ

∗
k − ξ∗

k−1μk−1ξ
∗
k−1

)
.

(4.26)

(c) Padé (1,0) or (0,1) approximant. Rather than use the exact matrix exponential,
one can use a Padé approximant, e.g., the Padé (1,0) approximant

exp(ξ) ≈ e + ξ

or Padé (0,1) approximant

exp(ξ) ≈ (e − ξ)−1.

However, since a Padé approximant is not guaranteed to lie on the group, one
needs to use a projector from GL(n) to G. In what follows, G = SO(n) will be
considered where a natural choice of projector is given by skew symmetrization.

Suppose

τ−1(g) = skew(g) = g − g∗

2
,

which comes from a first order approximant to the matrix exponential. This map
is a local diffeomorphism from a neighborhood of e to a neighborhood of 0 and
its differential is the identity. Its right-trivialized tangent can be computed from
its derivative:

D skew(g) · δ = δ − δ∗

2
= (δg−1g) − (δg−1g)∗

2
.

By definition of the right-trivialized tangent of τ−1, it then follows that

d skew(x)(y) = yτ(x) − (yτ(x))∗

2
. (4.27)

Cardoso and Leite [5] obtained the following proposition that explicitly deter-
mines τ(ξ). Moreover, they give necessary and sufficient conditions for its exis-
tence.
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Proposition 4.10 Given ξ ∈ so(n), a special orthogonal solution to the equation

ξ = τ(ξ) − τ(ξ)∗

2

can be written as

τ(ξ) = ξ + (
ξ2 + e

)1/2
,

where (ξ2 + e)1/2 is a symmetric square root.

Hence, (4.21) can be written as

μk(h
2ξ2

k + e)1/2 + (h2ξ2
k + e)1/2μk

2

= μk−1(h
2ξ2

k−1 + e)1/2 + (h2ξ2
k−1 + e)1/2μk−1

2
+ h

2
ad∗

ξk
μk + h

2
ad∗

ξk−1
μk−1.

(4.28)

5 Conclusion

In this paper, a left-trivialized Hamilton–Pontryagin principle is derived for mechani-
cal systems on a Lie group G. If the Lagrangian is left-invariant with respect to the ac-
tion of G, it is shown that this left-trivialized HP principle unifies the Euler–Poincaré
and Lie–Poisson descriptions. In addition to its utility for implicit Lagrangian sys-
tems, the paper shows that this principle provides a practical way to design discrete
Lagrangians. In particular, the paper explains how one can discretize the kinematic
constraint using a Runge–Kutta–Munthe-Kaas (RKMK) method. The paper shows
that this leads to a novel generalization of variational partitioned Runge–Kutta meth-
ods from flat spaces to Lie groups. In particular, one can generalize variational (or
symplectic) Euler and Störmer–Verlet methods to Lie groups in this fashion. These
methods inherit many of their attractive properties on flat spaces: efficiency, order of
accuracy, symplecticity, symmetry, etc.

Part II of this paper will develop a basic numerical analysis of these methods
and report on numerical experiments on a class of nonreversible mechanical systems
on Lie groups (moving rigid body systems) and chaotic dynamics of an underwater
vehicle. To be specific, the paper will:

• prove order of accuracy of the VPRK integrators presented in this paper by invok-
ing the variational proof of order of accuracy [23];

• explain the numerics behind the Poincaré sections provided in Fig. 1;
• demonstrate the superiority of these VPRK integrators compared to symmetric

rigid body integrators when applied to a nonreversible system such as a rigid body
on a turntable.
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