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Abstract. This paper demonstrates that the conditions for the existence of a dissipation-induced
heteroclinic orbit between the inverted and noninverted states of a tippe top are determined
by a complex version of the equations for a simple harmonic oscillator: the modified
Maxwell–Bloch equations. A standard linear analysis reveals that the modified Maxwell–
Bloch equations describe the spectral instability of the noninverted state and Lyapunov
stability of the inverted state. Standard nonlinear analysis based on the energy momentum
method gives necessary and sufficient conditions for the existence of a dissipation-induced
connecting orbit between these relative equilibria.
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1. Introduction. Tippe tops come in a variety of forms. The most common geo-
metric form is a cylindrical stem attached to a truncated ball, as shown in Figure 1.1.
On a flat surface, the tippe top will rest stably with its stem up. However, spun
fast enough on its blunt end, the tippe top momentarily defies gravity, inverts, and
spins on its stem until dissipation causes it to slow down and then fall over. This
spectacular sequence of events occurs because, and in spite of, dissipation.

Tippe top inversion is a tangible illustration of dissipation-induced instabilities,
relative equilibria, and the energy momentum method. Tippe top inversion can be
understood by analyzing a system known as the modified Maxwell–Bloch equations
[8]. These equations are a complex version of the simple harmonic oscillator and
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(a) noninverted (b) inverted (c) heteroclinic connection

Fig. 1.1 Tippe top relative equilibria and heteroclinic orbit. The noninverted and inverted states of
the tippe top, and a still of a numerical simulation of the heteroclinic connection between
these states. For movies of numerical simulations with discussion, the reader is referred
to [8].

a generalization of a previously derived normal form describing dissipation-induced
instabilities in the neighborhood of the 1:1 resonance [13].

Tippe top inversion has been much investigated in the literature. The reader is
referred to the works of Cohen [14], Or [31], Ebenfeld and Scheck [15], and Bou-Rabee,
Marsden, and Romero [8] for surveys of the literature. A key observation made by
previous investigators is that one must include friction to model tippe top inversion,
and in the limit of zero and infinite friction, tippe top inversion does not occur in the
model. In the limit of zero friction, the model tippe top is a holonomic, Hamiltonian
system. In the limit of infinite friction, it becomes a nonholonomic, Hamiltonian
system [1, 4]. Thus, to analyze tippe top inversion one does not model the system
as a nonholonomic Hamiltonian or holonomic Hamiltonian system. Rather, the tippe
top is modeled as a holonomic, dissipative Hamiltonian system.

Mechanism behind Tippe Top Inversion. The tippe top inverts because it is
energetically favorable to do so. This can be made precise in the context of the
following mathematical model of a tippe top.

Consider a sphere on a surface with an axisymmetric mass distribution, such
that the sphere’s center of mass is on its axis of symmetry, but not at its geometric
center. The noninverted (inverted) state of the spherical tippe top corresponds to
the gravitationally stable (unstable) state in which the sphere is spinning about the
vertical direction and the sphere’s center of mass is below (above) the geometric center
of the sphere. These states model the noninverted and inverted states of a realistic
tippe top as depicted in Figures 1.1(a) and 1.1(b). It is assumed that the sphere is in
point contact with the surface and that the friction the sphere perceives is proportional
to the velocity of this point of contact. As a consequence the noninverted and inverted
states of the spherical tippe top become steady-state phenomena, since the contact
point is stationary at these states.

Let π be the spatial angular momentum of the spherical tippe top and q the vector
connecting its center of mass to the contact point on the surface (cf. Figure 3.1). The
Jellett momentum map (or Jellett invariant), J , is defined as

(1.1) J = −π · q.
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Due to an infinitesimal symmetry of the moments the spherical tippe top perceives
with respect to the generator of rotations about q, J is conserved along the flow
of the tippe top. J is the momentum map corresponding to rotations about q on
the configuration space of the tippe top. To learn more about momentum maps the
reader is referred to [24].

With this conservation law, a simple energy argument intuitively explains tippe
top inversion. Consider the two energy states of the tippe top corresponding to the
noninverted and inverted states. In the noninverted (inverted) state, the contact
vector is aligned to the direction of gravity and has smallest (largest) magnitude.
Thus, the gravitational potential energy of the noninverted state is smaller than that
of the inverted state.

Yet, assuming J is some fixed value C, the rotational kinetic energy of the non-
inverted state is larger than the rotational kinetic energy of the inverted state. This
is because in the inverted state the contact vector is longer, and hence from J = C
the inverted state is spinning slower than the noninverted state. If the initial spin
rate is fast enough, this drop in rotational kinetic energy overwhelms the increase in
gravitational potential energy. In this case the point which minimizes total energy is
the inverted state. This argument is made precise in Theorem 5.2, the main result of
the paper. This theorem requires some knowledge of dissipation-induced instabilities
and heteroclinic orbits, which we review here for the reader’s convenience.

Dissipation-Induced Instabilities. In the context of this paper, dissipation is un-
derstood as an energy-decreasing nonconservative force. Dissipation plays a key role
in enabling the spherical tippe top to access different points on the Jellett momen-
tum level set. The theory of dissipation-induced instabilities provides a mathematical
framework to study the effect of dissipation on the stability of Hamiltonian systems.
A dissipation-induced instability describes a neutrally stable equilibrium becoming
spectrally (and hence Lyapunov) unstable with the addition of dissipation. This
phenomenon is counter to one’s intuition since one expects that dissipation stabi-
lizes neutrally stable equilibria. Yet dissipation can also play a stabilizing role, as
evidenced in the spherical tippe top’s inversion. To clarify these statements, the
following introduction to the theory of dissipation-induced instabilities is provided.

Let M,G,K ∈ L(Rn,Rn) and assume M is a symmetric positive-definite matrix.
The setting of the theory of dissipation-induced instabilities is a mechanical system
with phase space TQ ∼= R

2n and a quadratic Lagrangian L : TQ → R that can be
written as

L(q, q̇) = q̇TM q̇ + q̇TGq− qTKq.

For a general, smooth Lagrangian that contains terms higher than degree two in q and
q̇, a second-order Taylor approximant about some point in TQ puts its Lagrangian in
this form. Since the only conservative forces derivable from a quadratic Lagrangian are
gyroscopic and potential, we assume that G andK are skew-symmetric and symmetric
matrices, respectively. The corresponding Euler–Lagrange equations are given by

(1.2) M q̈ +Gq̇ +Kq = 0.

The zero solution of (1.2) is called potentially unstable if K has some negative eigen-
values. It is called potentially stable if K is positive-definite. However, even if the zero
solution is potentially unstable, due to G the system can be spectrally (or neutrally)
stable. In this case one says that the system is gyroscopically stabilized, since G
physically corresponds to gyroscopic effects.
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Let C, V ∈ L(Rn,Rn) and assume C is symmetric positive-definite and V is skew-
symmetric. If the system is gyroscopically stabilized without friction, counter to our
intuition about friction, then adding friction proportional to velocities destabilizes the
zero solution of

(1.3) M q̈ + Cq̇ +Gq̇ +Kq = 0.

However, dissipation is not necessarily a destabilizing force for gyroscopically stabi-
lized systems. In fact, the general theory of dissipation-induced instabilities is con-
cerned with the stability of the zero solution of the following system:

(1.4) M q̈ + Cq̇ +Gq̇ +Kq + V q = 0,

where C is symmetric positive-definite and V is skew-symmetric. To model dissipation
often one uses dissipation proportional to velocity Cq̇ and not proportional to position
V q or positional dissipation. Although the dissipation proportional to velocity is
purely destabilizing for a gyroscopically stabilized system, one can obtain stability of
a gyroscopically stabilized state if both types of dissipation are present. Also, one
can obtain instability of a potentially stable system if both types of dissipation are
present.

It makes sense that the spherical tippe top exhibits both of these types of dissipa-
tion. Recall that the dissipation the top perceives is modeled as friction proportional
to the velocity of its point of contact. This type of friction is proportional to the trans-
lational velocity of the sphere, the angular velocity of the sphere, and the orientation
of the sphere’s point of contact. The spinning spherical tippe top exhibits positional
dissipation because of the dependence of the friction law used on the orientation of
the sphere. In the paper we will show that both types of damping need to be present
in order to explain why the spherical tippe top inverts. In this way the spherical tippe
top illustrates some important, and not widely known, consequences of the theory of
dissipation-induced instabilities.

Dissipation-induced instability theory has a long history, which goes back to
Thomson and Tait; see [36]. The central theorems in this area were subsequently
proven by Chetayev [11] and extended in the work of Merkin [25] and others. In its
modern form, dissipation-induced instability was shown both to be a general phe-
nomenon for gyroscopically stabilized systems and to provide a sharp converse to
the energy momentum stability method by Bloch et al. in [2] and [3]. The work of
Krechetnikov and Marsden [20] puts this theory into a broader context, including po-
sitional forces. The paper [20] also offers a number of additional examples, including
the well-known follower force problem [10], the Levitron, and radiation-induced insta-
bilities. For a comprehensive history and review of dissipation-induced instabilities,
including what is known in the case of PDE and for further references, the reader is
referred to [21].

Heteroclinic Orbits. A heteroclinic orbit is a path in the phase space of a dy-
namical system that connects two equilibria. These equilibria need not be static. For
example, consider the orbit connecting the inverted and noninverted states of the
tippe top, or consider the whirling orbit which connects a textbook spun about its
unstable intermediate axis to its antipode. These examples motivate the notion of
a relative equilibria which is equivalent to a fixed point modulo a one-parameter Lie
group action. For the tippe top and textbook relative equilibria, this action is an S1-
rotation about a fixed axis. A dissipation-induced heteroclinic orbit is a heteroclinic
connection that exists because of (and in spite of) dissipation, as in the tippe top.
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Relative equilibria arise frequently in realistic rigid-body and fluid systems, and
techniques to assess their stability/robustness are in demand. In this paper we apply
the energy momentum method to ascertain the existence of a heteroclinic connection.
A cornerstone of the method is the energy momentum mapping which we will specify
for mechanical systems with phase space P possessing a Lie group G-symmetry. Let g

and g∗ be the Lie algebra and dual of the Lie algebra of G. If E : P → R is the energy
of the system, J : P → g∗ the momentum map associated to the G-symmetry, and
Je a particular value of this momentum map, the energy momentum map is given by

(1.5) EJ = E + 〈J − Je, λ〉 ,

where λ ∈ g is a Lagrange multiplier. To establish Lyapunov stability by the energy
momentum method, one finds critical points of EJ which correspond to relative equi-
libria. Then one checks definiteness of the second variation of EJ at these critical
points in directions tangent to the momentum level set (i.e., for all x ∈ kerdJ ) and
transverse to orbits of G. It is a natural tool to invoke in this context given that the
Jellett momentum map (cf. (1.1)) is preserved along the flow of tippe tops. For more
exposition, applications, and history the reader is referred to [23, 24].

Organization of thePaper. Section 2 presents the modified Maxwell–Bloch equa-
tions and discusses their ability to reproduce tippe top inversion. Section 3 describes
a derivation of the governing equations for the tippe top from a variational princi-
ple. Section 4 casts the linearized equations of the tippe top in the form of modified
Maxwell–Bloch equations. Section 5 contains a standard application of the energy
momentum method and LaSalle’s invariance principle to determine necessary and
sufficient conditions for existence of a heteroclinic connection between the inverted
and noninverted states of the tippe top. Section 6 provides some concluding remarks
on the energy adiabatic momentum method, the curious heteroclinic orbit between
the rattleback top’s saddle-like relative equilibria, and related problems.

2. Modified Maxwell–Bloch Equations. This section examines the effect of dis-
sipation on a special and important class of linear Hamiltonian systems. This class is
a two-dimensional instance of (1.2) and arises, e.g., in the linear stability analysis of
axisymmetric rigid bodies such as the spherical tippe top.

Derivation. Consider a planar ODE of the form

q̈ = f(q, q̇), q =
[
x
y

]
.

Linearization of these equations yields

q̈ +Aq̇ +Bq = 0,

where A and B are 2× 2 real matrices. The characteristic polynomial of this system

det
([

σ2 0
0 σ2

]
+Aσ +B

)
= 0

shows that when A is skew-symmetric and B is symmetric the system possesses a
spectral symmetry typical of linear Hamiltonian systems, namely, if σ is a solution,
then so are σ̄, −σ, and −σ̄.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

330 NAWAF M. BOU-RABEE, JERROLD E. MARSDEN, AND LOUIS A. ROMERO

We define the rotation matrix

R(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
as well as the identity and elementary skew-symmetric matrices in L(R2,R2) as

I =
[
1 0
0 1

]
, S =

[
0 −1
1 0

]
.

The necessary and sufficient condition for a 2×2 matrix to commute with the rotation
matrix is that the matrix be a linear combination of I and S. Thus, if this ODE is
rotationally symmetric, i.e., the ODE is invariant under SO(2) rotation, then the
matrices A and B can be expressed as

A = −αS + βI, B = −γS + δI,

where α, β, γ, and δ are real scalars. Because β and γ destroy the spectral symmetry
associated to Hamiltonian systems, we call these terms nonconservative.

Given the particular form of the rotationally symmetric ODE, we can write the
two-dimensional real system as a one-dimensional complex system,

(2.1) z̈ + iαż + βż + iγz + δz = 0, z = x+ iy,

which we call the modified Maxwell–Bloch equations. Observe that (2.1) is a complex-
ified version of (1.4) in two dimensions.

Proposition 2.1. The modified Maxwell–Bloch equations are the linearized nor-
mal form for planar, rotationally symmetric dynamical systems.

Equation (2.1) is the basic harmonic oscillator with the two complex terms iαż
and iγz. In physical systems iαż arises from Coriolis effects, and hence is known as
the gyroscopic term, whereas iγz typically arises from dissipation in rotational vari-
ables. The damping force iγz is different from the usual damping term proportional
to velocity βż and will be referred to as complex damping. This type of damping
corresponds to the positional dissipation introduced in (1.4). Physically the complex
damping term models viscous effects caused by, for example, motion in a fluid, while
the usual damping term models internal dissipation.

Before we describe the general stability properties of these equations, let us con-
sider as an illustrative example the stability of a rotating beam. One can show that
the linearized equations of the first mode of a rotating beam can be cast in the form
of (2.1). In this case α corresponds to the rotation rate of the beam. These linearized
equations are the same as the linearized Euler–Lagrange equations for a bead in a
rotating circular plate [2]. If one ignores dissipation, the system is potentially stable
as long as the rotation rate is less than the resonance frequency of the beam. If the
rotation rate is greater than the resonance frequency of the beam, the system becomes
gyroscopically stabilized. As mentioned in the introduction, dissipation proportional
to velocity destabilizes this gyroscopically stabilized state. Typically, damping in a
beam is due to internal dissipation which is proportional to velocities, hence explain-
ing why one observes a rotating beam become unstable when spun at a rate which
exceeds its resonance frequency.

Stability Criteria. The characteristic polynomial of the modified Maxwell–Bloch
equations is

λ4 + 2βλ3 + (α2 + β2 + 2δ)λ2 + 2(αγ + βδ)λ+ (γ2 + δ2) = 0.
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We now write the necessary and sufficient conditions for this polynomial to be Hur-
witz [16].

Theorem 2.2 (modified Maxwell–Bloch stability criteria). The zero solution of
the modified Maxwell–Bloch equations is Lyapunov stable iff the following inequalities
hold:

β > 0,

αβγ − γ2 + β2δ > 0,

α2β + β3 − αγ + βδ > 0.

The proof of this is a simple application of standard Hurwitz stability criteria as
described in, e.g., [16]. There are two especially interesting physical cases of these
inequalities:

1. When δ > 0, γ = β = 0, the system is neutrally stable with or without
the presence of the gyroscopic term. Adding usual dissipation βż makes the
neutrally stable zero solution Lyapunov stable. Adding usual and positional
dissipation can stabilize or destabilize the neutrally stable zero solution.

2. When δ < 0, α > −4δ > 0, γ = β = 0, the system is gyroscopically, and hence
neutrally, stable. Adding usual dissipation βż makes the neutrally stable
zero solution spectrally unstable since the second inequality in Theorem 2.2
can never hold. This case corresponds to the classical dissipation-induced
instability [2]. If β = 0 and γ > 0, the neutrally stable zero solution becomes
spectrally unstable. Adding usual and positional dissipation can stabilize or
destabilize the zero solution depending on the ratio of β to γ.

For the tippe top, we will show that dissipation in rotational variables (or complex
damping) is essential to understanding inversion. In fact, the remarks above point
out some limitations of usual damping: usual damping can predict instability only in
the case of a gyroscopically stable system and stability in the case of a gravitationally
stable system.

Consider the modified Maxwell–Bloch equations as a possible model of the lin-
earized behavior of the tippe top. In particular, suppose that the noninverted and
inverted states of the tippe top correspond to the zero solution of (2.1). Without
friction we observe a noninverted state which is gravitationally stable with or without
gyroscopic effects. Case 1 above shows that the addition of usual damping cannot
destabilize this gravitationally stable, noninverted state. The complex damping term,
however, can destabilize this state. Therefore, the complex damping term can explain
why the gravitationally stable tippe top becomes spectrally unstable.

Moreover, after the tippe top inverts we have a gyroscopically stabilized inverted
state. We have shown that the addition of usual damping would make such a system
spectrally unstable. Thus, usual damping cannot explain why the tippe top spins
stably in its inverted state. Case 2 shows that the complex and usual damping term
in the right ratio can, however, stabilize this state. Thus, the complex damping term
can also explain why the tippe top spins stably on its stem. We will revisit this
analysis when we cast the linearized equations of the tippe top in the form of the
modified Maxwell–Bloch equations.

3. Tippe Top Equations. This section contains a pedagogical derivation and
analysis of the spherical tippe top’s governing equations using a variational princi-
ple, given mainly for the reader’s convenience. The tippe top is modeled as a sphere
in point contact with a surface. At the point of contact, the sphere is subjected to
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Fig. 3.1 Tippe top. We model the tippe top as a sphere with an eccentric center of mass C, geometric
center O, and point of contact Q. Vectors q and ξ3 represent the dimensionless position
of the contact point with respect to the center of mass and the unit vector in the direction
of the axis of symmetry, respectively.

frictional forces tangent to the surface and gravitational forces normal to the surface.
The section starts with a derivation of the equations of motion for the system with-
out friction. Friction proportional to the velocity of the point of contact of the body
on the surface is added later. One can also derive these equations using Newtonian
mechanics, as was done in the earlier version of this paper [8].

In what follows we will often use the hat map to identify a 3× 3 skew-symmetric
matrix with a vector in R3. Let so(3) denote the set of 3×3 skew-symmetric matrices.
For a vector x = (x1, x2, x3) ∈ R3, the hat map, ̂ : R3 → so(3), is defined as

x̂ =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .
Let y = (y1, y2, y3) ∈ R3. The hat map is related to the cross product in the following
way:

x̂y = x× y.

Mathematical Model. The tippe top is modeled as an axisymmetric rigid body
whose external shape is a sphere of radius R and whose mass is M . The sphere
is assumed to be in point contact with a fixed plane. Let the points Q, O, and C
represent the point of contact, the geometric center, and the center of mass of the
sphere, respectively (cf. Figure 3.1). We assume the mass distribution of the sphere is
inhomogeneous, but symmetric about an axis through the sphere’s geometric center
O. Thus, the sphere’s center of mass C is located on its axis of symmetry ξ3, but
at a distance Rε above its geometrical center O, where ε is the center of mass offset
(0 ≤ ε ≤ 1). Let I1 = I2 = I and I3 be the dimensional moments of inertia of the
sphere with respect to principal axes attached to C. Since the mass distribution is
axisymmetric one can prove that I3/I ≤ 2.
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Assume that one rescales position by R, time by the gravitational time-scale√
R/g, and the Lagrangian by Ig/R. Introduce the following dimensionless parame-

ters:

σ =
I3
I
, Fr =

Ω2R

g
, µ =

MR2

I
, ν = c

R2

I

√
R

g
,

where Ω is the magnitude of the initial angular velocity of the top and c a strictly
positive friction factor. The dimensionless parameters σ, Fr, µ, and ν are the inertia
ratio, Froude number, dimensionless mass, and friction factor, respectively.

Lagrangian of TippeTop. The unconstrained configuration space of the tippe top
is Q = R3 × SO(3) and its unconstrained Lagrangian is denoted by L : TQ → R. Let
(x(t), ẋ(t)) ∈ R3×R3 denote the translational position and velocity of the sphere. Let
(R(t),ω(t)) ∈ SO(3)×R3 denote the rotational position and spatial angular velocity
of the spherical tippe top (where R(t) is the matrix specifying the orientation of the
body). Let (e1, e2, e3) denote an inertial orthonormal frame attached to O and related
to a body-fixed frame (ξ1, ξ2, ξ3) attached to O by the formulae

Rei = ξi, i = 1, 2, 3.

In the analysis the vectors e3 and ξ3 play an important role and correspond to unit
vectors in the vertical direction and in the direction of the axis of symmetry of the
sphere, respectively. Let I = diag(1, 1, σ) be the standard (dimensionless) diagonal
inertia matrix of the body.

We will use the isomorphism between R3 and the Lie algebra of SO(3), so(3),
given by the hat map. In terms of this identification, the left-trivialized Lagrangian
( : R3 × R3 × SO(3)× R3 → R is defined as

((x, ẋ,R,ω) = L(x, ẋ,R, ω̂R).

For the tippe top, this is simply a sum of the translational kinetic energy, rotational
kinetic energy, and gravitational potential energy of the sphere:

(3.1) ((x, ẋ,R,ω) =
µ

2
ẋTẋ︸ ︷︷ ︸

translational
kinetic energy

+
1
2
ωTω +

1
2
(σ − 1)

(
ωTξ3

)2︸ ︷︷ ︸
rotational

kinetic energy

− µxTe3︸ ︷︷ ︸ .
gravitational

potential energy

The dimensionless position of the contact point relative to the center of mass is given
by

(3.2) q = −e3 − εξ3.

The sphere is subject to a holonomic constraint ϕ : R3 × SO(3)→ R given by

ϕ(x,R) = −1− εξT
3 e3 + eT

3 x = qTe3 + eT
3 x = 0.(3.3)

Notice that this constraint depends on both the translational and rotational positions
of the sphere. Physically it states that the sphere is in point contact with the surface
whose normal is given by the unit vector e3. This vector is opposite the direction of
gravity.
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Governing Conservative Equations. The phenomenon of interest, tippe top in-
version, needs to include friction, but for simplicity we will start by examining the
governing equations without friction. The equations of motion will be determined
using a Hamilton–Pontryagin (HP) description of rigid-body-type systems [5]. This
principle unifies the Hamiltonian and Lagrangian descriptions of mechanics. The
constrained HP action integral is given by

s =
∫ T

0

[
((x,v,R,ω) + 〈p, ẋ− v〉+

〈
π̂, ṘRT − ω̂

〉
+ λϕ(x,R)

]
dt.

Observe that this principle enlarges the domain of the classical action by treating the
kinematic relations as constraints. The associated Lagrange multipliers p and π are
the translational and spatial angular momenta, respectively.

The HP principle states that

δs = 0,

where the variations are arbitrary except that the endpoints (x(0),R(0)) and (x(T ),
R(T )) are held fixed. A critical point of s satisfies

(3.4)



ẋ = v,
µv̇ = (λ− µ)e3,

xTe3 = 1 + εeT
3 ξ3,

Ṙ = ω̂R,
π̇ = −λεξ3 × e3,
π = ω + (σ − 1)(ωTξ3)ξ3.

These equations are a differential algebraic system in terms of the fixed unit vector e3
(corresponding to the normal to the surface) and the following unknowns: the sphere’s
translational position x(t), translational velocity v(t), rotational position R(t) (the
matrix specifying the orientation of the sphere), spatial angular velocity ω(t), and
spatial angular momentum π(t).

Physically the set of equations in (3.4) make much sense. The first and fourth
equations are kinematic constraints relating the translational and spatial angular ve-
locity of the sphere to the translational and rotational positions, respectively. The
second equation is a balance of linear momentum and shows that the only forces
acting on the body are due to gravity and the surface’s normal reaction force. The
third equation is the constraint that specifies that the sphere is in point contact with
the surface. The fifth equation is a balance of angular momentum and shows that
the only torque acting on the body is due to the normal reaction force. The sixth
equation relates the spatial angular momentum to the spatial angular velocity of the
spherical tippe top.

Recall that the unit vector in the direction of the axis of symmetry is the third
column of the rotation matrix, i.e., ξ3(t) = R(t)e3. One can eliminate ω and λ
in (3.4) to obtain a Cauchy problem which has a well-defined flow. Moreover, as a
consequence of axisymmetry, one does not need to solve for the evolution of all three
columns of R(t) to integrate the ODE in π. Instead one just needs to solve for the
evolution of the third column, ξ3, using

(3.5) ξ̇3 = ω × ξ3.
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From analyzing (3.4) one can deduce that there are two independent quantities which
are conserved under its flow, as described in the following theorem.

Theorem 3.1 (pre-Jellett momentum map). Let a, b be any real numbers. The
following momentum map is conserved under the flow of (3.4):

J = aπTξ3 + bπ
Te3.

Proof. One can deduce this conservation law from the variational principle as a
symmetry of the left-trivialized Lagrangian, i.e.,

((x, ẋ,R,ω) = ((x, ẋ,BR,Bω)

for any B ∈ SO(3) that is a rotation about ξ3 and/or e3. Note that tacit in this
argument is that this symmetry action leaves the holonomic constraint invariant.
Alternatively, one can deduce this conservation law directly from the equations:

d

dt
J = aπ̇Tξ3 + aπ

Tξ̇3 + bπ̇
Te3.

From the fifth equation in (3.4), the first and third terms in the above vanish. From
(3.5) and the sixth equation in (3.4), the second term in the above vanishes.

This conservation law indicates that if initially the tippe top is spinning in a
neighborhood of its noninverted state (i.e., ξ3(0) ≈ −e3, π(0) ≈ σFre3), then inver-
sion, i.e., the existence of some time T such that ξ3(T ) ≈ e3, cannot occur. Thus, one
cannot obtain tippe top inversion by gyroscopic and gravitational effects alone. This
result suggests surface friction plays a crucial role in producing this phenomenon.

Governing Nonconservative Equations. Let q = −e3 − εξ3 denote the vector
connecting the center of mass C to the contact point Q as shown in Figure 3.1.
We model the surface frictional force using a sliding friction law proportional to the
velocity of the point of contact of the spherical tippe top:

(3.6) VQ = ẋ + ω × q.

The force and torque due to friction are therefore

Ff = −νVQ, Mf = q× Ff ,

where ν is the dimensionless friction factor. The governing dynamical equations of
the spherical tippe top with friction are given by

(3.7)



ẋ = v,
µv̇ = (λ− µ)e3 + Ff ,

xTe3 = 1 + εeT
3 ξ3,

ξ̇3 = ω × ξ3,
π̇ = −λεξ3 × e3 + q× (Ff ),
π = ω + (σ − 1)(ωTξ3)ξ3.

These equations are a differential algebraic system in terms of the sphere’s transla-
tional position x(t), translational velocity v(t), axis of symmetry ξ3, angular velocity
ω(t), and angular momentum π(t). These equations can be derived from a Lagrange
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d’Alembert principle [24], which simply appends the work done by the frictional force
and its torque to the HP principle. The principle is explicitly given by

δs+
∫ t

0
FT
f δxdt+

∫ t

0
MT

f ηdt = 0,

where η̂ = δRRT. With dissipation the symmetry that led to Theorem 3.1 is broken,
but not completely. By an infinitesimal symmetry of the moments with respect to
the generator of rotations about the contact vector q, the Jellett momentum map is
preserved. This infinitesimal symmetry does not depend on the precise form of Ff ,
but requires only that its moment Mf be orthogonal to q.

Theorem 3.2 (Jellett momentum map). The following momentum map is con-
served under the flow of (3.7):

J = πTξ3 + επ
Te3

or J = −πTq.
Proof. This proof is terse. From (3.7) it follows that

d

dt
J = π̇Tq + πTq̇.

From the fifth equation in (3.7), the first term vanishes. The second term can be
written as

πTq̇ = επTξ̇3.

From the proof of Theorem 3.1, this term vanishes as well.
This property of the flow of (3.7) simplifies the analysis of tippe top inversion,

since it implies that even with dissipation the system evolves on a level set of J .

Equilibria. In the coordinates we have chosen to write down (3.7), the inverted
and noninverted states of the spherical tippe top as illustrated in Figure 1.1 (relative
equilibria) are fixed points of the equations of motion. In particular, all fixed points
of (3.7) are translationally stationary and satisfy

ξ̇3 = 0 =⇒ ξ3 and ω are collinear,
π̇ = 0 =⇒ ξ3 and e3 are collinear.

At fixed points the Lagrange multiplier satisfies λ = µ.
If one is restricted to a level set of J , there are only two fixed points of the

equations. Set one of these fixed points to be the noninverted state defined by

(3.8) π1 = σFre3, ξ1
3 = −e3,

which implies J = σFr(1−ε). The second fixed point on this level set of J corresponds
to the inverted state and satisfies

(3.9) π2 = σFr
1− ε
1 + ε

e3, ξ2
3 = e3.
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4. Tippe Top Modified Maxwell–Bloch. For this section we will assume trans-
lation of the center of mass is negligible. This assumption greatly simplifies the
equations. Later we will confirm that the stability criteria derived in this fashion
agree with a nonlinear stability analysis, and in particular, we will show that the
position of the spherical tippe top’s center of mass remains fixed at all extrema of the
energy momentum map. Ignoring translational effects and eliminating ω in (3.7), one
obtains the following fully nonlinear rotational equations for the spherical tippe top:

(4.1)

{
ξ̇3 = π × ξ3,
π̇ = −µεξ3 × e3 + νq× q× π − ν σ−1

σ (πTξ3)q× q× ξ3.

Notice that these are a set of differential equations in the unit vector in the direction
of the axis of symmetry ξ3(t) ∈ R3 and the spatial angular momentum of the spherical
tippe top π(t) ∈ R3. In these equations e3 is a constant vector and q is as defined
in (3.2). As mentioned in the introduction, (4.1) possesses dissipation proportional
to velocity and position since the friction law used is a function of both the angular
velocity of the sphere and the contact vector q. As can be easily checked, (4.1) has
the following fixed points:

(4.2) π = π0e3, ξ3 = n0e3, n2
0 = 1.

Set Φ = ξT
3 e1 + iξT

3 e2. Linearizing (4.1) about (4.2) gives the tippe top modified
Maxwell–Bloch equations:

(4.3) Φ̈ + iaΦ̇ + bΦ̇ + icΦ + dΦ = 0,

where

a = π0, b = ν(1 + n0ε)2, c = π0ν(1 + n0ε)/σ, d = −εµn0.

Using the stability criteria for modified Maxwell–Bloch systems (cf. Theorem 2.2),
one can readily deduce the following.

Theorem 4.1 (stability of tippe top relative equilibria). Consider the relative
equilibria defined by (3.8) and (3.9) on the level set J = σFr(1− ε). The noninverted
state (n0 = −1, π0 = σFr) is Lyapunov stable iff

εµ(1− ε)2 + Fr2(σ(1− ε)− 1) > 0.

The inverted state (n0 = 1, π0 = σFr1−ε
1+ε ) is Lyapunov stable iff

−εµ(1 + ε)4 + Fr2(1− ε)2(σ(1 + ε)− 1) > 0.

Proof. Assume ν is strictly positive. By Theorem 2.2 the noninverted state
(n0 = −1, π0 = σFr) is stable iff

(4.4)

{
εµ(1− ε)2 + Fr2(σ(1− ε)− 1) > 0,

εµ(1− ε) + (1− ε)5ν2 − Fr2σ + Fr2σ2(1− ε) > 0.

Likewise, the inverted state (n0 = 1, π0 = σFr1−ε
1+ε ) is stable iff

(4.5)

{
−εµ(1 + ε)4 + Fr2(1− ε)2(σ(1 + ε)− 1) > 0,

−εµ(1 + ε)2 + (1 + ε)6ν2 − Fr2(1−ε)2σ
1+ε + Fr2(1− ε)2σ2 > 0.
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It is easy to confirm that if the first inequalities in (4.4) and (4.5) hold, then the
second inequalities hold.

Observe that this stability criteria is independent of the magnitude of the dimen-
sionless friction factor ν. Can we reduce (4.3) any further? The answer is no because
of the remarks made in section 2. In particular, it can be shown that without the usual
and complex damping terms, i.e., b = 0 and c = 0 or ν = 0, the gravitationally stable
noninverted state cannot become spectrally unstable. Moreover, the gyroscopically
stabilized state can be Lyapunov stable iff the complex and usual damping terms are
present and in the right ratio.

5. Heteroclinic Orbit. The following nonlinear analysis for the tippe top is stan-
dard and based on the energy momentum method for mechanical systems with sym-
metry [24]. We note that a similar global connecting argument was provided in [18].

To establish the existence of a heteroclinic orbit that describes tippe top inversion,
we will use a Lyapunov function and invoke LaSalle’s principle [1]. The energy of the
tippe top is a natural candidate for a Lyapunov function,

(5.1) E = µ

2
vTv +

1
2
πTπ − 1

2
(σ − 1)
σ

(
πTξ3

)2
+ µxTe3.

It is a sum of translational, rotational, and gravitational components. Its orbital
derivative along the flow of (3.7) is given by

(5.2)
d

dt
E = −ν‖VQ‖2,

where ‖VQ‖ is the magnitude of the slip velocity. Integrating yields

E(t) = E(0)−
∫ t

0
ν‖VQ‖2ds.

Observe that the energy decreases monotonically until the velocity of the point of
contact vanishes. Hence, the energy is negative semidefinite, i.e., Ė ≤ 0. Since the
energy is negative semidefinite, it is natural to invoke LaSalle’s principle to establish
existence of a global connecting orbit [1].

Theorem 5.1 (LaSalle’s principle). Consider a smooth dynamical system on
a manifold P given by ż = f(z) and let Ω be a compact set in P that is positively
invariant under the flow of f . Let V : Ω→ R be a C1 function such that

d

dt
V (z) = ∇V (z) · f(z) ≤ 0

in Ω. Let z : [0,∞) → P be an integral curve of the vector field f with initial
condition z(0) = z0 ∈ Ω. Let M be the largest invariant set in Ω where V̇ (z) = 0.
Then z(t) asymptotically converges to M as t→∞. In particular, if M is an isolated
equilibrium, it is asymptotically stable.

Let T ∗S denoted the constrained phase space of the tippe top. Let Je = σFr(1−
ε) be the value of the Jellett momentum map for (3.8). Define the energy-Jellett
momentum map, EJ : T ∗S × R→ R, as

(5.3) EJ = E + λ (J − Je) .

Label the relative equilibria defined by (3.8) and (3.9) as zi and zf , respectively. It is
easy to show that there exist Lagrange multipliers, λi, λf ∈ R, such that (zi, λi) and
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(zf , λf ) are critical points of EJ , i.e.,

(5.4) dEJ (zi, λi) = dEJ (zf , λf ) = 0.

In the following theorem, a heteroclinic orbit between these states is determined by
LaSalle’s principle and by analyzing the critical points of EJ .

Theorem 5.2 (dissipation-induced heteroclinic orbit). Label the relative equilib-
ria on the level set J = σFr(1−ε) defined by (3.8) and (3.9) as zi and zf , respectively.
These relative equilibria are globally connected iff the inverted state is Lyapunov stable
and the noninverted state is spectrally unstable.

This theorem is based on finding conditions for which zi and zf define the only
critical points of EJ . These conditions turn out to satisfied when zi is spectrally
unstable and zf is Lyapunov stable (cf. theorem 4.1). Let Ω be a positively invariant
compact set in the phase space of the spherical tippe top that excludes a small open
neighborhood of the spectrally unstable point zi and includes the Lyapunov stable
point zf . By LaSalle’s principle, a trajectory initialized in Ω will tend to zf because
zf is the only invariant set in Ω.

Lemma 5.3 (critical points of EJ ). The noninverted and inverted states of the
tippe top and their associated Lagrange multipliers, (zi, λi) and (zf , λf ), are the only
critical points of EJ if

(5.5)

{
−εµ(1− ε)2 − Fr2(σ(1− ε)− 1) > 0,

−εµ(1 + ε)4 + Fr2(1− ε)2(σ(1 + ε)− 1) > 0.

Proof. As a first step, we write EJ as an unconstrained function and introduce
additional Lagrange multipliers to constrain to T ∗S. For this purpose let E : R12 → R

and J : R12 → R be the unconstrained energy and Jellett momentum map, respec-
tively. Let EJ : R12 → R denote the unconstrained energy momentum map which
satisfies EJ = EJ |T∗S . Let φ : R6 → R denote the unconstrained version of (3.3)
defined as

φ(x, ξ3) = xTe3 − 1− εξT
3 e3.

Consider the map f : R15 → R defined by

f = E + λ1(J − Je) + λ2φ+ λ3(‖ξ3‖2 − 1).

The Lagrange multipliers simultaneously constrain the critical point of the energy to
a level set of J , constrain ξ3 to S2, and ensure the surface constraint is satisfied. A
critical point of f satisfies

df(x,v, ξ3,π, λ1, λ2, λ3) = 0.

By direct calculation one can show that these critical points satisfy

λ2 = −µ, v = 0

and a system of five equations in the five unknowns

λ1, λ3, πTe3, πTξ3, and ξT
3 e3,

with the condition that
(
ξT

3 e3
)2 ≤ 1. If e3 and ξ3 are collinear, these critical points are

defined by zi and zf . However, if e3 and ξ3 are linearly independent, then
(
ξT

3 e3
)2
< 1
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and one can show that critical points are determined by the zeros of the following
polynomial function in n = ξT

3 e3:

(5.6) g(n) = Fr2(1− ε)2σ2(n(−1 + σ) + εσ)− εµ(1− n2 + (n+ ε)2σ)2.

Observe that (5.5) implies that

(5.7)

{
g(−1) = −σ2(1− ε)2

(
Fr2(σ(1− ε)− 1) + εµ(1− ε)2

)
> 0,

g(1) = σ2
(
Fr2(1− ε)2(σ(1 + ε)− 1)− εµ(1 + ε)4

)
> 0.

Observe that the function g(n) can be written as

g(n) = L(n)− εµC(n)2,

where L(n) = Fr2(1− ε)2σ2(n(−1 + σ) + εσ) and C(n) = (1− n2 + (n+ ε)2σ). For σ
strictly positive, one can show that

(5.8) L(n) > εµC(n)2 for n ∈ [−1, 1].

To show this we rewrite (5.7) in terms of C(n) and L(n) as

(5.9) L(−1) > µεC(−1)2 and L(1) > µεC(1)2.

When σ = 1 then L(n) is constant and C(n) is linear with positive slope. Hence, by
(5.9), (5.8) holds. When σ �= 1 but strictly positive the critical point n� of C(n) is
given by

n� = εσ/(1− σ)

and satisfies L(n�) = 0. However, (5.9) are violated if |n�| ≤ 1. Hence, |n�| > 1.
When σ > 1 then n� < 1 and is a minimum of C(n), C(n) is convex in (−1, 1), and
L(n) has a positive slope. When σ < 1 then n� > 1 and is a maximum of C(n), C(n)
is concave in (−1, 1), and L(n) has a negative slope. It follows from (5.9) that for all
σ strictly positive (5.8) holds, and hence zi and zf define the unique critical points if
(5.5) is satisfied.

To use Lemma 5.3 to prove Theorem 5.2, one can invoke Theorem 4.1 or check
the definiteness of the Hessian of EJ in directions tangent to the level set of J and
transverse to rotations about q. This check shows that zi is a saddle point of EJ and
zf is a minimum of EJ .

For a stability analysis of intermediate relative equilibria, i.e., those for which the
tippe top does not fully invert, the reader is referred to [37, 12].

For the closely related problem of dissipation-induced instabilities of gyropen-
dulums and their relation to the modified Maxwell–Bloch equations, the reader is
referred to [22].

6. Concluding Remarks. We conclude with additional remarks on related me-
chanical systems as well as related stability issues. The reader is directed to the
July 13, 2007, New Scientist Short Sharp Science blog for a video of Tadashi Tokieda
(Cambridge University) explaining the curious behavior of other mechanical “toys,”
including the rattleback top discussed below.
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Energy Adiabatic Momentum Method. In the paper [9], we extend the energy
momentum method to situations where an adiabatic momentum map exists on a cer-
tain time-scale and apply it to the “rising egg” phenomena. We assume this adiabatic
momentum map corresponds to an approximate symmetry of the mechanical system.
This situation arises, e.g., when one adds ellipticity to the tippe top to analyze the
rising of an egg, or more generally, the rising of tops [28, 29, 9]. The Jellett momentum
map in this context is no longer an exact invariant.

However, under a fast top approximation, the Jellett momentum map is an adia-
batic invariant in rising egg motion as discovered in [28]. The procedure to prove this
is a standard application of averaging which introduces an S1-symmetry correspond-
ing to the symmetry of the Jellett momentum map. The presence of this adiabatic
invariant simplifies the analysis of a dissipation-induced heteroclinic orbit connect-
ing the nonrisen to risen state of a rising egg. In [9] it is shown that under a fast
top approximation, ε << 1 (where ε can be thought of as being inversely related to
the spin rate), this momentum is constant with O(ε2) error on the time-scale t/ε.
Since the spheroid rises only if the spin is fast enough, this fast-top approximation is
appropriate.

Using a multiscale analysis, Moffatt, Shimomura, and Branicki [30] theoretically
predict a fascinating transient instability in rising egg motion that manifests itself in
the egg jumping on a time-scale that is fast compared to the time-scale associated
to rising. Interestingly, Mitsui et al. [27] confirm this finding experimentally! The
authors use a sophisticated apparatus that mechanically spins a spheroid at high
speeds and simultaneously measures optical, acoustic, and electric signals generated
by it.

Dynamic Stability by Time-Periodic Forcing. Time-periodic excitations in me-
chanical systems lead to surprising phenomena. The fact that under the action of vi-
brations the inverted position of the pendulum can become stable by time-periodically
exciting its suspension point is a classical example [19]. As discovered by Paul, one
can also use time-periodic electric fields to confine charged particles [32]. Yet another
example involves a coupling of electromagnetic and gyroscopic effects to achieve so-
called spin-stabilized magnetic levitation; see, e.g., [33, 34] and the references therein.

As a final example we consider the action of vibrations on a complex fluid; see
Figure 5 in [26]. The following dynamics is observed. Initially, the free surface of an
aqueous suspension of cornstarch in a container is flat. Under the action of vibrations,
the fluid can permanently support holes and vertical finger-like protrusions through
its surface appear [26].1

Heteroclinic Orbit in Rattleback Top. The rattleback phenomenon is a very
interesting related problem in classical mechanics. A geometric form of the rattleback
top is a truncated ellipsoid with an asymmetric mass distribution. Because of this
asymmetric mass distribution and dissipation, the rattleback top spins stably about
its short axis in one direction, and unstably in the other direction. When spun on a dry
surface in the unstable direction, the rattleback top rocks about its intermediate axis
and then reverses spin direction, as shown in Figure 6.1. Moreover, if set in a rocking
motion about its intermediate or long axis, the rattleback top tends to spin in the
stable direction. Some rattleback tops exhibit multiple spin-reversal, which implies
the existence of a heteroclinic orbit between saddle-like relative equilibria. Because
of its asymmetry and dissipation, the rattleback top has no conserved quantity or

1We thank Houman Owhadi (Caltech) for introducing us to this system.
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Fig. 6.1 Rattleback top. Sketch of the rattleback top initially spinning in the unstable direction,
rocking back and forth, and then spinning in the opposite direction.

Fig. 6.2 Stochastic resonance. Stochastic resonance occurs in stochastically forced systems charac-
terized by a double well potential that time-periodically changes depth. When the ratio of
the mean-escape time from one well to another matches the driving frequency of the poten-
tial energy, then one obtains synchronized switching between two states of the system (e.g.,
inverted and noninverted states of the tippe top), which is depicted in the above cartoon by
the happy and sad faces switching positions.

known adiabatic invariant. For an exposition of what is known in this problem from
the perspective of nonholonomic mechanics, the reader is referred to [17, 38, 1].

Stochastic Resonance in Tippe Top. We conclude the paper with a conjecture.
Stochastic resonance is a phenomenon that is ubiquitous in science and engineering
applications such as the ice ages, neurons, lasers, optical traps, and quantum systems.
In its basic form, it occurs in systems with stochastic forcing and a double-well poten-
tial whose depth changes periodically. If the period of the driving frequency matches
the average noise-induced escape time from one well to the other, one obtains syn-
chronized switching between two states of the system, as shown in Figure 6.2. Can
such a phenomenon arise in the tippe top?

Examining Theorem 4.1 it is clear there are parameter values where both inverted
and noninverted states are Lyapunov stable. This suggests that the effective potential
the tippe top perceives in the ξT

3 e3 direction is a double well. One can then let the
magnitude of gravity change periodically and add structured stochastic forcing to
realize stochastic resonance in the tippe top. The condition on the stochastic force
is that it preserves the Jellett momentum map. The tools for carrying out such
an analysis—a Noether’s theorem for stochastically forced and torqued mechanical
systems and stochastically torqued rigid-body equations—can be found in [6].
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