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Abstract We present a (noncanonical) Hamiltonian model for the interaction of a neutrally buoyant, arbitrarily
shaped smooth rigid body with N thin closed vortex filaments of arbitrary shape in an infinite ideal fluid in
Euclidean three-space. The rings are modeled without cores and, as geometrical objects, viewed as N smooth
closed curves in space. The velocity field associated with each ring in the absence of the body is given by the
Biot–Savart law with the infinite self-induced velocity assumed to be regularized in some appropriate way. In
the presence of the moving rigid body, the velocity field of each ring is modified by the addition of potential
fields associated with the image vorticity and with the irrotational flow induced by the motion of the body.
The equations of motion for this dynamically coupled body-rings model are obtained using conservation of
linear and angular momenta. These equations are shown to possess a Hamiltonian structure when written on
an appropriately defined Poisson product manifold equipped with a Poisson bracket which is the sum of the
Lie–Poisson bracket from rigid body mechanics and the canonical bracket on the phase space of the vortex
filaments. The Hamiltonian function is the total kinetic energy of the system with the self-induced kinetic
energy regularized. The Hamiltonian structure is independent of the shape of the body, (and hence) the explicit
form of the image field, and the method of regularization, provided the self-induced velocity and kinetic energy
are regularized in way that satisfies certain reasonable consistency conditions.
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1 Introduction

The classical approach to the mechanics of bodies in fluids and of vortex rings has a rich history, for which
[19] and [32] are representative references. The geometric approach to fluid mechanics also has a rich history,
going back at least as far as Poincaré in the late 1800s and [3] and [13], providing many interesting insights
and new results, some of which are described in [4,5,27], and references therein. In this paper, we make use of
both the classical view and the geometric view of fluid mechanics to establish the governing equations and the
Hamiltonian structure for the dynamic interaction of a system of vortex rings with a neutrally buoyant rigid
body.

The Hamiltonian structure of a system of vortex filaments, modeled as curves supporting a delta distribution
of vorticity, was given in [28], and the Poisson geometry of the filament equation and its relation to the Hasimoto
transformation was studied further in [20]. Using the ideas of discrete symmetries and fixed point subspaces,
[35], in their study of leapfrogging vortex rings, showed that for closed filaments modeled as curves—which
we term vortex rings throughout the present paper—a special Hamiltonian structure is derivable in the case of
circular coaxial rings (using discrete reduction) from that for rings of arbitrary shape. A Poisson formulation
for the dynamics of a passive particle advected by the flow due to a single vortex filament was given in [8] and
for a circular vortex ring interacting with a stationary rigid sphere was given in [9]. The Hamiltonian structure
of the system comprising a rigid circular cylinder dynamically interacting with N point vortices in the plane
was presented in [36], and this structure was used to analyze stability for certain special configurations of this
system. This Hamiltonian structure was shown to hold for a rigid cylinder of arbitrary smooth shape in [33].

In the current paper we present a model for the dynamic interaction of a 3D rigid body of arbitrary smooth
shape with N arbitrarily shaped and arbitrarily oriented vortex rings identified with N closed curves in R

3, as
in Fig. 1.

The interaction of such rings in the absence of solid boundaries is given by the Biot–Savart law. The velocity
field of each ring in the presence of the solid boundary introduced by the moving body is modified by the
addition of a potential field associated with the image vorticity inside the body. The well-known singularity in
the self-induced velocity field of each ring, in the corresponding curve’s binormal direction, is assumed to be
regularized in some appropriate way. The actual method of regularization is not a concern for us in this paper.

We will derive the equations of motion for this system and show that they possess a noncanonical Hamil-
tonian structure. The Hamiltonian is the total kinetic energy of the body-rings system with the self-induced
kinetic energy regularized. Our approach in obtaining the Hamiltonian structure is similar in spirit to that
used in [33] for the 2D problem with point vortices. However, because of the extra spatial dimension and
the additional feature of having vortex filaments that are curved, considerably more groundwork needs to be
established before proving the main result in the present context. In particular, we shall need to exploit certain
properties of the vector potential in R

3 (see, for example, [14]), which is the analog of the stream function
in R

2. We demonstrate these properties explicitly for our problem configuration. The Hamiltonian structure
we obtain does not depend on the shape of the smooth body, so the explicit form of the image field does not
have to be known. Moreover, this structure is independent of the specific methods by which the self-induced
velocity field and the self-induced kinetic energy are regularized, provided these regularization are done in a
way that satisfies some consistency conditions. In particular, the regularized self-induced velocity field should
be the Hamiltonian vector field, relative to the Hamiltonian structure, for the real-valued function which is the
regularized self-induced kinetic energy.

The outline of the paper is as follows. In Sect. 2, the problem setting is defined and the Lie–Poisson
equations of the coupled body-rings system are obtained following a traditional momentum balance analysis,
the details of which are given in Appendix A. In Sect. 3, the evolution equations for the N curves representing
the N rings in the presence of the moving body are presented. Following this the combined equations of motion
for the whole body-rings system are written. In Sect. 4, properties of the vector potential that will be needed
in the sequel are proven through a series of propositions. In Sect. 5, it is proven that the equations of motion
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Fig. 1 Three vortex rings and a neutrally buoyant rigid body of arbitrary shape dynamically interacting with each other in an
incompressible fluid

for the system possess the proposed Hamiltonian structure on an appropriately defined Poisson manifold. In
Sect. 6, we discuss our results and some directions for future research.

2 Equations of motion for the body-rings system

In this section, we derive the equations of motion governing the dynamic interaction of a free rigid body with
N vortex rings.

Problem setting and assumptions. We consider a rigid body of arbitrary smooth shape immersed in an ideal
(inviscid, incompressible) fluid. The fluid extends to infinity in all directions away from the body. The body
and fluid have uniform and equal density, taken (without loss of generality) to be unity. We require the normal
velocity of the fluid on the body’s surface to match the normal velocity of the surface (the “free-slip” condition)
and require the fluid to be at rest infinitely far away. The fluid vorticity field is confined to a compact region
around the body and assumed to be a delta distribution supported on N vortex rings of arbitrary shape, these
rings intersecting neither each other nor the body. As stated before, the N rings can be viewed as N arbitrary
smooth closed curves in R

3.
The body is free to move under the instantaneous pressure field induced on its surface by the fluid. The

motion of the body in turn induces a motion of the fluid. The velocity field of the fluid consists, according to
the Hodge decomposition, of two parts: (i) the irrotational Kirchhoff potential field which satisfies the normal
velocity matching condition on the body surface and (ii) the divergence-free, rotational field due to the N
vortex rings in the presence of the body with zero normal velocity on the body surface. This second part further
decomposes into two components: the velocity field due to the rings in the absence of the body and the velocity
field due to the image vorticity inside the body. The normal components of these latter two velocity fields
cancel one another on the body surface.

The equations of motion. In the absence of any external forces or moments on the body-rings system, the
system’s linear and angular momentum are conserved in time. However, as is well known (see [19] and [32]),
the integral representing the linear or the angular momentum of an unbounded fluid may not be convergent.
To avoid dealing with this integral and to deal directly with the vorticity field, we make use of some key vector
integral relations [see (2.1) and (2.4) below], written for a bounded domain in R

3, which allow us to express
the fluid momenta in terms of the moments of vorticity and the moments of circulation around the body.1 For
applications of these integral relations to problems in fluid mechanics, and a history, see [38]. Obviously, these
relations by themselves do not get rid of the momentum divergence problem. The volume integrals on the
right-hand sides of these relations are well defined for a compact distribution of vorticity, such as N rings, but

1 If the fluid domain is simply connected, then the circulation around the body is zero, but the moments of circulation need
not be.
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the boundary terms could still diverge as the domain of integration is extended to infinity. For our purposes,
however, what is needed is really the time rate of change of the fluid momentum; using these relations we will
show, during the derivation of the equations, that the time rate of change of the terms that diverge spatially do
not contribute to the equations of motion. These observations regarding the fluid momentum are of course not
new—see, for example, [39]—and the same ideas were also used in the planar problem by [36].

Notation. Before we begin the derivation of the equations of motion, we pause to introduce some of our
notation for the domains used and for distinguishing among vectors, vector fields, and tensors in spatially
fixed and body-fixed frames. Additional such notation will be defined later in the paper. The moving rigid
body, a compact subset of R

3, is denoted by B and its boundary, a smooth, two-dimensional manifold, is
denoted by ∂B. Let D denote the externally unbounded domain occupied by the fluid and let ˜D denote a
bounded subset of D with ∂˜D = ∂B ∪ S, where S is an (imaginary) smooth, compact, two-dimensional
manifold containing the body and rings in its interior. In addition, the following convention is adopted. Any
vector/vector field/tensor/differential form that is denoted by the same (English or Greek) letter in both the
spatially fixed and body-fixed frames is distinguished in the spatially fixed frame by an overbar. For notational
consistency, this convention is followed everywhere, even when writing equations and relations that are actually
valid in any frame of reference [such as (2.1), (2.2), (2.4) and (2.8) below].

In the region ˜D ⊂ R
3, consider the following vector identity (see, for example, [38] and [32]) which holds

in general for any (smooth) divergence-free vector field ā on any bounded subset of R
3:

∫

˜D

ādV = 1

2

⎧

⎪

⎨

⎪

⎩

∫

˜D

(r × (∇ × ā)) dV +
∫

∂˜D

r × (n̄ × ā) d Ā

⎫

⎪

⎬

⎪

⎭

, (2.1)

where r is the position vector with respect to the spatially fixed frame and n̄ is the unit inward normal vector
on the boundary ∂˜D of ˜D. Letting ā = ū, the divergence-free velocity field of the fluid occupying ˜D, and
defining the vorticity field

ω̄ = ∇ × ū, (2.2)

it is easily seen that (2.1) expresses the linear momentum in terms of the moment of vorticity and moment of
circulation around the boundary.

The motion equations for the system follow from Newton’s second law applied to the linear momentum
of the fluid in the domain ˜D, which written in a spatially fixed frame yields

F̄ext = d

dt

∫

˜D

ū dV −
∫

S

ū(ū · n̄)d Ā

=
∫

∂B

pB n̄d Ā +
∫

S

ps n̄d Ā,

= −m B
dU
dt

+
∫

S

ps n̄d Ā,

where pB is the pressure field on the surface of the body, ps the pressure field on the imaginary surface S, m B

is the mass of the body (equal to its volume as per the unit density assumption) and U is the velocity of the
center (of mass) of the body in the spatially fixed frame. Using (2.1) along with (2.2), we see that the preceding
equation leads to

m B
dU
dt

+ d

dt

⎛

⎜

⎝

1

2

⎧

⎪

⎨

⎪

⎩

∫

˜D

(r × ω̄)dV +
∫

∂B

r × (n̄ × ū)d Ā

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

=
∫

S

ū(ū · n̄)d Ā − d

dt

⎛

⎝

1

2

∫

S

r × (n̄ × ū)d Ā

⎞

⎠ +
∫

S

ps n̄d Ā. (2.3)
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Analogous to (2.1), the identity for the angular momentum of the fluid or, in general, the first moment of
any (smooth) divergence-free vector field a in ˜D is

∫

˜D

r × ā d Ā = − 1
2

∫

˜D(r
2∇ × ā)dV − 1

2

∫

∂˜D r2(n̄ × ā)d Ā, (2.4)

where r = ‖r‖.
Using (2.2), (2.4) and balance of angular momentum of the fluid in the domain ˜D about the origin of the

spatially fixed frame gives

d

dt
(m B b̄ × U + I�)− 1

2

d

dt

⎛

⎜

⎝

∫

˜D

(r2ω̄)dV +
∫

∂B

r2(n̄ × ū)d Ā

⎞

⎟

⎠

=
∫

S

r × ū(ū · n̄)d Ā + 1

2

d

dt

∫

S

r2(n̄ × ū)d Ā +
∫

S

ps(r × n̄)d Ā, (2.5)

where b̄ is the position vector of the center (of mass) of the body and I� is the body angular momentum, both
referred to the spatially fixed frame. I is the moment of inertia tensor and � the angular velocity of the body
in the body-fixed frame.

Equations (2.3) and (2.5) are the starting points for the derivation of the equations for the system. Note that,
as presented, they are still in a general form and as such apply to any (smooth) body shape and any (compact)
distribution of vorticity in ˜D. The derivation essentially consists of the following steps. Additional details of
these steps can be found in Appendix A:

1. Use the Hodge decomposition to split ū in (2.3) and (2.5) as:

ū = ∇�B + ūV , (2.6)

where

∇2
�B = 0 and ∇ · ūV = 0 (2.7)

in the infinite fluid domain D and

∇�B · n̄ = VB · n̄ and ūV · n̄ = 0 (2.8)

on the body surface ∂B. Moreover, at infinity ∇�B → 0 and ūV → 0. In the above, VB represents the
velocity of points on the body.

2. Show that as the imaginary external bounding surface S goes to infinity—or, in other words, as ˜D → D—
all terms on the right-hand sides of (2.3) and (2.5) go to zero.

3. Use the special geometry of the vorticity field ω̄ to express the integrals of the moments of ω̄ in (2.3)
and (2.5) in terms of the rings variables.

4. Transform all quantities in (2.3) and (2.5) to a body-fixed frame with origin at the center (of mass) of the
body.

Following these steps the equations of motion for the rigid body system are
(

d

dt
+ �×

)

L = 0, (2.9)
(

d

dt
+ �×

)

A + U × L = 0, (2.10)

where
(

L
A
)

= M

(

U
�

)

+
(

P
�

)

. (2.11)
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In the above, M is the 6 × 6 symmetric mass matrix consisting of the mass and inertia terms of the body
plus added mass terms, (U, �) ≡ UB are the linear velocity of the body’s center of mass and the body’s angular
velocity in the body-fixed frame and

P = 1

2

N
∑

i=1

�i

⎛

⎜

⎝

∮

Ci

(li (si )× ti (si ))dsi

⎞

⎟

⎠
+ 1

2

∫

∂B

l × (n × uV )d A, (2.12)

� = −1

2

N
∑

i=1

�i

∮

Ci

l2
i (si )ti (si )dsi − 1

2

∫

∂B

l2(n × uV )d A, (2.13)

where �i is the strength of the i th ring, l denotes the position vector of points in the body-fixed frame with
l = ‖l‖, li is l for points on the i th ring with li = ‖li‖, Ci is the parameterized curve denoting the i th ring in
the body-fixed frame, ti is the unit tangent vector field on the i th ring and si is the arc-length parameter for the
i th ring.

Image vorticity and velocity. Before deriving the evolution equations for the rings to be coupled with the
rigid body equations (2.9), we discuss the velocity field uI due to image vorticity. As mentioned previously,
the image vorticity is introduced inside the body to ensure that the velocity field uV due to the total vorticity
inside and outside the body has zero normal velocity on the body surface, thus ensuring that the second of the
boundary conditions in (2.8) is satisfied. The divergence-free velocity field uV can then be viewed as the sum

uV = uR + uI in D, (2.14)

where uR is the divergence-free velocity field due to the N rings in the absence of the body for which an
explicit expression, valid in all of R

3, can be obtained using the Biot–Savart law, as will be discussed in the
next paragraph. With uR known, a unique uI can be obtained as the solution to the following boundary value
problem:

∇ × uI = 0 in D, (2.15)

uR · n = −uI · n on ∂B. (2.16)

The equation (2.15) holds since in an inviscid framework the introduction of a body in the field of the N rings
cannot generate new vorticity. Since uI is also divergence-free, equations (2.15) and (2.16) can be viewed,
equivalently, as the definition of a Neumann problem for �I , the velocity potential of uI . We note that the
uniqueness of the velocity field uI obtained in this way depends essentially on the three-dimensional nature
of our problem. In two dimensions, a boundary condition of the form (2.16) is insufficient to specify the
circulation that can exist around an interior boundary, adding a term to the velocity potential.

There is no known explicit formula for uI for general smooth body shapes but in all cases it is obtained as
the solution of the Neumann problem defined above. For special, simple body geometries like the sphere, uI
can be obtained following the techniques of [22] or [18]. In general, the field uI depends on (i) the strength of
the rings, (ii) the shape and position of the rings relative to the body and (iii) the shape of the body. Thus, we
can write (in the body-fixed frame)

uI = uI (l; C1, . . . ,CN , �1, . . . , �N , ∂B). (2.17)

Velocity field of the N rings in the absence of the body. The velocity field due to the N rings in the absence
of the body is given by the Biot–Savart law or, equivalently, by inverting (2.2) in R

3 and applying it to the
vorticity distribution supported by the N curves. At points not on any ring, the velocity field due to the rings
is given by

uR(q) =
N
∑

i=1

�i

4π

∮

Ci

ti (si )× (l(q)− li (si )) dsi

|l(q)− li (si )|3
, q /∈ Ci (i = 1, . . . , N ). (2.18)

As the field point approaches any ring, the velocity blows up. This singular nature of the field is essentially
due to the lack of ring cores coupled with the curvature of the rings. Expansion of uR in the vicinity of each
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Fig. 2 First-order components of the velocity field uR at the point q close to the kth ring

ring shows that (see [32] and [37] for more details) there are two singular terms. One is a point vortex type
of singularity, with the velocity blowing up in circumferential directions on small circles perpendicular to
the ring. The other singularity, due to the curvature of the ring, has the velocity blowing up in the binormal
direction. More explicitly, uR in the close vicinity of the kth ring can be expanded as (see, for example, [32]
or [17])

uR(q) ∼ A(e;�k)c + B(e;�k, κk(qk))b + O(1), (2.19)

where e is the minimum distance from the ring to q and also the radius of the circle to which c is the
unit tangent vector field, A(e;�k) = �k/2πe = O(1/e) is the magnitude of the point vortex velocity,
B(e;�k, κk(qk)) = O(log e), κk represents the (principal) curvature field on the kth ring and qk is the point
on the ring to which q is closest, as depicted in Fig. 2.

Whereas A(e;�k)c does not contribute to the self-induced velocity of the ring, the presence of B(e;�k, κk)b
results in an infinite self-induced velocity in the binormal direction. This latter term, thus, has to be regularized
in some way. When this is done, the velocity field due to the N rings in the absence of the body, at points on
a ring, becomes:

uR(qk) =
N
∑

i,i 	=k

�i

4π

∮

Ci

ti (si )× (l(qk)− li (si )) dsi

|l(qk)− li (si )|3
+ uSI (qk), qk ∈ Ck (2.20)

in the spatially fixed frame. A simple though somewhat crude fix to regularize this infinite self-induced velocity
field and to obtain uSI is to use the local induction approximation (see references cited above for the history
of this method). Using this approximation (see, for example, [35]), one gets

uSI (qk) = uL I (qk) = −�kκk(sk(qk)) log(ck)

4π
bk(sk(q)), qk ∈ Ck, (2.21)

where bk represents the unit binormal on the kth ring and ck is a cut-off parameter, assumed to be constant.
The specific choice of the regularization method is not important for the present paper as long as it satisfies

a certain consistency condition in the Hamiltonian framework of our model. This is discussed in more detail
at a later stage.
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Far-field decay rates of uR,uI and ∇�B . For future reference, it is useful to note the far-field decay rates of
the different components of the velocity field. Expanding (2.18) for large l =‖ l ‖, we show straightforwardly
that

uR ∼
N
∑

i=1

�i
4π

(

1
l3

∮

Ci

li × ti dsi − 3l
l5 × ∮

Ci

〈l, li 〉ti dsi

)

+ O
(

1
l4

)

, (2.22)

where we have also used the fact that
∮

Ci
ti dsi = 0 (see [37] for a more detailed exposition of far-field decay

rates of vortical structures in R
3). The decay rates for uI and ∇�B are given by the analysis of potential fields

in [6] (Chap. 2). It is demonstrated therein that provided
∫

∂B n · ∇φd A = 0, the potential function φ decays
at least as fast as 1/ l2. It is obvious from the boundary conditions (2.8) and (2.16) and the fact that both uR
and the body velocity field are divergence-free in B that both�I and�B satisfy this property. Hence, both uI
and ∇�B decay as 1/ l3. To summarize, in the far field

uR = O
(

1
l3

)

, uI = O
(

1
l3

)

, ∇�B = O
(

1
l3

)

. (2.23)

Velocity field of the N rings in the presence of the body. The velocity field of the N rings in the presence
of the body is given by (2.14), with uR given by (2.18) and uI given by (2.17).

3 Evolution equations for the rings

The evolution equations for the rings follow from a fundamental law of inviscid vortex motion, namely that
singular distributions of vorticity (for example rings, point vortices, and vortex sheets) are convected by the
fluid flow (see [32] (Chaps. 1, 2) for more details). In a spatially fixed frame, these equations are

∂Ci

∂t
=
(

N
∑

j, j 	=i
ūV, j + ūI,i + ∇�B

)n

|Ci

+ (

ūSI,i
)n
, i = 1, . . . , N ,

where ūV, j is ūV due to the j th ring alone, and so on. The superscript n indicates that only the non-parallel
component of each vector field in parentheses contributes to changes in the curve shape. The non-parallel
component on Ci of any vector field X is given by

(X)n = ti × (X × ti ) .

Transferred to the body-fixed frame, the equations are

∂Ci

∂t
+ (U +�× li )n|Ci

=
(

N
∑

j, j 	=i
uV, j + uI,i + ∇�B

)n

|Ci

+ (

uSI,i
)n
, i = 1, . . . , N . (3.1)

In the above, �B is the potential function generating the Kirchhoff field induced by the motion of the body,
which has a linear decomposition in terms of the components of the velocity U of the body center (of mass)
(see [29]):

�B = φx u + φyv + φzw + φλλ+ φχχ + φςς, (3.2)

where U ≡ (u, v, w) and � ≡ (λ, χ, ς).
The final coupled equations of motion for the dynamically interacting system comprising a rigid body of

arbitrary shape and N vortex rings of arbitrary shape are thus given, in a body-fixed frame, by (2.9), (2.10)
and (3.1):

(

d

dt
+ �×

)

L = 0 (3.3)
(

d

dt
+ �×

)

A + U × L = 0, (3.4)

∂Ci

∂t
+ (U +�× li )n|Ci

=
⎛

⎝

N
∑

j, j 	=i

uV, j + uI,i + ∇�B

⎞

⎠

n

|Ci

+ (

uSI,i
)n
, i = 1, . . . , N . (3.5)
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Equations (3.3), (3.4) and (3.5) constitute a set of coupled ordinary and partial differential equations whose
solutions give the simultaneous evolution of the body velocities U, � and the ring shapes as described by the
curves Ci . The velocity field at the location of the i th ring due to j th ring is given by

uV, j |Ci
= � j

4π

∮

C j

t j ×(li −l j)ds j

|li −l j |3 + uI, j |Ci
≡ uR, j |Ci

+ uI, j |Ci
, (3.6)

where uI, j is obtained from the solution of the Neumann problem defined by (2.15) and (2.16) for the j th ring
and, similarly, �B is the solution of the Neumann problem defined by (2.7) and (2.8). As mentioned earlier,
only for bodies of simple geometry can one expect to find an exact representation of these potential fields. For
non-simple (but still smooth) body geometries, these fields could be generated numerically simultaneously
with their solutions using standard Runge–Kutta solvers or, more appropriately, variational or symplectic
integrators for (3.3), (3.4) and (3.5) coupled with Poisson solvers for the fields uI, j and ∇�B . In addition, of
course, the self-induced field uSI,i would have to be updated as per the method of regularization employed.

4 The vector potential and its properties

To demonstrate the Hamiltonian structure of (3.3), (3.4) and (3.5), we need to establish some preliminaries.
First, we introduce the vector potential A in R

3 defined as

u = ∇ × A.

The existence of A for a given smooth, divergence-free u in unbounded R
3 can be posed as a standard problem

in linear elliptic partial differential equations by imposing the condition that ∇ · A = 0. Since ω = ∇ × u, the
problem can be stated as: given ω, find a solution A to the Poisson equation

ω = −∇2A. (4.1)

For examples of solutions to this classical equation see, for example, Chap. 1 in [32].
Solutions to this equation are not unique, being defined modulo gradient fields of harmonic functions, but

uniqueness is not an issue for us. The general problem of existence of solutions of (4.1) depends on using
elliptic theory in appropriate function spaces. Those that are appropriate in this context are the Nirenberg–
Walker spaces, which are weighted Sobolev spaces that build in the correct asymptotic fall-off conditions at
infinity; see [30]. It was shown in [10] that these spaces are appropriate for fluid mechanics.

Existence of A in bounded domains. In a bounded subset of R
3 like our domain D, [14,7,2] and others

have shown that given a smooth u, the vector potential A exists and is unique provided the body has certain
topological features and, more importantly, u satisfies the boundary condition

∫

∂B u · n = 0. The latter two
papers prove these results in a function space setting.

Referring to equations (2.18), (2.20) and (2.21) and the accompanying discussion, we find that the velocity
field due to the N rings in the absence of the body obviously does not satisfy the smoothness properties required
everywhere in D for the existence of a vector potential. In particular, at all points on the rings, the velocity
field has singularities as discussed previously. It is nevertheless possible to demonstrate the existence of an A,
but with singularities at the ring locations, by invoking the results of the above authors provided this A is split
as described below. Corresponding to the splitting

u = uR + uI + ∇�B,

where, it may be recalled, both uI and ∇�B are divergence-free gradient fields in D, we split A as

A = AR + AI + AB .

Existence of A then follows immediately from the existence of AR,AI and AB as discussed below.
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Existence of AR. This is actually known and requires no proof. Indeed, the vector potential (see, for example,
[35])

AR(q) =
N
∑

i=1

�i
4π

∮

Ci

ti (si )|l−li |dsi , q /∈ Ci (i = 1, . . . , N ), (4.2)

provides the correct uR , given by equation (2.18), at every point in D not on the rings. The singularities of AR
are also consistent with the singularities of uR in the sense that

lim
q→qk

uR = lim
q→qk

∇ × AR,

for q → qk along a prescribed path.

Existence of AI and AB. The existence problem for AI and AB is as follows: given a smooth uI and a smooth
∇�B in D, find an AI and AB , respectively, such that

∇ × AB = ∇�B, ∇ × AI = uI

everywhere in D. This can be transformed to a standard Poisson (Laplace) equation like (4.1) by imposing a
divergence-free condition on AI and AB and the problem can be redefined as: find a divergence-free AI and
AB , respectively, in the bounded domain D such that

∇2AB = 0, ∇2AI = 0

everywhere in D, and such that the boundary conditions

(∇ × AB) · n = VB · n, (∇ × AI ) · n = −uR · n

are satisfied on ∂B.
The above boundary conditions are equivalent to determining the tangential components of AB,AI on ∂B

modulo gradient fields (with respect to the surface gradient operator). Viewing these tangential components as
Dirichlet boundary conditions in D, the problem can then be solved for each of the three Cartesian components
of AB and AI . The ambiguity in the choice of the surface gradient field does not cause a problem since the
vector potential can be modified by a corresponding gradient field in D which leaves the divergence and the
curl of the vector potential invariant (see Proposition 4.1 below). We note that this solution may not give the
correct tangential velocity on ∂B, since the boundary conditions do not determine the normal components of
AB and AI , but this does not matter for the results proved in this paper.

For more details and discussions of these existence issues, the reader is referred again to the cited references.
For the rest of this paper, we will assume that given a uR,uI and ∇�B , an AR,AI , and AB exist.

Properties of the vector potential. Certain properties of the vector potential A—in particular, properties of
the components AV := AR + AI and AB—will now be demonstrated. These are important for demonstrating,
in the next section, the Hamiltonian structure of our equations.

The vector potential AV has the following property, noted and proved by [14] for the case of a smooth uV .
The result also holds for the non-smooth uV in our problem. For the sake of completeness, we provide our
own coordinate version of the proof below.

Proposition 4.1 The vector potential AV can be adjusted by the addition of a gradient field so that AV is
normal at all points on the body boundary ∂B.

Proof Pick a family of orthogonal curves, parameterized by s1 and s2, that cover ∂B smoothly. At each point
on ∂B, pick a local frame with basis vectors given by the unit normal n together with s1 and s2. Write AV with
respect to this local frame as

AB
V = A1(s1, s2)s1(s1, s2)+ A2(s1, s2)s2(s1, s2)+ A3(s1, s2)n(s1, s2).
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The boundary condition (2.8) for uV written with respect to a local frame becomes

(∇B × AB
V ) · n = 0. (4.3)

We seek solutions to (4.3) of the form

(A1, A2) = ∇‖
B f

for some f : ∂B → R. Now consider a harmonic extension f̂ : D → R
3 of f . Define A

′
V in D as follows:

A
′
V = AV − ∇ f̂ .

It is easily verified that uV = ∇ × A
′
V and ∇ · A

′
V = ∇ · AV and, written in a local frame at a point on ∂B,

(A
′
V )

B = AB
V − ∇B f̂ ,

= AB
V − ∇‖

B f̂ − ∇⊥
B f̂ ,

= AB
V − ∇‖

B f − ∇⊥
B f̂ ,

= (A3 − ∇⊥
B f̂ )n = A

′
3n.

Note that the above proposition is the 3D analog of the 2D version stating that the stream function ψV is
constant along ∂B (a curve in 2D) and can be chosen to be zero.

Definition of exterior tube domains. For much of what is proved later, we need to define the following domain
in R

3. Envelop each ring with a smooth tube of circular cross-section whose boundary is diffeomorphic to the
torus T

2. Denote (as a set) the tube with cross-sectional diameter d enveloping the kth ring by T d
k . Define the

domain

Dd := D\(T d
1 ∪ · · · ∪ T d

N ).

The boundary of this domain is given by

∂Dd = ∂B ∪ ∂T d
1 ∪ · · · ∪ ∂T d

N ,

and we have the obvious identification

D = limd→0 Dd . (4.4)

Similarly, corresponding to ˜D, define

˜Dd := ˜D\(T d
1 ∪ · · · ∪ T d

N )

with boundary

∂˜Dd = ∂B ∪ S ∪ ∂T d
1 ∪ · · · ∪ ∂T d

N ,

and we have the identification

˜D = limd→0 ˜Dd . (4.5)

It follows that

D = limS→∞
d→0

˜Dd . (4.6)

Proposition 4.2 In the domain D ⊂ R
3 occupied by the fluid, the following holds:

N
∑

i=1

�i

∮

Ci

〈AB, ti 〉dsi = − ∫

∂B
〈AB,n × uV 〉d A.



48 B. N. Shashikanth et al.

Proof In the domain ˜Dd , using integration by parts and Stokes’ theorem, we have
∫

˜Dd

〈uV ,∇�B〉 dV = −
∫

∂˜Dd

�BuV · n d A,

= −
∫

∂B

�BuV · n d A −
∫

S

�BuV · n d A −
∫

∂T d
1 ∪···∪∂T d

N

�BuV · n d A,

= −
∫

S

�BuV · n d A −
∫

∂T d
1 ∪···∪∂T d

N

�BuV · n d A. [using (2.8)]

Since uV = uR + uI and uI is bounded everywhere in D, the singularities of uV are the same as of those of
uR . Substituting (2.19) for uV and taking the double limit d → 0, S → ∞, we obtain
∫

D

〈uV ,∇�B〉 dV = lim
S→∞
d→0

∫

˜Dd

〈uV ,∇�B〉 dV,

= lim
S→∞

⎛

⎝−
∫

S

�BuV · n d A

⎞

⎠+ lim
d→0

⎛

⎜

⎜

⎝

−
∫

∂T d
1 ∪···∪∂T d

N

�BuV · n d A

⎞

⎟

⎟

⎠

,

= lim
d→0

⎛

⎜

⎜

⎝

−
∫

∂T d
1 ∪···∪∂T d

N

�B

(

A

(

d

2
;�k

)

c + B

(

d

2
;�k, κk

)

b + O(1)

)

· n d A

⎞

⎟

⎟

⎠

[sufficiently rapid decay of uV and �B at infinity and (2.19)],

= lim
d→0

⎛

⎜

⎜

⎝

−
∫

∂T d
1 ∪···∪∂T d

N

�B

(

B

(

d

2
;�k, κk

)

b + O(1)

)

· n d A

⎞

⎟

⎟

⎠

[since c · n = 0 always],
= lim

d→0
(O(d log d)+ O(d)) [since B = O(log d), �B = O(1) and

∫

∂Td
k

dA = O(d)],

= 0.

Integrating by parts in a different way, by first writing ∇�B = ∇ × AB , we obtain
∫

˜Dd

〈uV ,∇�B〉 dV =
∫

˜Dd

〈AB, ω〉 dV +
∫

∂˜Dd

〈AB,n × uV 〉 d A,

=
∫

∂˜Dd

〈AB,n × uV 〉 d A

since ω = ∇ × uV = 0 in ˜Dd for all d > 0. Using (2.19) again, we find

lim
d→0

∫

∂T d
k

〈AB,n × uV 〉 d A = lim
d→0

∮

Cb
k

2π
∫

0

�k

πd
〈AB,n × c〉

(

d

2

)

dθdsk

[all other terms vanish as in the previous result and AB = O(1)],
= �k

∮

Cb
k

〈AB, tk〉 dsk .
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Gathering all the above results, we obtain

N
∑

i=1

�i

∮

Ci

〈AB, ti 〉 dsi +
∫

∂B

〈AB,n × uV 〉d A +
∫

S

〈AB,n × uV 〉d A = 0.

Using the far-field decay rates of uV and AB , one sees that

lim
S→∞

∫

S

〈AB,n × uV 〉 d A = 0,

proving the proposition.

Note: The signs of the boundary integrals in the above Proposition are determined by our convention of inward
pointing unit normals.

Another important property of AV that we will use later is a Green’s-function-type reciprocity property.
First we make note of the order of magnitude of AV,k in the vicinity of the kth ring. Consistent with (2.19), it
can be seen that

AV,k = O(log e). (4.7)

For this, write AV,k = AR,k +AI,k , note that AI,k = O(1) everywhere in D and then use the integral expression
for AR,k given by (4.2).

Proposition 4.3 The following relation holds for any two vortex rings, C1 and C2, in D:

�1

∮

C1

〈AV,2, t1〉ds1 = �2

∮

C2

〈AV,1, t2〉ds2, (4.8)

where AV,1,AV,2 are the vector potentials associated with the velocity fields (in the presence of the body)
uV,1,uV,2 of the two rings, respectively.

Proof The proof can be constructed similarly to that of Proposition 4.2 using integration by parts on
∫

˜Dd 〈uV,1,
uV,2〉 dV and expanding in two different ways. First, expand it as

∫

˜Dd

〈

uV,1,uV,2
〉

dV =
∫

∂˜Dd

〈

AV,2,n × uV,1
〉

d A,

=
∫

∂B∪S∪∂T d
1 ∪∂T d

2

〈

AV,2,n × uV,1
〉

d A,

=
∫

S∪∂T d
1 ∪∂T d

2

〈

AV,2,n × uV,1
〉

d A,

using Proposition 4.1 to show that the integrals over the body surface and ∂T d
1 are zero. In applying Proposi-

tion 4.1, we note that boundary condition (2.8) is also satisfied by each individual ring, i.e.,
∫

∂B uV,1 · n = 0,
etc. Next, expand as

∫

˜Dd

〈

uV,1,uV,2
〉

dV = ∫

S∪∂T d
1 ∪∂T d

2

〈

AV,1,n × uV,2
〉

d A.

Using (4.7) and the near-ring expansion and farfield decay rates of uV,1, uV,2—equations (2.19) and (2.23),
respectively—, we find the result follows in the limit d → 0, S → ∞
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Corollary 4.4 If Ca and Cb denote two different positions of the same ring (in the presence of the body) then
∮

Ca

〈AI,b, ta〉dsa =
∮

Cb

〈AI,a, tb〉dsb. (4.9)

Proof Put �1 = �2 in (4.8). Write AV,a = AR,a + AI,a etc. and then using (4.2) note that the Biot–Savart
terms cancel on each side of (4.8) to give (4.9).

Next, we establish an important property of the vector potential AB .
Just as the velocity potential �B can be written as a linear combination of the body velocities, as in (3.2),

we can write, relative to a body-fixed frame,

AB = [A]UB, (4.10)

where UB = (u, v, w, λ, χ, ς) are the body center-of-mass velocities and the body angular velocities in the
(body-fixed frame’s) x, y and z directions, respectively, and [A] is a 3 × 6 matrix:

[A] :=
⎛

⎝

Aux Avx Awx Aλx Aχx Aςx
Auy Avy Awy Aλy Aχy Aςy
Auz Avz Awz Aλz Aχ z Aς z

⎞

⎠ ≡ (

Au Av Aw Aλ Aχ Aς
)

, (4.11)

where ∇ × Au is the fluid (potential) velocity field induced by the motion of the body with unit speed in the
x-direction, etc. The vector potentials Au,Av,Aw,Aλ,Aχ ,Aς satisfy ∇ × Au = ∇φx , ∇ × Av = ∇φy , etc.
in D, where φx , φy , etc. are the components of �B in the analogous linear decomposition of �B , and also
satisfy the boundary conditions on ∂B:

(∇ × Au) · n = i · n, (∇ × Av) · n = j · n, (∇ × Aw) · n = k · n, (4.12)

(∇ × Aλ) · n = (i × l) · n, (∇ × Aχ ) · n = (j × l) · n, (∇ × Aς ) · n = (k × l) · n, (4.13)

where i, j and k are unit vectors parallel to the x, y and z axes, respectively, and l is the position vector of
points on ∂B in the body-fixed frame. We can thus write

∇ × AB = [(∇ × Au)
T , (∇ × Av)T , . . . , (∇ × Aς )T ]UB,

and it can easily be checked that the boundary condition (∇ × AB) · n = VB · n is satisfied on ∂B.

Proposition 4.5 Restricted to ∂B, the vector potentials Au,Av,Aw,Aλ,Aχ ,Aς can be expressed as

Au = 1

2
(i × l)+ ∇‖

B f,

Av = 1

2
(j × l)+ ∇‖

B g,

Aw = 1

2
(k × l)+ ∇‖

Bh,

Aλ = −1

2
l2i + ∇‖

Bi,

Aχ = −1

2
l2j + ∇‖

B j,

Aς = −1

2
l2k + ∇‖

Bk,

for f, g, . . . , k : ∂B → R.

Proof This is simply a matter of verifying that the above expressions satisfy the boundary conditions (4.12)
and (4.13).
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Proposition 4.6 Assuming that there exists a neighborhood of the body in which there is no vorticity,2 it is the
case for any smooth function f : ∂B → R that

∫

∂B

〈∇‖
B f,n × uV 〉d A = 0.

Proof Since there is no vorticity on ∂B,
∫

∂B

〈∇‖
B f,n × uV 〉d A =

∫

∂B

〈n,uV × ∇‖
B f 〉d A,

=
∫

∂B

〈n,∇‖
Bϕ × ∇‖

B f 〉d A,

where ϕ : U → R is defined on the neighborhood of the body which is vorticity-free. Rewriting the integral
in terms of differential forms and using Stokes’ theorem for a boundaryless manifold, we find that it follows
that

∫

∂B

i∗(dϕ ∧ d f ) =
∫

∂B

dBϕ ∧ dB f =
∫

∂B

dB(ϕ ∧ dB f ) = 0,

where the first integrand is the pullback of the two-form dϕ ∧ d f under the inclusion map i : ∂B → U .

5 Hamiltonian structure of the equations

In this section it will be shown that (3.3), (3.4) and (3.5), taken together, possess a Hamiltonian structure
relative to the kinetic energy Hamiltonian of the system and an appropriate Poisson bracket.

The kinetic energy. Consider the kinetic energy of the body-rings system:

K = 1

2

∫

D

〈u,u〉 dV + 1

2
〈(U, �),Mb(U, �)〉 ,

where Mb is the mass matrix for the rigid body. Using the Hodge and Kirchhoff decompositions, we can write

K = 1

2

∫

D

〈uV + ∇�B,uV + ∇�B〉 dV + 1

2
〈(U, �),Mb(U, �)〉 ,

= 1

2

∫

D

〈uV ,uV 〉 + 1

2

∫

D

〈∇�B,∇�B〉 dV + 1

2
〈(U, �),Mb(U, �)〉

[L2 − orthogonality of uV and �B],
= 1

2

∫

D

〈uV ,uV 〉 + 1

2
〈(U, �),M(U, �)〉 [Kirchhoff decomposition (3.2)],

where U is the velocity of the center (of mass) of the body and � is the angular velocity of the body in
the body-fixed frame. The symmetric effective mass matrix M incorporates both the actual translational and
rotational inertias of the body (given by Mb) and the added inertias accounting for the resistance of the fluid
to body translation and rotation. This identification of the fluid effects manifest in ∇�B with amendments to
the body’s inertia follows [19] and other classical references, and hinges on the form (3.2) of �B .

2 This assumption holds in our problem since our phase space excludes the intersection points.
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Increasing the domain D to infinity does not cause K to diverge, as per the far-field decay rates (2.23), but
uV has singularities at the ring locations, and—referring to (2.19)—the point-vortex-like term results in the
divergence of K .

Phase space of the system. Before defining the Hamiltonian function, we define the system’s phase space
to be

P := Pb × PR ≡ se(3)∗ × (S\�), (5.1)

where Pb is the reduced phase space of the body in the body-fixed frame and is identified with se(3)∗, the
dual of the Lie algebra corresponding to the Lie group of rigid body translations and rotations in R

3. PR is the
phase space of the rings in the body-fixed frame, identified with the space S of N (smooth) closed curves in
R

3\B minus �, the intersection set of the curves. Note that the phase space excludes all intersections of the
rings amongst themselves and with the body.

Kinetic energy regularization and the Hamiltonian function. The kinetic energy K is a real-valued function
on P when (U, �) is expressed in terms of L and P according to (2.11). Note that the integral over the fluid,
given the body shape and ring strengths, is a function on S after substituting for uV from (3.6), (2.18) and (2.17).
To regularize the kinetic energy, we first write

uV =
N
∑

i=1

uV,i ,

and, correspondingly,

AV =
N
∑

i=1

AV,i ,

where uV,i is uV due to the i th ring alone and AV,i is its corresponding vector potential.
Expressing the fluid integral in the domain Dd defined earlier:

∫

Dd

〈uV ,uV 〉 dV =
N
∑

i=1

∫

Dd

〈uV,i ,
N
∑

j 	=i
uV, j 〉 dV +

N
∑

k=1

∫

Dd

〈uV,k,uV,k〉 dV .

The final sum of integrals on the right-hand side of this equation causes the divergence of K . Using (i)
integration by parts, (ii) equations (2.19) and (4.7), (iii) Proposition 4.1 and (iv) the procedure outlined in the
proof of Proposition 4.2, one sees that

∫

D

〈uV ,uV 〉 dV = lim
d→0

∫

Dd

〈uV ,uV 〉 dV,

=
N
∑

i=1

∮

C j

〈AV,i ,

N
∑

j 	=i

t j 〉ds j + lim
d→0

N
∑

k=1

∫

∂T d
k

〈AV,k,n × uV,k〉 d A.

Splitting the integral in the last sum into four integrals using AV,k = AR,k + AI,k and uV,k = uR,k + uI,k ,
one finds that two of the integrals go to zero, one goes to a non-zero limit and the fourth blows up as log d as
d −→ 0. A finite approximation to this set of terms has to be made to regularize K . Since these singular terms
isolate the effect of the self-induced field in the absence of the body, they represent the self-induced kinetic
energy. It should be noted that for the case of parallel, rectilinear vortex filaments (or point vortices in a plane
if one takes a perpendicular slice), the self-induced kinetic energy term is simply dropped since there is no
self-induced velocity.
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The Hamiltonian function for the system, H : P → R, is the regularized K written in terms of the phase
space variables:

H(L,A, s) = 1

2

N
∑

i=1

⎛

⎜

⎝

∮

C j

〈

AV,i ,

N
∑

j 	=i

� j t j

〉

ds j +
∮

Ci

〈

AI,i , �i ti
〉

dsi

⎞

⎟

⎠

+HSI + 1

2

〈

(L,A)− (P,�),M−1((L,A)− (P,�))
〉

, (5.2)

where s ≡ (C1, . . . ,CN ) ∈ S and

HSI = Reg

⎛

⎜

⎜

⎝

lim
d→0

N
∑

k=1

∫

∂T d
k

〈AR,k,n × uR,k〉 d A

⎞

⎟

⎟

⎠

.

Note that P and � as defined by equations (2.12) and (2.13) are also functions on S (given a body shape and
vortex strengths).

Functional derivatives. Functional derivatives are defined using the pairing between Tp P and T ∗
p P . Since

P = se(3)∗×S\� and se(3)∗ is identified, in the usual way, with R
6∗(≡ R

3∗×R
3∗), which in turn is identified

with R
6 using the standard Euclidean pairing, it follows that

Tp P ≡ R
6 × Xrings,

T ∗
p P ≡ R

6 × X∗
rings,

where Xrings is the vector space of smooth vector fields on N curves in R
3. Identify elements of X∗

rings with

one-forms on the N curves in R
3. Pair R

3∗ and R
3 using the standard Euclidean pairing. Pair Xrings and X∗

rings
as follows:

〈X, α〉S =
N
∑

i=1

∮

γα (u X (si )) dsi =
N
∑

i=1

∮

v
�
α (u X (si )) dsi ,

where γα is the one-form in R
3 (identifiable with the vector field vα using the standard inner product on R

3)
corresponding to α ∈ X∗

rings and u X is the vector field in R
3 corresponding to X ∈ Xrings. This allows us to

define the pairing between Tp P and T ∗
p P as:

〈(u, X), (v, α)〉 = 〈u, v〉R6 + 〈X, α〉S , (5.3)

where the first pairing on the right is the standard Euclidean inner product on R
6.

Now for p ≡ (L,A, s), consider variations δp ≡ (δL, δA, δs) ≡ (δL, δA, δC1, . . . , δCN ). The functional
derivatives δF/δCi are defined using the fluid pairing:

〈

δs,
δF

δs

〉

=
N
∑

i=1

∮

i

〈

δCi ,
δF

δCi

〉

dsi : = ∑N
i=1 limε→0

1
ε
(F (L,A,Ci + εδCi )− F (L,A,Ci )) .

The functional derivative ∂F/∂µ for µ ∈ se(3)∗ is defined similarly using the standard Euclidean pairings.
For µ ≡ (L,A) ∈ se(3)∗ and δµ ≡ (δL, δA) ,

〈

∂F

∂µ
, δµ

〉

:=
〈

∂F

∂L
, δL

〉

R3
+
〈

∂F

∂A , δA
〉

R3
.
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Poisson brackets. Consider the following Poisson bracket on P ≡ Pb×Pv = R
6∗×S\�. For F,G : P → R,

{F,G}P = {

F |Pb ,G|Pb

} + {

F |Pv ,G|Pv

}

, (5.4)

where the first bracket is a Lie–Poisson bracket. Recall that the Lie–Poisson bracket on se(3)∗ ≡ R
3∗ × R

3∗
is given as follows (see, for instance, [27]):

{

F̃, G̃
}

± (µ) = ±
〈

µ,

[

∂ F̃

δµ
,
∂G̃

∂µ

]〉

,

= ∓
〈

∂ F̃

∂µ
, ad∗

∂G̃/∂µ
µ

〉

, (5.5)

for F̃, G̃ : se(3)∗ → R and µ ∈ se(3)∗.
The second bracket is the canonical bracket associated with the symplectic form on the phase space of

rings/filaments in R
3 derived by [28]. It was shown in that paper that the phase space of rings/filaments is a

coadjoint orbit of the dual of the Lie algebra of the group of volume-preserving diffeomorphisms of R
3. Thus,

there is a natural symplectic structure on this phase space, namely the Kirillov–Kostant–Soureau symplectic
structure on coadjoint orbits of the dual of the Lie algebra. For N rings in R

3, the vorticity two-form in R
3 is

ω(x, y, z) =
N
∑

i=1

�i iti dx ∧ dy ∧ dz δi (x, y, z), (5.6)

where δi is the delta function defined relative to the i th ring. In other words, the vorticity two-form is the sum of
the contractions of the standard volume form in R

3 with the tangent vector fields on the rings. The symplectic
form is then given by

�(Luω,Lvω) = ∑N
i=1 �i

∮

i ti · (u(si )× v(si ))dsi = ∑N
i=1 �i

∮

i v(si ) · (ti × u(si ))dsi , (5.7)

where Luω,Lvω are identified with tangent vectors to the coadjoint orbit and u, v are vector fields on the
rings. Note that only the vector component normal to the curves contributes to the symplectic form (see [35]
for more on this). The above symplectic form can obviously also be viewed as a symplectic form on S, the
space of closed curves defined earlier, by identifying tangent vectors to S with the vector fields u, v etc. on
the rings. Thus, for functions F̂, Ĝ : S → R, the bracket associated with this symplectic form is ([27]):

{

F̂, Ĝ
}

(s) = �(X F̂ (s), XĜ(s)), s ∈ S, (5.8)

where X F̂ , XĜ : S → T S are the Hamiltonian vector fields corresponding to F̂, Ĝ.
To obtain this bracket, note that from the coordinate-free version of Hamilton’s equations on a symplectic

manifold ([27]), iX F̂
� = DF̂ , the definition of the functional derivative and (5.7), it follows (as was implicit

in [35]) that:

ti × uF̂ =
(

δ F̂
δCi

)�

, (5.9)

which holds at each point of the i th ring. In the above,
(

δ F̂
δCi

)�

is the vector field on the ring associated with the

one-form
(

δ F̂
δCi

)

on the ring using the standard metric on R
3, and uF̂ is the vector field on the ring associated

with the element at s of the Hamiltonian vector field X F̂ . Using this relation and the fact that ni , ti and bi form
an orthogonal system at each point of the curve, we have

Proposition 5.1 The Poisson bracket (5.8) is given by

{

F̂, Ĝ
}

(s) =
N
∑

i=1

�i

∮

i

(

δ F̂

δCi
(ni )

δĜ

δCi
(bi )− δ F̂

δCi
(bi )

δĜ

δCi
(ni )

)

dsi ,

≡
N
∑

i=1

�i

∮

i

〈(

δ F̂

δCi

)�

×
(

δĜ

δCi

)�

, ti

〉

dsi . (5.10)
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Proof Use (5.9), ni × bi = ti , etc. and the vector product identity

(A × B) · (C × D) = (A · C)(B · D)− (A · D)(B · C)

to show that (5.10) leads to (5.7).

Hamiltonian vector field. We now obtain the Hamiltonian vector field X H corresponding to the Hamiltonian
H given by equation (5.2) relative to the Poisson bracket (5.4) and show that it provides the same equations
of motion as those from the momentum balance analysis, i.e., equations (3.3), (3.4) and (3.1).

Hamilton’s equations of motion are determined by requiring the Poisson bracket form of the equations:

Ḟ = {F, H}P

(see, for instance, [27]). From this we obtain the Hamiltonian vector field X H as
〈

X H ,
δF

δp

〉

= {F, H}P

using the pairing (5.3) and the Poisson bracket (5.4). Define variation in the Hamiltonian (5.2) in the Ci -
direction as

δCi H := lim
ε→0

1

ε
(H (L,A,Ci + εδCi )− H (L,A,Ci )) ,

where εδCi = εδli . Then

δCi H = 1

2
δCi

N
∑

i=1

⎛

⎜

⎝

∮

C j

〈AV,i ,

N
∑

j 	=i

� j t j 〉ds j +
∮

Ci

〈AI,i , �i ti 〉dsi

⎞

⎟

⎠

+δCi HSI − 〈

δCi (P,�),M−1((L,A)− (P,�))
〉

[using the fact that M, and hence M−1, is symmetric],

= 1

2
δCi

∮

C j

〈AV,i ,

N
∑

j 	=i

� j t j 〉ds j + 1

2
δCi

N
∑

j 	=i

∮

Ci

〈AV, j , �i ti 〉dsi

+1

2
δCi

∮

Ci

〈AI,i , �i ti 〉dsi + δCi HSI − 〈

δCi (P,�), (U, �)
〉

,

= δCi

N
∑

j 	=i

∮

Ci

〈AV, j , �i ti 〉dsi + 1

2
δCi

∮

Ci

〈AI,i , �i ti 〉dsi + δCi HSI − 〈

δCi (P,�), (U, �)
〉

[using reciprocity relation (4.8)].
Now recall the definitions of P and � from (2.12) and (2.13).

Proposition 5.2 The body integrals in P and � can be written as

1

2

∫

∂B

l × (n × uV )d A = i
∫

∂B

〈Au,n × uV 〉d A + j
∫

∂B

〈Av,n × uV 〉d A

+k
∫

∂B

〈Aw,n × uV 〉d A, (5.11)

−1

2

∫

∂B

l2(n × uV )d A = i
∫

∂B

〈Aλ,n × uV 〉d A + j
∫

∂B

〈Aχ ,n × uV 〉d A

+k
∫

∂B

〈Aς ,n × uV 〉d A. (5.12)
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Proof This follows from Propositions 4.5 and 4.6.

Using Propositions 5.2 and 4.2 (applied to each of Au,Av, etc.), one can write the Ci -variation in H as:

δCi H − δCi HSI = δCi

N
∑

j 	=i

∮

Ci

〈AV, j , �i ti 〉dsi + 1

2
δCi

∮

Ci

〈AI,i , �i ti 〉dsi

+
〈

⎛

⎜

⎝
δCi

∫

Ci

〈Au, �i ti 〉dsi , δCi

∫

Ci

〈Av, �i ti 〉dsi , · · · , δCi

∫

Ci

〈

Aς , �i ti
〉

dsi

⎞

⎟

⎠
, (U, �)

〉

−
〈

⎛

⎜

⎝
δCi

⎛

⎜

⎝

�i

2

∮

Ci

(li (si )× ti (si ))dsi

⎞

⎟

⎠
, δCi

⎛

⎜

⎝
−�i

2

∮

Ci

l2
i (si )ti (si )dsi

⎞

⎟

⎠

⎞

⎟

⎠
, (U, �)

〉

.

We are now ready to state our main theorem.

Theorem 5.3 Equations (3.3), (3.4) and (3.1) form a Hamiltonian system for the Hamiltonian function H,
given by (5.2), on the Poisson manifold P, defined by (5.1), equipped with the Poisson bracket (5.4).

Proof We first evaluate the variations in each of the terms of δCi H . The first sum of terms gives

δCi

N
∑

j 	=i

∮

Ci

〈AV, j , �i ti 〉dsi = �i

N
∑

j 	=i

⎛

⎜

⎝

∮

Ci

〈AV, j ,Dlti · δli 〉dsi +
∮

Ci

〈DlAV, j · δli , ti 〉dsi

⎞

⎟

⎠

= �i

N
∑

j 	=i

⎛

⎜

⎝

∮

Ci

〈(−DlAV, j
) · ti , δli 〉dsi +

∮

Ci

〈(DlAV, j )
T · ti , δli 〉dsi

⎞

⎟

⎠

where we have made the identifications

Dlti · δli ≡ δCi ti ≡
(

δ
dxi

dsi
, δ

dyi

dsi
, δ

dzi

dsi

)

≡
(

dδxi

dsi
,

dδyi

dsi
,

dδzi

dsi

)

and have used integration by parts. Thus, we get

δCi

N
∑

j 	=i

∮

Ci

〈AV, j , �i ti 〉dsi = �i

N
∑

j 	=i

⎛

⎜

⎝

∮

Ci

〈
(

(−DlAV, j
) + (DlAV, j )

T
)

· ti , δli 〉dsi

⎞

⎟

⎠
,

= �i

N
∑

j 	=i

∮

Ci

〈− (∇ × AV, j
) × ti , δli 〉dsi .

Proceeding in the same way yields

1

2
δCi

∮

Ci

〈AI,i , �i ti 〉dsi = 1

2
· 2 ·

∮

Ci

〈− (∇ × AI, j
) × ti , δli 〉dsi .

To explain the factor of two on the right it is useful to think of the variation in the above term to consists of
two parts: one due to the variation in the curve position in the field of the old AI,i and the other due to the
variation in AI,i at the old curve position. And by (4.9), these variations are equal.
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In a similar manner, it can be shown that

δCi

∫

Ci

〈Au, �i ti 〉dsi = �i

∮

Ci

〈
(

(−DlAu)+ (DlAu)
T
)

· ti , δli 〉dsi ,

= �i

∮

Ci

〈− (∇ × Au)× ti , δli 〉dsi

and so on. Next, we find that

〈

δCi

⎛

⎜

⎝

�i

2

∮

Ci

(li (si )× ti (si ))dsi

⎞

⎟

⎠
,U

〉

= �i

2

〈

∮

Ci

(Dlli · δli × ti + li × Dlti · δli ) dsi ,U

〉

,

= �i

2

∮

Ci

(〈Dlli · δli , ti × U〉 + 〈Dlti · δli ,U × li 〉) dsi ,

= �i

2

∮

Ci

(〈δli , ti × UB〉 + 〈δli ,−Dl (U × li ) · ti 〉) dsi ,

= �i

∮

Ci

〈δli , ti × U〉dsi

and, in like manner,

〈

δCi

⎛

⎜

⎝

�i

2

∮

Ci

(l2
i (si )ti (si ))dsi

⎞

⎟

⎠
, �

〉

= �i

2

∮

Ci

〈

Dl(l
2
i ti ) · δli ,�

〉

dsi ,

= �i

∮

Ci

〈

l2
i

2
Dlti · δli + 〈li , δli 〉ti , �

〉

dsi ,

= �i

∮

Ci

(

−〈δli ,Dl(
l2
i

2
�) · ti 〉 + 〈〈li , δli 〉ti , �〉

)

dsi ,

= �i

∮

Ci

(−〈δli , �〉〈li , ti 〉 + 〈li , δli 〉〈ti , �〉) dsi ,

= �i

∮

Ci

〈δli , ti × (li ×�)〉dsi .

Thus the functional derivative of H with respect to Ci satisfies

(

δH

δCi

)�

=
⎛

⎝−
N
∑

j 	=i

(∇ × AV, j
) × ti −

(∇ × AI,i
)× ti +

(

δHSI

δCi

)�

−(∇ × AB)× ti +(U+�× li )× ti

⎞

⎠

|Ci

.

Using (5.10), one sees that

∂Ci

∂t
=
(

δH

δCi

)�

× ti |Ci ,

=
⎛

⎝

N
∑

j 	=i

(∇ × AV, j
) + ∇ × AI,i + ∇ × AB − (U +�× li )

⎞

⎠

n

|Ci

+
(

δHSI

δCi

)�

× ti |Ci ,
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which is the same as (3.1) assuming that the following consistency condition relative to the Hamiltonian
structure is satisfied by the self-induced field:

un
SI =

(

δHSI
δCi

)� × ti (5.13)

everywhere on the i th ring. In other words, the Hamiltonian vector field corresponding to the regularized
self-induced kinetic energy term should be equal to uSI .

The above equation is indeed satisfied if, for example, the local induction approximation is used, as shown
in [35]. Alternatively, one could regularize only one of either the self-induced kinetic energy or the velocity
and prescribe the regularization of the other in a manner such that (5.13) is satisfied.

To prove the Lie–Poisson part, it can be shown by matrix manipulation that the partial derivatives of (5.2)
with respect to L and A are

∂H

∂L
= U,

∂H

∂A = �.

The ad∗ operator on se∗(3) is given by ([27])

ad∗
(m1,m2)

(n1, n2) = (n1 × m1 + n2 × m2, n2 × m1).

It then follows that

ad∗
( ∂H
∂A ,

∂H
∂L )
(A,L) = (L × U + A ×�,L ×�).

Using the negative Lie–Poisson bracket (5.5), one obtains (3.3) and (3.4).

6 Conclusions and future directions

We have demonstrated that the system comprising a free rigid body of arbitrary smooth shape interacting
dynamically with N closed vortex filaments of arbitrary shape in an infinite ideal fluid possesses a Hamiltonian
structure, provided that the regularization of the system’s divergent kinetic energy is undertaken in a particular
way. This paper may be viewed as an extension of earlier work by the authors in [36,35] and [33] and is written
in a similar spirit. We note that only a small fraction of the traditional engineering literature addressing fluid-
structure interactions deals with problems—like ours—in which boundary motions are determined dynamically
rather than prespecified, despite the importance of such problems in areas like aeroelasticity.

The results of the present paper suggest several avenues for future study. We briefly survey two categories
of these below.

Extensions. In this paper, vortex rings are modeled as flow singularities along closed curves; it would be
natural to reformulate our problem with vortex rings endowed with finite cores. Even in the absence of a rigid
body—or any boundary on the fluid domain—the system comprising N arbitrarily shaped rings with core
structure has not been examined thoroughly in a Hamiltonian context. The ideas put forth in [21] regarding
the Hamiltonian structure underpinning the vorticity dynamics in a freely evolving bubble may be useful in
considering such an extension.

Expanding our treatment to accommodate deformability of the body would be of basic mathematical
interest but could also lead to the improved practical modeling of problems in aquatic locomotion. A variety
of marine animals are understood to propel themselves through the shedding of coherent vortex structures;
dynamic models and control strategies for such mechanisms promise to impact the development of agile and
efficient biomimetic robotic vehicles. There has been quite a bit of theoretical research in the past decade
related to the existence and uniqueness of solutions and functional analytic aspects of such coupled systems
(for cases including deformable and rigid bodies in inviscid and viscous frameworks, see, for example, [12]
and [11] and references therein). However, the dynamics and control of such coupled systems, especially with
a focus on vortical structures, remains a fairly open area for theoretical research. In an inviscid framework
involving rigid bodies, the dynamics of coupled systems in the plane for some special configurations has been
studied by [34]. Some control models for coupled systems, in a similar framework, have been investigated by
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[23] and [15]. In the former, the control input is a force on a rigid cylinder in the presence of a nearby point
vortex and in the latter the control input is the instantaneous shape of an articulated three–link mechanism in a
potential flow. Motion planning and control of a deformable body by shape changes in the presence of vortical
structures is a promising direction for future research. We note, however, that the successful modeling of real
flow phenomena—particularly at high Reynolds number—may require the proper treatment of viscous effects.

Another extension, that has in fact been pursued by three of us for a few years now, is to place and understand
the Hamiltonian structure of models like the one in this paper in a more general geometric mechanics framework
of symmetry and reduction [24–26]. In particular, we want to understand clearly the roles that the fluid particle
relabeling symmetry and the rigid body rotational and translational symmetries play in obtaining the Poisson
brackets of this model, which are on a symmetry reduced space, from a more general canonical ‘fluids + rigid
body’ Poisson bracket structure on an unreduced space. Work with similar objectives in mind, but on the
Lagrangian side, was initiated in the theses of [16] and [31]. For a history of related work for fluids without
moving rigid boundaries, on both the Lagrangian and Hamiltonian sides, see [27].

Specific cases. The realization of explicit equations of motion for the system described in the present paper is
particularly direct when the body is taken to be spherical, the rings taken to be circular initially, and the body
and rings are aligned along a common axis of symmetry such that the circular shape of the rings is preserved.
The equations governing the evolution of the rings, and thus the equations of motion for the system overall,
reduce to a system of ordinary differential equations which can be integrated easily using standard ODE solvers.
We are currently examining this system numerically in parallel with laboratory experiments being performed
at NMSU, described in [1], anticipating the comparison of our inviscid model’s dynamics with those of a
real viscous flow. Emerging numerical techniques like immersed boundary methods and immersed interface
methods for moving boundary problems will, furthermore, allow us to study a model for this system based on
the Navier–Stokes equations, providing another basis for comparison and model validation.

Appendix A: Derivation of the Lie–Poisson equations

Following the steps outlined in Sect. 2.1, beginning with (2.3) and (2.5), we now derive the Lie–Poisson
equations for the system. Using the Hodge decomposition (2.6), we write (2.3) and (2.5) as:

m B
dU
dt

+ d

dt

⎛

⎜

⎝

1

2

⎧

⎪

⎨

⎪

⎩

∫

˜D

(r × ω̄)dV +
∫

∂B

r × (n̄ × ∇�B)d Ā +
∫

∂B

r × (n̄ × ūV )d Ā

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

= F̄S

d

dt
(m B b̄ × U + I�)− 1

2

d

dt

⎛

⎜

⎝

∫

˜D

(r2ω̄)dV +
∫

∂B

r2(n̄ × ∇�B)d Ā +
∫

∂B

r2(n̄ × ūV )d Ā

⎞

⎟

⎠
= M̄S,

where

F̄S =
∫

S

ū(ū · n̄)d Ā − d

dt

⎛

⎝

1

2

∫

S

r × (n̄ × ū)d Ā

⎞

⎠ +
∫

S

ps n̄d Ā, (A.1)

M̄S =
∫

S

r × ū(ū · n̄)d Ā + 1

2

d

dt

∫

S

r2(n̄ × ū)d Ā +
∫

S

ps(r × n̄)d Ā. (A.2)

Substituting the vorticity two-form (5.6) into the equations for the linear and angular momenta, one obtains:

m B
dU
dt

+ 1

2

⎧

⎪

⎨

⎪

⎩

d

dt

∮

∂B

r × (n̄ × ∇�B)d Ā + d

dt

∑

�i

∮

Ci

(ri × t̄i )dsi + d

dt

∮

∂B

r × (n̄ × ūV )d Ā

⎫

⎪

⎬

⎪

⎭

= F̄S,

d

dt
(m B b̄ × U + I�)− 1

2

d

dt

∮

∂B

r2(n̄ × ∇�B)d Ā − 1

2

d

dt

∑

�i

∮

Ci

r2
i t̄i dsi − 1

2

d

dt

∮

∂B

r2(n̄ × ūV )d A = M̄S,

where Ci denotes the arc-length parameterized i th curve in the spatially-fixed frame.
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The terms F̄S and M̄S as the boundary S goes to infinity. The terms F̄S and M̄S are now evaluated in the
limit as S goes to infinity. Since S, by definition, always traverses a region of irrotational flow, there exists a
single-valued potential function � such that ū = ∇� on S. Moreover, the unsteady Bernoulli’s equation

∂�

∂t
+
( |∇�|2

2

)

+ ps = f (t),

with the density of the fluid taken to be unity, is applicable on S.
The first term on the right in each of (A.1) and (A.2) goes to zero as S → ∞ using the far-field decay

rates (2.23). To evaluate the remaining terms, we use the above form of Bernoulli’s equation together with the
following vector identities, all derivable from Stokes’ theorem using the relations (2.1) and (2.4) and harmonic
extension arguments:

1

2

∫

S

r × (n̄ × ∇�)d Ā = −
∫

S

�n̄d Ā, (A.3)

1

2

∫

S

r2(n̄ × ∇�)d Ā = −
∫

S

�(n̄ × r)d Ā. (A.4)

Note, in particular, the special cases of these identities obtained by setting � = 1. Considering F̄S first,

− d

dt

⎛

⎝

1

2

∫

S

r × (n̄ × ū)d Ā

⎞

⎠+
∫

S

ps n̄d Ā, = − d

dt

⎛

⎝

1

2

∫

S

r × (n̄ × ∇�)d Ā

⎞

⎠+
∫

S

(

f (t)−
(

∂�

∂t
+
(

|∇�|2
2

)))

n̄d Ā

= d

dt

⎛

⎝

∫

S

�n̄d Ā

⎞

⎠ +
∫

S

(

f (t)−
(

∂�

∂t
+
(

|∇�|2
2

)))

n̄d Ā

=
∫

S

−
(

|∇�|2
2

)

n̄d Ā (for S fixed in time),

= O(1/|r|5).

The remaining two terms in MS can be similarly shown to go to zero as S → ∞:

d

dt

⎛

⎝

1

2

∫

S

r2(n̄ × ū)d Ā

⎞

⎠ +
∫

S

ps(r × n̄)d Ā, = d

dt

⎛

⎝

1

2

∫

S

r2(n̄ × ∇�)d Ā

⎞

⎠ +
∫

S

(

f (t)−
(

∂�

∂t
+
(

|∇�|2
2

)))

(r × n̄)d Ā

= − d

dt

⎛

⎝

∫

S

�(n̄ × r)d Ā

⎞

⎠ +
∫

S

(

f (t)−
(

∂�

∂t
+
(

|∇�|2
2

)))

(r × n̄)d Ā

=
∫

S

−
(

|∇�|2
2

)

(r × n̄)d Ā (for S fixed in time),

= O(1/|r|4).

Body-fixed frame. The equations of motion are now written with respect to the instantaneous body-fixed
frame, which is translating and rotating with origin fixed at the body center (of mass). Position vectors in the
two frames are related by

r = R(t)l + b̄(t) = R(t) (l + b(t)) , (A.5)
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where l is the position vector of a point with respect to the instantaneous body frame, b̄(t) ∈ R
3 is the position

vector of the origin of the body-frame with respect to the origin of the inertial frame and R(t) ∈ SO(3). Vectors
of the same norm are related by:

w̄ = R(t)w

and time derivatives of such vectors are related by:

d

dt
w̄ = R(t) dw

dt + R(t)(�× w).

Use is also made of the relations

R(t)−1 ˙R(t)w = �× w,
R(t)(w1 × w2) = R(t)w1 × R(t)w2

and the vector identities
∫

∂B

l × (n × ∇�B)d A = −2
∫

∂B

�Bnd A,

1

2

∫

∂B

l2(n × ∇�B)d A = −
∫

∂B

�B(n × l)d A,

∮

Ci

ti dsi = 0,

∫

∂B

n × ∇�B d A = 0,

∮

∂B

n × uV d A = 0.

The first two vector identities are the same as (A.3) and (A.4) now written in the body-fixed frame. The third
identity is obvious. The fourth and fifth are again proved by applying Stokes’ theorem in ˜D, for example

∫

∂B∪S

n × uV d A = ∑

�i
∮

Ci
ti dsi = 0,

and then showing that the outer integral goes to zero as ˜D → D using the far-field estimates (2.23).
Using the above relations, we see that the linear momentum equation in the body-fixed frame becomes

m B
dU
dt

+ 1

2

⎧

⎪

⎨

⎪

⎩

d

dt

∫

∂B

l × (n × ∇�B)d A + d

dt

∑

�i

∮

Ci

(li × ti )dsi + d

dt

∫

∂B

l × (n × uV )d A

⎫

⎪

⎬

⎪

⎭

+�×
⎛

⎜

⎝
m BU + 1

2

⎧

⎪

⎨

⎪

⎩

∫

∂B

l×(n × ∇�B)d A+
∑

�i

∮

Ci

(li × ti )dsi +
∫

∂B

l × (n × uV )d A

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠
=0, (A.6)

where U = R(t)U. Note that

d

dt
(R(t)b) = R(t)U.

To see how the angular momentum transforms, we need to establish the following vector identities.
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Proposition A.1 For any gradient vector field ∇ f defined on ∂B, the following is true:

∫

∂B

〈b, l〉 n × ∇ f d A = − ∫

∂B 〈b,n × ∇ f 〉 l d A. (A.7)

Proof The strategy is to show that each side of the above relation is equal to the same integral. Let f̂ be the
harmonic extension of f into B. The left side is

∫

∂B

〈b, l〉 n × ∇ f d A =
∫

∂B

n × 〈b, l〉 ∇ f d A,

= −
∫

B

∇ × 〈b, l〉 ∇ f̂ dV,

= −
∫

B

∇ 〈b, l〉 × ∇ f̂ dV,

= −
∫

B

b × ∇ f̂ dV,

since b is a constant vector and l is the position vector. The right side of (A.7) is

−
∫

∂B

〈b,n × ∇ f 〉 l d A = −
∫

∂B

〈n,∇ f × b〉 l d A,

=
∫

B

∇ · (l(∇ f̂ × b)) dV (with slight abuse of notation),

=
∫

B

∇ f̂ × b dV .

Proposition A.2 For curves parameterized by arc-length,

∮

Ci

〈b, li 〉 ti dsi = − ∮

Ci
〈b, ti 〉 li dsi . (A.8)

Proof Since dli/dsi = ti and b is constant, the result follows simply from

∮

Ci

d

dsi
(〈b, li 〉 li ) dsi = 0.

To transform the angular momentum equation, consider first the transformation of the fluid terms. Note
that in the derivation below, we again assume that there is a neighborhood of the body in which the field uV
is potential:

d

dt

⎛

⎜

⎝

∫

∂B

r2(n̄ × ∇�B)d Ā +
∑

�i

∮

Ci

r2
i t̄i dsi +

∫

∂B

r2(n̄ × ūV )d A

⎞

⎟

⎠

= d

dt

⎛

⎜

⎝
R(t)

⎛

⎜

⎝

∫

∂B

(l2+2 〈b, l〉 + b2)(n×∇�B + n × uV )d A +
∑

�i

∮

Ci

(l2
i + 2 〈b, li 〉 + b2)ti dsi

⎞

⎟

⎠

⎞

⎟

⎠
,



Hamiltonian structure for rigid body and vortex rings 63

= d

dt

⎛

⎜

⎝
R(t)

⎛

⎜

⎝

∫

∂B

(l2 + 2 〈b, l〉)(n × ∇�B + n × uV )d A +
∑

�i

∮

Ci

(l2
i + 2 〈b, li 〉)ti dsi

⎞

⎟

⎠

⎞

⎟

⎠
,

= d

dt

⎛

⎜

⎝
R(t)

⎛

⎜

⎝

∫

∂B

l2(n × ∇�B + n × uV )d A +
∑

�i

∮

Ci

l2
i ti dsi − b ×

∫

∂B

l × (n × ∇�B + n × uV )d A

−b ×
∑

�i

∮

Ci

li × ti dsi

⎞

⎟

⎠

⎞

⎟

⎠

where we have used (A.7), (A.8) and the triple product identity. Thus, the preceding expressions become

= R(t)

(

d

dt
+�×

)

⎛

⎜

⎝

∫

∂B

l2(n × ∇�B + n × uV )d A +
∑

�i

∮

Ci

l2
i ti dsi

⎞

⎟

⎠

−R(t)

(

b ×
(

d

dt
+�×

))

⎛

⎜

⎝

∫

∂B

l × (n × ∇�B + n × uV )d A +
∑

�i

∮

Ci

li × ti dsi

⎞

⎟

⎠

−R(t)

⎛

⎜

⎝
U ×

⎛

⎜

⎝

∫

∂B

l × (n × ∇�B + n × uV )d A +
∑

�i

∮

Ci

li × ti dsi

⎞

⎟

⎠

⎞

⎟

⎠
.

The body terms transform as

d

dt

(

m B b̄ × U + I�
) = R(t)

(

b ×
(

d

dt
+�×

)

U +
(

d

dt
+�×

)

I�
)

.

Combined with (A.6), it is straightforward to see that the above equations and (A.6) give (2.9) and (2.10).
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