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This paper develops a reduction theory for Dirac structtih@s includes in a unified way,
reduction of both Lagrangian and Hamiltonian systems. diuides the reduction of variational
principles and in particular, the Hamilton—Pontryagin &kdnal principle. It also includes
reduction theory for implicit Lagrangian systems that dobe degenerate and have constraints.

In this paper we focus on the special case in which the configarananifold is a Lie group
G. In our earlier papers we established the link between thailttsn—Pontryagin principle and
Dirac structures. We begin the paper with the reduction & ghinciple. The traditional view
of Poisson reduction in this case is to reddteG with its natural Poisson structure ' with
its Lie—Poisson structure. However, the basic step of redutiamilton’s phase space principle
already shows that it is important to uged g* for the reduced space, rather than jgét In
this way, our construction includes both Euler—Poigcas well as Lie—Poisson reduction. The
geometry behind this procedure, which we chié—Dirac reductionstarts with the standard
(i.e., canonical) Dirac structure 6i*G (which can be viewed either symplectically or from the
Poisson viewpoint) and for eagh € g*, produces a Dirac structure and g*. This geometry
then simultaneously supports both Euler—Poiécand Lie—Poisson reduction.

In the last part of the paper, we include nonholonomic cairss, and illustrate this
construction with Suslov systems in nonholonomic mechaticth from the Euler—Poincarand
Lie—Poisson viewpoints.

Keywords: reduced Hamilton—Pontryagin principle, Lie—Dirac redoti implicit Lagrangian
systems, Suslov problems.

1. Introduction

Dirac structures aim to synthesize Poisson structures emg@ymplectic structures.
The idea was originally developed by Courant and Weinst&#h],[taking some
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inspiration from Dirac’s theory of constraints for degeaterLagrangians together with
associated Poisson brackets (see also Courant [23]). Irhanass, Dirac structures
fit fairly readily into the framework of Hamilton mechanics\da correspondingly,
the notion of an implicit Hamiltonian system associatedhwdt Dirac structure on
a manifold was developed by van der Schaft and Maschke [4Tgrev energy-
conserving systems such as L-C circuits and nonholononstesys were put into
the context of Dirac structures (see also Bloch and Crough [8

Recently, the notion of an implicit Lagrangian system, \khis a Lagrangian
analogue of an implicit Hamiltonian system, was developed Yoshimura and
Marsden [50], where it was shown that nonholonomic meclarggstems and L-C
circuits as degenerate Lagrangian systems can be formdulat¢his context.

Furthermore, the link between variational principles anda® structures was
established and for the case in which a given Lagrangian gsllag an implicit
Hamiltonian system can be derived, as in Yoshimura and Marsfbl]. This
was done, via a generalized Legendre transformation, fer dase of degenerate
Lagrangian systems as well, in Yoshimura and Marsden [52].

Throughout this paper we shall draw on some developmentdhénpiapers of
Yoshimura and Marsden [50, 51]. These include the notiomgficit Euler-Lagrange
equationsand how these equations are related to a Dirac structure agd/ea
Lagrangian. We will also need to know how these equations ratated to an
extended variational principle of Hamilton called thiamilton—Pontryagin principle
In addition, we will need to draw on the notion of a Lagrang&ystem associated
with an induced Dirac structure in case one has a nontrivagstaint distribution
(perhaps nonholonomic) and how it is related to tagrange—d’'Alembert—Pontryagin
variational principle

One approach to the reduction of Dirac structure was givenCoyrant [23],
consistent with Poisson reduction developed by MarsdenRatdi [39] and also by
Dorfman [28] in conjunction with infinite dimensional Hamahian systems. Along
similar lines, the symmetry reduction of Dirac structuresl ats associated implicit
Hamiltonian systems was developed by van der Schaft [48niBinstein and van
der Schaft [5]. Those previous reduction procedures wegictily related with the
symplectic reduction developed by Marsden and Weinsted) ¢4 the corresponding
Poisson reduction procedures. Later in this introductiae, shall briefly return to
this topic and give additional history and literature.

Goal

The overall purpose of this work is to establish a geomegttuction theory for
Dirac structures that supports the reduction of implicigtangian systems as well
as reduction of implicit Hamiltonian systems and the vaoral structures associated
to each. As we shall see, the reduction methochésessarily somewhat different
than those treated previously. The present paper is focosethe case in which
the configuration manifold is a Lie groug. Future papers will deal with more
general configuration manifolds with group actions.
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Specifically, the paper focuses on the reduction of the daambmirac structure
on the cotangent bundl&*G of a Lie groupG. Our construction supports both the
Lagrangian and Hamiltonian viewpoints, giving Euler—Raig—Dirac reduction when
one takes the Lagrangian view, and Lie—Poisson—Dirac tedugvhen one takes the
Hamiltonian view. As we mentioned, our treatment of implitagrangian systems
via Dirac structures is consistent with the Hamilton—Pyagin variational principle.
Consistent with the reduction of the Dirac structure itseffimplicit Lagrangian and
Hamiltonian systems, we also reduce the Hamilton—Ponimygginciple. Towards
the end of the paper, systems with nonholonomic constrangs studied and an
example of nonholonomic rigid body mechanics is examinetijclv leads to a
reduction method associated with Suslov systems.

Key differences with other Dirac reduction schemes

Below we review some of the main literature on reduction ofabistructures.
The key difference between the present work and those is,cakawe mentioned, the
fact that our approach accommodates a Lagrangian, a Hamittoand a variational
view simultaneously. To do so, one needs to work with slighirger spaces, as
is already evident in the reduction of Hamilton’s phase sppdnciple, to give a
variational principle for the Lie—Poisson equations, whigas developed in Cendra,
Marsden, Pekarsky and Ratiu [18]. Specifically, many sclsemethe literature take
the following view (or a variant of it); one starts with a miodd A/, an (almost)
Dirac structure onM, and a groupG acting on M (consistent with the Dirac
structure). From these ingredients, one then constructdrac Btructure onM/G.
For example, forM = T*G with G acting by group multiplication, one gets*
with the Dirac structure associated with the Lie—Poissamictire. However, this
construction is too limited for our purposes and does nobtwalbne to include
variational principles or the Lagrangian view. In our case noechanics on Lie
groups, the basic difference in our approach is that instefag*, the resulting
reduced space ig @ g*.

Background on reduction

Reduction theory has a rich history in mechanics and thezeaalot of research
developments, which may be found in, for instance, MarsdehRatiu [40], Marsden,
Ratiu and Scheurle [41], Cendra, Marsden, and Ratiu [20]rsifen and Weinstein
[44], Marsden, Misiolek et. al. [38]. We next briefly reviewnsplectic and Poisson
reduction with emphasis on the special case of the cotarigemdle of a Lie group,
which is the case most relevant for the present paper.

Let (P, 2) be a symplectic manifold and lef be a Lie group that acts freely
and properly onP by symplectic maps. Suppose that the action has an equivaria
momentum mapl : P — g* and letG, :={g e G |Ad:,1u = u} be the coadjoint

isotropy subgroup ofu € g*. Then, one can obtain theymplectic reduced space
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by the quotient space®, = J~1(un)/G, and with the induced symplectic forre,
uniquely defined by 7R, = itQ,

where 7, : 37Y(u) — P, is the projection and, : J71(x) — P is the inclusion.
When one choose® = T*G with G acting by left translation, it was shown in
Marsden and Weinstein [42] that the symplectic reducedespatG), = J-1(n)/G,
is identified via left translation with the coadjoint orldit, := {Ad;—l ngeGl=Gpu

through 1 € g* and also that the reduced symplectic form coincides with

Qu@du, adu) = —(u, [§,7]).

On the other hand, it was shown by Marsden and Ratiu [39] that Roisson
structure onP, is related with that onP/G in the generalized context of Poisson
reduction. Let the Lie groups act freely and properly on a Poisson manifaid
by Poisson maps. Suppose thafG is a smooth manifold which is endowed with
the unique Poisson structure such that the canonical piamjee : P — P/G is a
Poisson map. For two functiong, : P/G — R, let F = for and H = hom, SO
F and H are f and i thought of asG-invariant functions onP. Then, {f, h}p,c

is defined by {f,h}p)g om = {F, H}p.

It is shown that{f, h}p,c is well defined by proving thatF, H}p is G-invariant,
which follows from the fact thatF and H are G-invariant and the group action
of G on P consists of Poisson maps. Especially, when= T*G and the action

of G on T*G is by cotangent lift of left (or right) translation of; on itself, the
quotient space7*G)/G is naturally diffeomorphic tog*, namely, the dual of the
Lie algebrag of G. Then, the quotient Poisson bracket is given by the plus (or
minus) Lie—Poisson bracket as

8f Sh
{f?h}i(u)=q: s | — > = )
S S
where f, h € F(g*) are arbitrary functions (see Marsden and Weinstein [43Re T
minus sign goes with left reduction and the plus sign withhtigeduction.

As in Marsden and Ratiu [40], it was shown that both Poissalucton and the
symplectic reduction for the case = T*G in the above are naturally incorporated
into the reduction of Hamiltonian systems on a Lie group; elgmin the context
of Lie—Poisson reduction, Lie—Poisson equations can beldped as

I
where h := H|g* is the reduced Hamiltonian op* = 7G C T*G.

On the Lagrangian side, the Lagrangian analogue of LiesBoiseduction called
Euler—Poincaé reduction can be given in the context of e&educed constrained
variational principle (see [40]):

) /ZZ(S(I))dt =0

1
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with variations restricted to be of the form

& =n=x|v,nl,

wherel = L|g is the reduced Lagrangian defined by the restriction af-&variant
LagrangianL on TG to g = T,G C TG and n(¢) is a curve ing such that
n(r1) = n(t;) = 0. Then, we can obtain Euler—Poinéaequations as

d 8l 8
== —tadi .
dt 8& 5&

History and literature

The development of reduction of Dirac structures is a natanagrowth of
symplectic and Poisson reduction. In the context of Diraacstires, Courant [23]
showed that a reduced Dirac structure brt(u1)/G, can be found that is consistent
with the Poisson reduction developed by Marsden and Ratfl]. [;h a similar
context, reduction of Dirac structures for Hamiltonian teyss with symmetry was
given in Dorfman [28]. Reduction of implicit Hamiltonian sigms was developed
by van der Schaft [48], Blankenstein [4], Blankenstein amh der Schaft [5] in a
way that is consistent with Courant [23]. Furthermore, slag reduction of Dirac
structures was developed by Blankenstein and Ratiu [6] @& dbntext of implicit
Hamiltonian systems. In these constructions, it was shokat & reduced Dirac
structure fits naturally into the context of symplectic retilon as well as Poisson
reduction; if a Dirac structureD C TP & T*P on P is the graph of the bundle
map «” : TP — T*P associated with a symplectic structutg then a reduced
Dirac structureD, on P, =J 1(u)/G, may be given by the graph of the reduced
bundle map associated with the reduced symplectic steiabarP,, while if D is
the graph of the bundle map*® : T*P — T P associated with a Poisson structure
B on P, then the reduced Dirac structure can be given by the grapimeobundle
map associated with the reduced Poisson structure’,on

From the viewpoint of reduced variational principles, itsnshown in [18] that
the Lie—Poisson equations can be formulated by a reducedtreored variational
principle called thd.ie—Poisson variational principlewhich is a Hamiltonian analogue
of the reduced constrained variational principle for theleEtPoincag equations.
On the other hand, investigations have been lacking on thaeisof how both
Euler—Poinca and Lie—Poisson reductions can be linked with reductiora &@irac
structure and with reduction of implicit Lagrangian and Hiéonian systems. As
we mentioned previously, one of our main goals is to fill thepg

The applied viewpoint

Needless to say, from application points of view, EulernBagé and Lie—Poisson
equations were made essential use in examples such as rgglg dynamics,
hydrodynamics, plasma physics, etc (various referenceg Ipeafound in Marsden
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[37], Marsden and Ratiu [40]), as well as in numerical sirtiates, such as Bou-
Rabee and Marsden [11] and references therein. Furtherniioie worth noting
that the Euler—Poincérequations with nonholonomic constraints (called Ehder—
Poincae—Suslov equatiohsare essential in nonholonomic rigid body mechanics (see,
[29, 7]). In this paper, we will develop an implicit analogagEuler—Poinca&—Suslov
equations in the context of Dirac reduction, together witle tdevelopment of an
implicit Hamiltonian analogue which we call the Lie—PoigsBuslov equations.

Groupoids and algebroids

One of other interesting issues relevant to this paper iscamed with Lie
algebroids in Lagrangian mechanics, which were introduibgdWeinstein [49]. In
particular, a Dirac structure on a Lie algebroid was comséd in a way that is
dual to a Poisson structure on the dual bundle of the Lie atgeb Lagrangian
reduction was thereby developed in the context of Lie algielsr In relation with
Drinfel'd’s theory of Lie bialgebras and Poisson homogersecspaces, Poisson
homogeneous spaces for Poisson groupoids were classifibdthng help of Dirac
structures by Liu, Weinstein and Xu [36]. A recent theomdticlevelopment in
Dirac structures may be found in, for instance, Bursztynaiiic, Weinstein and
Zhu [15], where twisted Dirac structures were investigaitedelation with twisted
presymplectic groupoids, and the generalized ideas of muamre maps in Dirac
geometry called Dirac realizations were developed togethth associated reduction
procedures in Bursztyn and Crainic [14]. Some relevant wark this direction of
reduction of Courant algebroids and the Dirac structuregeih can be found in,
for instance, [12, 13], where the authors mainly focused lom f$o-called “exact”
Courant algebroids.

Outline of the Paper. In Section 2, we give a brief review of induced Dirac
structures and their associated implicit Lagrangian systeln Sextion 3, we show
how the reduction of the Hamilton—Pontryagin principle le@ea us to formulate
implicit Euler—Poincaé equations which may be viewed as an implicit analogue
of Euler—Poincaé equationsWhen a given Lagrangian is regular, via the Legendre
transformation, we can also show thiaplicit Lie—Poisson equationsan be developed
by the reduction of Hamilton’s phase space principle, ngméhte Lie—Poisson
variational principle. In Section 4, we develop a reductiprocedure called.ie—
Dirac reductionto investigate the reduction of theanonical Dirac structureD on
T*G. In this case, the canonical Dirac structpeC TT*G®T*T*G can be thought
of as the graph of the canonical symplectic structure or ttaplyg of the canonical
Poisson structure. Using the left trivializing diffeombiem 7*G — G x g*, we set
up a reduction procedure of the canonical Dirac structure7ol = G x g* by
taking quotients byG; namely, the canonical Dirac structure can be reduced to a
Dirac structure org® g* at each pointu € g* = (T*G)/G, which naturally includes
the coadjoint orbit symplectic structuee,, the Lie—Poisson structure as well as the
reduced canonical symplectic structure @& g*. In 85, by using the reduced Dirac



REDUCTION OF DIRAC STRUCTURES AND THE HAMILTON-PONTRYAGIN PRICIPLE 387

structure ong @ g*, we establish a reduction procedure called Euler—Poérdairac
reduction to obtain implicit Euler—Poindarequations. In Section 6, when a given
Lagrangian is regular, we develop a reduction procedurtecdlie—Poisson-Dirac
reduction to obtain implicit Lie—Poisson equations in theald context of Euler—
Poincaé-Dirac reduction. In Section 7, for the case in which one &asonstraint
distribution Ag ¢ TG, we develop the reduction procedure for a Dirac structure
induced from a nontrivial distribution oG and then we construct the associated
Euler—Poinca&—Suslov and Lie—Poisson—Suslov reductions, togethdr thié Suslov
problem in nonholonomic mechanics. In Section 10, conadlgdiemarks are given
together with future work.

2. Review of implicit Lagrangian systems

In this paper, we shall investigate the reduction of a Dirducsure on the
cotangent bundle of a Lie group (which is induced from an riiavd distribution
on a Lie group) and then we shall also explore reduction obaated implicit
Lagrangian systems.

Before going into the details of Dirac reduction, we shallefly review how to
define an induced Dirac structure and, given a Lagrangianassociated implicit
Lagrangian system, following Courant [23] and Yoshimural adarsden [50].

Dirac structures

We first recall the definition of a Dirac structure on a vectpaceV, say finite
dimensional for simplicity. LetV* be the dual space d¥, and (-, -) be the natural
paring betweenV* and V. Define the symmetric paring-, -) on V & V* by

(), ,a)) = (a,v) + (@, v),
for (v,a), (v,@) € V& V*. A Dirac structure on V is a subspaceD C V @ V*
such thatD = D*, where D+ is the orthogonal ofD relative to the pairing(-, -)).

Now let P be a given manifold and leT P @ T*P denote the Whitney sum
bundle overP, namely, the bundle over the bage and with fiber over the point
x € P equal toT, P x T} P. In this paper, we shall call a subbundleCc TPHT*P
a Dirac structure on P when it is a Dirac structure in the sense of vector spaces
at each pointx € P. A given two-form  on P together with a distributiorA on
P determines a Dirac structure oR as follows: letx € P, and define

D(x) ={(vx,0y) € ,P x TP | v, € A(x), and
a(wy) = Qa(ve, w,) for al w, e Ax)}, (2.1)

where @, is the restriction of2 to A.
We call a Dirac structureD integrable if the condition

(Ex 02, X3) + (Ex,03, X1) + (Exz01, X2) =0
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is satisfied for all pairs of vector fields and one-forrf¥;, «1), (X2, a2), (X3, @3)
that take values inD, where £5x denotes the Lie derivative along the vector field
X on P. In this paper, we are primarily interested in Dirac stroetuthat need
not be integrable.

Induced Dirac structures

One of the most important and interesting Dirac structunesniechanics is
one that is induced from nonholonomic kinematic constsitf8uch constraints are
generally given by a distribution on a configuration mamfol

Let Q be a configuration manifold. Lef Q be the tangent bundle ari*Q be
the cotangent bundle. Leh, C TQ be a regular distribution orQ and define a
lifted distribution onT*Q by

Arsg = (Tmp) H(Ap) C TT*Q,
where 7y : T*Q — Q is the canonical projection so that its tangent is a map
Trmg : TT*Q — TQ. Let Q be the canonical two-form orf*Q. The induced
Dirac structure Da, on T*Q, is the subbundle off T*Q @& T*T*Q, whose fiber
is given for eachp, e T*Q as
DAQ(pq) = {(qua apq) € quT*Q S T;q T*Q | Up, € AT*Q(pq)a and
op, (Wp,) = Q2(py)(vp,, wp,) forall w, € Aro(p,)}
This is, of course, a special instance of the constructiaf)(2

Implicit Lagrangian systems

Let us recall the definition of implicit Lagrangian systenosice again, for further
details, see [50].

Let L : TQO — R be a Lagrangian, possibly degenerate. Recall that theretiffial
of L is a mapdL : TQ — T*TQ, which is locally expressed by using local
coordinates(q, v) for TQ as

dL oL
dL={q,v,—, — ).
( dq Bv)
The Dirac differential of the LagrangianL : T QO — R, namely, ©L is defined by
DL =ypodL:TQ — T*T*Q.

In the above,yy : T"TQ — T*T*Q is the natural diffeomorphism given in
coordinates by
(q,8q,8p, p) = (q, p, =dp, 8q),

where (g, 8¢, 3p, p) are the local coordinates fof*7TQ and (g, p, —ép,8q) for
T*T*Q. Consequently, one has the following local expression efDirac differential
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oL 0L
OL=\q,—— ——. v, (2.2)
v 0dq

which is an element off *T*Q with base point

)= (g, 2L
(g, p) = (q, av)'

Let X:TOQ®T*Q — TT*Q be apartial vector fieldon T*Q; that is, a map
that assigns to each poirty, v, p) e TQ & T*Q, a vector inTT*Q at the point
(g, p) € T*Q; we write X as

of L:

X(q,v,p)=1(q,p.q,DP),
where ¢, p are understood to be functions @§, v, p). An implicit Lagrangian
systemis a triple (L, Ay, X), which satisfies, for each € Ay(g),

(X(g,v, p),DL(q.v)) € Day(q. p),

where X is a partial vector field onT*Q defined at points(g, v, p) satisfying
p =FL(g,v) for ve Ap.

Coordinate representations
The canonical two-formQ is given, in coordinates, by

Q((q, p,u1, 1), (q, p, uz, a2)) = {az, u1) — (a1, uz),
and the induced Dirac structure may be expressed, in cauedin by

Day(q, p) ={((g,p.q.P), (g, .o, w)) | ¢ € A(g), w=4q, anda + p € A°(q)},

where A°(g) C T*Q is the polar of A(g). Writing X (g, v, p) = (¢, p, 4, p) and
with p = dL/dv, and using the local expressions for the canonical syniplect
form and the Dirac differential, the condition for an impidc_agrangian system
(X,DL) € Dp,, reads as follows;p = dL/dv (equality of base points) and

aL . .
arl s (v,a) ={a,q) — (p, u)
q

for all u € A(g) and all «, where (4, «) are the local representatives of a point in
Ty, »T*Q. Since this holds for alu € A(g) and all «, we obtain the coordinate
representation of an implicit Lagrangian system as

dL ) . AL

P=- g =ve A, P— - €A().

av aq
Notice that if a partial vector fieldX(q, v, p) = (¢, p, ¢, p) satisfies the Dirac
condition (X, ®L) € D, then the Legendre transformatign= dL/dv is consistent
with the equality of base points and that the Dirac condititself implies thatg
is given by the second order conditigh= v.
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In this paper, we primarily focus on the cage= G; namely, our configuration
space Q is a Lie group G. At first, we shall investigate the reduction of the
canonical Dirac structureand in the case\s = T G; namely, there is no constraint
imposed. Later, we shall return to the general case in whigh Dirac structure
is induced fromAs; Cc TG and we shall develop a reduction method for implicit
Lagrangian systems. Then, we shall apply this to 8wslov problem(see Bloch
[7], Section 8.6).

3. The reduced Hamilton—Pontryagin principle

In this section, we begin by recalling an extended variatioprinciple called
the Hamilton—Pontryagin principle a principle first studied by Livens [35]. It is
called the Hamilton—Pontryagin principle because of itesel relation with both
Hamilton’s principle and the Pontryagin principle in caittheory (see Pontryagin,
Boltyanski, Gamkrelidze and Mishchenko [45], Sussmann [46]). Thisgiple has
as its associated equations, the implicit Euler—Lagrangeatons, as was studied
in Yoshimura and Marsden [51].

Then, it is shown how the Hamilton—Pontryagin principle &G & T*G can
be reduced, wherémplicit Euler—Poincaé equationscan be obtained by reducing
implicit Euler—Lagrange equationsFurther, on the Hamiltonian side, it is shown
how Hamilton’s phase space principle @iG & T*G can be reduced in the context
of Lie—Poisson variational principlewhere implicit Lie—Poisson equationgan be
formulated by the reduction of Hamilton's equations.

The Hamilton—Pontryagin principle

Let G be a Lie group,7G the tangent bundle an@*G the cotangent bundle.
Let g € G, (g,v) € TG and (g, p) € T*G. Let (g,v, p) be local coordinates for
the Pontryagin bundldG & T*G. Let L : TG — R be a left invariant Lagrangian
(possibly, degenerate).

Define the associated action integral on the space of cup/es, v(7), p(¥)), 11 <
t<t), N TGOT*G by

t

2
(g v.p) = / (L(g (), v(0)) + (p(0). &) — v(1))) dr.

n

The Hamilton—Pontryagin principle is the condition of stationarity of;

5% = 0. (3.1)
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Explicitly, this principle is given by

2
558, v, p) = 5/ {L(g(®), v() +(p@), &(1) —v())}dt
n

2( . . oL oL

=/ E—-vép+|\-p+—)0g+|—p+——)Svidt + pdg
11 ag v

=0,

which is to be satisfied for allg, v and ép with appropriate boundary conditions.
Keeping the endpoints(r;) and g(z) of g(r) fixed, we obtain the coordinate
expression

2

n

oL . . 0L
= —, =, = —,
p 90 8 p og

which we shall callimplicit Euler—Lagrange equationson TG & T*G.

(3.2)

Note that the implicit Euler—Lagrange equations include tBuler—Lagrange
equationsp = dL/dg, the Legendre transformatiop = 9L /9v and the second-order
condition g = v.

Reduction of the Hamilton—Pontryagin principle

The groupG acts on curves in the action integrg in the Hamilton—Pontryagin
principle, by simultaneously left translating on each dacby the left-action and
the tangent and cotangent lifts. Explicitly, the action of @lementh € G is given
on a curveg(t) € G, v(t) € T,»nG and p(t) € Tg*(,)G, by

h-(g@), v(t), p(1)) = (hg(t), Ty Ln - v(1), Ty Ly-1 - p(1)),

where Ty Ly : To)G — TheryG is the tangent of the left translation mdp : G —
G; g(1) — hg(t) at the pointg(r) and Ty, ,\L,-1: Ty, G — T}, ,,G is the dual of
the map Ty, Lj-1 : The)G — To)G. The action integral§ is invariant under the
action of G since L is G-invariant and one easily checks thgi(z), g(t) — v(?)) is
also G-invariant.

By the following diffeomorphisms, the cotangent bundféG is diffeomorphic

to G x g* as
AiT*G — G xg": Mpg) = (g T, Lg(p)),
while the tangent bundlg’ G is diffeomorphic toG x g by
ATG— Gxg: Mu) = (g, Tng_l(v)).

Similarly, the Pontryagin bundl& G & T*G is naturally diffeomorphic to its left
trivialization as G x (g & g*).

Let L be a left-invariant Lagrangian oG and let!: g — R be the reduced
Lagrangian given byl := L|g, where we regardg = 7.,G C TG. Thus, by left



392 H. YOSHIMURA and J. E. MARSDEN

invariance, we have.(g, ¢) = [(§), where & = g1 and the notationg~1¢ stands
for T,L,14.

The reduction of the Hamilton—Pontryagin principleis given by
7]
3/ {I(n(@®)) + (u(2),§() —n(®)} dir =0, (3.3)
51
where, againg = g~¢. Taking variations in (3.3) yields

2 (61
/ {5—8n+5u-($—n)+u-(5%‘—50)} dr
I n

/tz
n
/lz

n

8l
(%—M>5U+5M'(€—0)+M'5€} dt

6l .
(——M>50+3u-(é—n)+u-(C+ad;§)} dt

dn
2 ([ 8l , 2
:/ (E—M)5n+8u-(é—n)+(—u+aiu)'§} di+ -]z (3.4)
nn

where we utilize the relatiort = T,L,1¢ and the variation ofé is computed

exactly as in Euler—Poincartheory to be given by&(r) = ¢ (1) +[£(¢), £ (1)], where
¢ =TyL,-15g, so that¢(r) is an arbitrary curve ing satisfying ¢(11) = ¢(r2) = 0.
Then, Eq. (3.4) vanishes for amdh € g, ¢ € g and su € g* if and only if

sl .

w=5 & =n, n=adpu. (3.5)

n
We shall call the set of Egs. (3.9jnplicit Euler—Poincaré equationson g & g*,
which may be thought of as theeduction of implicit Euler—Lagrange equatiorm
TG®T*G in Eqg. (3.2). We remark that in this reduced variational gipfte for
implicit Euler—Poincag equations, the reduced Lagrangiaon g may be degenerate.

Hamilton’s principle in phase space

For the case in which a given Lagrangi@non TG is regular and left invariant,
we can define a Hamiltonian off*G by the Legendre transformation. Recall
that we define the energf : TG — R by E(g,v) = A(g,v) — L(g,v), where
A(v) =FL(v)-v is the action ofL(v) for v € T,G. Then, we define the Hamiltonian
H on T*G as

H=Eo[FL)™?,

where FL : TG — T*G. It is easily checked thatH is also left invariant (see
Marsden and Ratiu [40]).

Define thephase space action integran the space of curve&(z), p(t)), 11 <
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t<tyin T*G by
2
G(g(t),p(t))=/ {{p(®), g()) — H(g(®), p(1))} dt.
11
Hamilton’s phase space principlestates that this action is stationary with respect

to varying curves(g, p):
36=0 (3.6)

again, with appropriate boundary conditions on the vamiei Explicitly, the variation
is

7]
86(g, p) = 8/ {p@), &) — H(g(®), p(t))}dt
n

2 oH oH
=/ {(—p—a—)8g+(—g+a—>5p}dt+p5g
11 8 P

=0,

2

n

which is satisfied for allsg and §p. Keeping the endpointg(s1) and g(r2) of g(¢)
fixed, we obtain Hamilton's equations GR*G as

_9H L
o PT e

One can use the Hamilton—Pontryagin principle to derive Hanis phase space
principle in the regular case as follows. In the principlel}3 one first takes the
variation with respect tov; notice that (as in Yoshimura and Marsden [51]) the
Hamiltonian is given by making the quantityp, v) — L(g, v) stationary inv. Then
using the remaining variations ip and p, the principle (3.1) becomes (3.6).

g (3.7)

The Lie—Poisson variational principle

The group G acts on curves in phase space by simultaneously left ttantsla
each ofg and p by the left-action. Then, it is easily checked that the aciintegral
is invariant under this action o since we assume the invariance Hf.

Since H is left invariant on7*G, it defines a reduced Hamiltonian: g* — R.
Clearly, the reduction of Hamilton's phase space princiiglegiven by

1
5 f () - £(0) — h(u(0))) di =0, (3.8)
1

where & = g71¢, as in the reduced Hamilton—Pontryagin principle. Thisumsd
principle is called aslLie—Poisson variational principle see Cendra, Marsden,
Pekarsky and Ratiu [18].
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Taking variations the curves(r), u(r)) € g ® g* of Eqg. (3.8) yields

2 Sh 2 Sh
/ (3,“'54‘/1'55—8—5/1) dt:/ {(5—8—>8u+u-85}dt
tl ILL l‘l I’L
2 Sh .
2/ (5—8—)8u+u-(n+[§,n])}dt
1‘1 I’L
—/tz (é—%)a +u- () +ad )}dz
=, o mA e (M n

2 5h ,
=/ (é—a> 3M+(—I'L+ad§ll)'n}dt-l-[ll‘n]ti- (3.9)
n

In the above, the variation of = T,L,-1- ¢ is given by §¢& = i + [£, n], where
nt) = T,L,-15g(1) satisfies the bounéary conditiongr;) = n(2) = 0. Therefore,
Eq. (3.9) vanishes for anyu € g* and n € g, if and only if
Sh
=—, 1 =adu. 3.10
3 50 p=adu (3.10)
We shall call the set of equations in Eq. (3.1@)plicit Lie—Poisson equationson
g @ g*, which may be the reduction of Hamilton’s equations BhG in Eq. (3.7),
which is consistent with thé.ie—Poisson variational principle

4. Lie-Dirac reduction

In this section, we develop a reduction theory that we shall tie-Dirac
reduction where reduction of the canonical Dirac structure BhG is given by a
wu-dependent Dirac structure anéd g*.

The canonical Dirac structure on T*G

Recall that a distributiom; induces a Dirac structur®,, on T*G. In the case
when A = TG, we get thecanonical Dirac structure on the cotangent bundle
T*G and denote it simply byD. As in the general casd) can be defined by either
of the canonical symplectic or the canonical Poisson sirast namely, by the graph
of the bundle mapR’ : TT*G — T*T*G associated with the canonical symplectic
structure @ on T*G or by the graph of the bundle map*: T*T*G — TT*G
associated with the canonical Poisson structBren T*G.

Using the canonical symplectic structure, the canonicab®istructure is given
by, for eachp, € T*G,

D(pg) = {(vpg,ong) € TpgT*G X T;gT*G |y, (Vp) = Q(pg)(vp,, wp,)
for all w,, € 7,,T*G}. (4.1)
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In local coordinates, we write the canonical symplecticnfoas

Q (g, p,u1,a1), (g, p,u2, a2)) = {ar2, ug) — (o1, up) .

The Dirac structure on G x g*

Using the left trivializing diffeomorphismi : T7*G — G x g*, we define the
canonical one-formp on G x g* and the canonical two-forrm on G x g* as

0 =10 and = A,

where ® is the canonical one-form of'*G and 2 = —d®. Then, the canonical
one-formé on G x g* is locally represented at eadlg, u) € G x g* and (v, p) €
Te.)(G x g*) =T,G x g*, as

0(g, n) - (v, p) = u(TgL,-1v),
and hence the symplectic structure= —d6 on G x g* at each pointg, u) € G x g*,
is given by
(g, W) ((v, p), (w,0))
= (0, TgL,-1v) — (p, TgL1w) + (u, [TgL-1v, ToL,awl),  (4.2)

where (w, o) € T(y,.,)(G x g*) = T,G x g* and we utilized the formula (see Abraham,
Marsden, and Ratiu [2])

o(X,Y)=—-do(X,Y) = -X[0(Y)] + Y[0(X)] +O0([X, Y]),
where X (g, u) = (v, p) and Y(g, u) = (w, o).
Using the diffeomorphisni. : 7*G — G x g*, we can naturally define the Dirac
structureD on G x g*, which is locally represented by, for eadh, u) € G x g*,
D(g, w) = {((v, p), (B, m)) € (T,G x g*) x (T, G x g) |
(B, w) + (o, 1) = w(g, n)((v, p), (w,0)) for all (w,o) € T,G x g*}. (4.3)

Dirac maps

We will show that the Dirac structur® on G x g* can also be obtained directly
by using Dirac maps (see, [16, 15]).

Let Dy and Dy be Dirac structures on vector spacésand W. A linear map
¥V — W is a (forward) Dirac mapif Dy and Dy are related by

Dy ={(y(x),m |x eV, neW" (x,¢¥"(n) € Dy},
where ¢* : W* — V* is the dual ofy, and we write

Dy = ¥ Dy.
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For the case of manifolds, le¥ and N be manifolds and letD,, and Dy be
Dirac structures onM and N, respectively. A smooth mag : M — N is called
a (forward) Dirac mapif, for all x € M,

Dy (¥ (x)) = (T (wy), ay ) | wy € TuM, ayy € Ty )N,

Wy, (TY) (oty(x) € Du(x)},

where Ty : T.M — Ty )N is the tangent map ofy : M — N at x e M and we
write the relationship between the two Dirac structures as

Dy =vY.Dy.

_ Then, the Dirac structurédd on G x g* can be defined using the Dirac map
A:T*G — G x g*; that is, we have

D = A.D,
which is given by, for eactp, € T*G,

D()_\(Pg)) = {(Tpg)_\'(wpg)7 Oli(pg)) | wy, € TpgT*G’ Qi (py) € T;(pg)(G x g%,

Wy (TA)* (5 (p,))) € D(p)),

where A(p,) = (g, 1) € G x g*.

Thus, we regard the Dirac structufe on G x g* as the left trivialized expression
for the canonical Dirac structur® on T*G.

Invariance of the canonical Dirac structure

Let us first recall the natural definition of invariant Diratrustures (see, for
instance, [28, 36, 5]).

Let P be a manifold andD be a Dirac structure orP with a Lie group G
acting on P. We denote this action by : G x P — P and the action of a group
elementh € G on a pointx € P by h-x = ®(h,x) = &,(x) for he G andx € P,
so that®, : P — P. Then, a Dirac structurdd c TP & T*P is G-invariant if

(X, (P ') e D
for all h € G and (X, «) € D.

Next, we show that the Dirac structure in Eg. (4.3)dsinvariant, whereG acts
on the first factor by left multiplication and it acts triiialon the second factor.
To do this, letA : G x (G x g*) —> G x g* denote theG—-action onG x g*, so that
holding g fixed, A, : G x g* — G x g* is given by

An(g, w) = (hg, ),
whereh, g € G and 1 € g*. Since the action off*G is canonical, the corresponding
symplectic structure» is G-invariant as well; that is,

*
Ao =w,
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for all # € G. It is easily verified that the Dirac structuf2 on G x g* is G-invariant

as 1
(Ah*X, (AZ) Ol) eD

for all (X,a) € D.
In fact, in view of Eq. (4.3), the left-invariance of the Dirsstructure in the
above can be restated as
D(hg, n) = D(g, 1),

which holds for allk, g € G and u € g*, where
D(hg, ) ={((TyLyv, p), (Tj, L1, 1) € (T),G x g°) x (T,,,G x g) |
(The LB, TeLyw) + (0, n) = w(hg, W)(TgLyv, p), (TgLpw, o))
for all (T,L,w,o0) € T;,G x g*}.

The quotient space of the Pontryagin bundle

Using the left trivialization diffeomorphisms: 7*G — Gxg* andi : TG — G x
g, and the fact thayy = 7.G and g* = TG, the Pontryagin Bundl€' T* G T*T*G
is trivialized as follows:

TT*GO® T T*GZT(G xg") DTG xg¥
=G xgHx(VeVY, (4.4)

where we setV = g@® g* and V* = g* ® g and identify (g*)* with g. Thus, the
Pontryagin bundlelr' T*G e T*T*G is naturally diffeomorphic taG x g*) x (Ve V™)

The action of an element € G on an element(g, u, &, p,v,n) € (G X g*) x
(V& V*) is only on the first component; that is,

]/l'(g,,l,L, 5,,0,”’77)=(h'g,/h S,P,V’U)-

Thus, the quotient of the Pontryagin bundler*G & T*T*G by the action ofG
is given by
(TT*G@®T*T*G) /G =g* x (VO V™).

Lie—Dirac reduction

Because of the&s-invariance ofD and the identification in Eqg. (4.4), the canonical
Dirac structure onG x g*

DCTGxgHeT*(G xgh
may be identified with
DCc(GxgH)x VeV,
which is uniquely determined by its value at the identitymedy,
D(e, ) ={, p),(v,m) eV V"]
(1. 8) 4+ (0.n) = w(e, W((E. p). (¢, 0)) for all (¢,0)e V] (4.5)
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In view of the invariance of the Dirac structure, it inducést eachu € g*, a

structure, which we denote bgp{f C V& V* on the quotient space. From (4.5)
we see that

DS ={(¢ p). ) eVaV|
w, 0)+ (0. n) =0/, p). (¢, 0)) forall (,0)eV], (4.6)

where /¢ is the u-dependent bilinear form oV = g @ g*, which, in view of
(4.2), is given by

@l S (&, p), (£,0)) = (0, &) — (0, 0) + (. [€, D). (4.7)
/G

Notice thatw),” is in fact a symplectic formon V because it is skew symmetric
and, as is easily checked, non-degenerate.

PROPOSITION 4.1. For fixed u € g*, D¢ in Eq. (4.6) is given by

DS ={((€. ), v.E) eVBV* |v+p=adu} (4.8)
Proof: Suppose that the condition (4.6) holds, namely, that
(v, 2) + (0. 1) = 0% ((€. p). (¢, 0))
for all (¢,0) € V. First, using (4.7) and setting = 0, gives
(v+p,0)=(u,ad ) forall ¢eg.
It follows that v + p = ad: n. Second, set =0 and then
(o,n—&)=0 for all o € g*.
Therefore,n = & and so (4.8) holds. The converse is shown in the same way.

The Dirac structure on V =g g*

We have the following important theorem showing that theurat reduction
of the standard Dirac structure ofi*G gives a u-dependent Dirac structure on
V=gdg"

THEOREM 4.2. For fixed u € g*, D,/LG given by (4.6), or equivalently,(4.8), is
a Dirac structure onV = g @ g*.

Proof: One proof is simply to note that for fixeg, Eq. (4.6) is a special
case of the construction of a Dirac structure given by Eql)(an the symplectic
manifold P = V, with symplectic formw,/f and with A =V, the whole space.

We shall give another direct proof of this theorem as followwting that the
symmetric paring onV & V* is given by

 ((w,y), 6, w), (&, p), (v.5) )= (v, w)+(y,8) +(5,8) + (p,u),
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the orthogonal space dD,/LG is given, for eachu € g*, by
(DL ={((w,y), G.u) eVeV*|
(v, w) +(y, &) + 8,8 +(p,u)=0, v+p=adu}

What we want to prove is tth,QG = (D,QG)L. Let us first check thaD,/iG C (D,CG)L.
Let ((w, y), (§,w)) € DLG, where y + 6 = ad, u. Sincev + p = ad 1, we have

(v, wy+(y, &)+, 8) +(p,w)=(Wv+p, w)+(y +46,§)
= (adp, w) + (ad,u, &)
= (u, adw) + (u, ad,&) = 0.
Therefore, D¢ ¢ (D/%)*.

Conversely, let us check thatD/)* c DL, Let ((w,y), 5, u) € (D)L
Setting & = 0 and notingv + p = adt u, one has

(v, w) +(p,u) =@k n — p, w) + (o, u) = (p,u —w) =0
for all p. Therefore,u = w. Next, letting& be arbitrary and notingv = u, one has
(v+p, w+({y+4,8 =(@du, w+(y+54E§)
= (n, adw) + (y +4,§)
= —(n,ady§) + (y +4,§)
= (-ad,u+y +4,6 =0

for all £. So, we havey +§ = ad, . Hence (D,/LG)l C D,/LG.
Finally, (D{LG)l = D,/f; and thus,D,/LG is a Dirac structure oV =g@g*. 0O

REMARKS. Note that the reduced symplectic structu/,ec includes the canonical
symplectic structure oV = g® g* as well as the Lie—Poisson structure gh This
type of symplectic structure is related to symplectic ands$an structures with
cocycles, as in Cendra, Marsden, and Ratiu [21].

It is possible that the reduced Dirac structhG on V =g@®g* has some
connection with Drinfel'd’s theory that uses ttaouble g & g* of the Lie bialge-
bra (g, g*) (see Drinfel'd [26]), where Lie bialgebra structures arevedeped for
Hamiltonian structures on Lie groups.

REMARKS. One of the reviewers of this paper made some helpful comsnent
the relationship between Lie-Dirac reduction of the pregaper and the reduction of
“Courant algebroids”. The point is that the Lie-Dirac retime procedure, including
the case with a given distribution, could be understood i@ ¢feneral context of
the reduction of Courant algebroids. Below is an outline lbse remarks. We
plan to explore this in more detail in a forthcoming paper lidgawith a general
configuration space?, rather than the special case 0f= G of the present paper.
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Let P be a manifold which is aG-principal bundle overB = P/G. One can
consider the bundlé&Z = (TP & T*P)/G over P/G = B. It is easily checked that
the natural lift of theG-action toTP & T*P preserves the natural paring (denoted
({-,-)) in Section 2), as well as the Courant bracket, which wereoéhtced in
Courant [23]. Thus,E is naturally a Courant algebroid ovét in the general sense
of Liu, Weinstein and Xu [36]. While this Courant algebroid hot of the form
TB & T*B, one can still talk about Dirac structures . In fact, it is a general
fact that if D is a G-invariant Dirac structure il P @ T*P, then D/G is a Dirac
subbundle of E (and D/G is integrable if D is, since G preserves the Courant
bracket). In the above general context, the reviewer sugdethat an alternative
proof of Theorem 4.2 (as well as its generalization, Theore@—which is the
case with a distribution that will be introduced in Sectioyy €an be given.

In fact, in the context of Theorem 4.2, with = T*G and using the isomorphism
T*G = G x g*, one gets a Courant algebroitl = g* x (V& V*) viewed as a trivial
bundle overg*. Let D be the canonical Dirac structure oA = T*G given by
Eq. (4.1). Then, the quotienD/G, viewed as a structure on the bundi over
B = g*, gives u-dependent Dirac structures i & V*, which is just a fiber ofE
over u € g*. For the case of Dirac reduction with constraints in which &a®
structure onP = T*G induced from a nontrivial distribution orG is given, we
will develop Theorem 7.2 later in Section 7, which could bsoalunderstood in
the above context of reduction of Courant algebroids.

Note that the reduced Dirac structure in Theorem 4.2 is ratdg with respect to
the natural Courant bracket i, whereas the one in Theorem 7.2 of course might
not be. Some relevant works that deal with the reduction ofir@at algebroids
and associated Dirac structures can be found in, for inetafi2, 13], where the
authors seem to focus mainly on so-called “exact” Couragelabids (in the set
up above, their reduction would yiel@B & T*B, rather thanE/G).

In this paper, our main goal here is to show how Lie-Dirac otidn can
naturally provide the reduction procedures for the stashdenplicit Lagrangian
and Hamiltonian systems, which can directly give us the iaitpanalogue of the
Euler—Poinca& equations as well as the Lie—Poisson equations, togethbr their
generalization to the case with a nontrivial distributiamd with applications to the
Suslov problem in nonholonomic mechanics. In addition, veeehmade links with
variational structures through the use of the Hamilton+agin principle; it is not
clear to us if or how these principles fit into the context ofu@mt algebroids.
We will not further explore the context of Courant algebmoid this paper. It is of
course an interesting topic for future work, especially, tee case, which is planned
for a subsequent paper, of “Dirac bundle reduction” in whate has a principal
bundler : Q — Q/G with a Lie group G acting freely and properly orQ and
where there can be a nontrivial distribution gh The goal in that case would be
to understand the general Dirac reduction of implicit Lagian and Hamiltonian
systems as well as their relation to a reduced Hamilton+Ragin principle.



REDUCTION OF DIRAC STRUCTURES AND THE HAMILTON-PONTRYAGIN PRICIPLE 401

5. Euler—Poincare—Dirac reduction

This section develops the reduction of implicit Lagrangsystems in the context

of the reduced Dirac structur@,/f; onV =g@®g*. In particular, it is shown that the
implicit Euler—Poincae equations can be obtained by reducing stendard implicit
Lagrangian systenon the Pontryagin bundld G & T*G.

Standard implicit Lagrangian systems onT7G & T*G

Let X : TG T*G — TT*G be a partial vector field orf'*G, L be a left
invariant Lagrangian (possibly degenerate) 6167, and D be the canonical Dirac
structure given in Eqg. (4.1). Using local coordinates v, p) for TG & T*G, X
will be written, at a point(g,v, p) e TG ® T*G as

X(g.v,p)=(8 P.& D),

where, as in the general theory, p are functions of(g, v, p). From (2.2), the
Dirac differential of L, namely, ©L is locally given by

oL 0L
DL = (g, e —@, v) .
A standard implicit Lagrangian systerfl., TG, X) satisfies the condition
(X,9L) e D,
which is locally denoted by, for eacly, v) € TG,

(X(g,v,p),DL(g,v)) € D(g, p).

Equality of base points gives
oL

v’
and then the conditionX, L) € D gives

oL . .
<_—, u> + (o, v) = (o, &) — (p, u)

ag
for all # and all «. Thus, we obtain
oL . . oL
= -, = U, = —,
p=- g P =g

which are equivalent with thénplicit Euler—Lagrange equationson TG & T*G in
Eq. (3.2).

Reduction of the Dirac differential of Lagrangians
Since the Lagrangiar : TG — R is left invariant onT G, we have

L(T,Ly, - v) = L(v)
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for all g,h e G andv e T,G.
Recall that the differential of. is the mapdL : TG — T*T G, whose coordinate
expression is given, using local coordinatesv) € TG, by

0L 0L
dL=\{g,v,—,— .
ag adv

Recall that there exists the natural diffeomorphisgn: T*TG — T*T*G and that
the Dirac differential of L is the map®L : TG — T*T*G that is represented in

coordinates by
DL = (g, B—L, —a—L, v) .
av ag
The naive quotient odL : TG — T*TG by G is the map
d/°L:TG/G — (T*TG)/G,

where d’® denotes the quotient of the differential operator Ia Since the
diffeomorphismyg : T*TG — T*T*G is G-equivariant, we can define a quotient
map

ybe (T*TG)/G — (T*T*G)/G

and therefore, we may define the quotient of the Dirac diffeaé of L as

DL =y 0d°L:TG/G - (T*T*G)/G.

Left trivialized expressions
Utilizing the left trivializing diffeomorphism
A:TG —> G xg:ivg > (g, n=T,L,1v),

one has the left invariant Lagrangiah = L o A~! induced onG x g and its
differential may be represented by the map

dL:G xg— (G x g) x (g5 ® g"),
which is expressed in coordinates by
- L dL
dL = (g, n, T, Ly —, —) .
dg  dn

Associated withys : T*TG — T*T*G, we can naturally define the trivializing
diffeomorphism

Y61 (G xg) x(g"®g) —> (Gxg)x(g"Dg),
which is given in coordinates as

(gv 77, v, IJ“) = (g: I‘L’ -V, 77)
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Then, the Dirac differential ofL becomes
DL = y;odL,

which is locally given by

DL = (g, %, —T'L, %, 77) .
DEFINITION 5.1. Since the Lagrangiah is G-invariant, we may write it as

L(g.m =1(n)

and define thequotient of the mamlL : G x g — (G x g) x (g" ® g*) by the map

d/°l:g— g x (g" ®g"),

d’61 = (77, 0, ﬂ) .
on

Further, the trivializing diffeomorphisnys; is G-equivariant, and so we can define
the quotient map

which is locally given by

7 e x (@ @) - g" x (8" Do),
which is given in coordinates as
(n, v, ) = (@, —v, n).
The reduced Dirac differentialfor [ is defined to be
D/l =79 od/Cl: g — g* x (g" @ g),
which is locally denoted by

Sl
D/6] — (—, 0. n), (5.1)
on

where ©/¢ is the reduced Dirac differential operator for

REMARK. The differential of the reduced Lagrangidn: g — R is naturally
given by the map
d:g— gxg¥,

which is locally expressed at a pointe g as

(o)

Note that the mapl/ : g — gxg* is not the same as the malp®l : g — gx (g"Dg*).
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Reduction of partial vector fields
Let X : TG®T*G — TT*G be a left invariant partial vector field of*G,
which is locally written, at a pointg, v, p) € TG & T*G, as
X(g,v,p) = (g p:& P)-
Since X is left invariant, one has

(TgL/’l)X(g7 v, p) = X(hg, Tth - v, Th*thfl . p)

By using the trivializing diffeomorphisms. : TG — G xg and 1 : T*G — G x g*,
which can be thought of together as a map: TG & T*G — G x (g @ g*), let
X:Gx(gdg")—> TG xg")=E(Gxg")x(gg*) be the trivialized expression
of X given by, for each(g,n, u) € G x (g @ g*),

Xigmw) = (g 1.6.2) € (G xg) x @@,

wheren = T,L,1v, § = TyL,1¢ and u = T L, - p such thatu = Fi(n). The map
X is left invariant sinceX is left invariant andx, A and A are equivariant. That
is,

(TyLp)X (g, n, mu) = X(hg,n, 1,
where
X(hg,n ) = (hg. . €.i2) € (G x 8 x (@@ 8°).
DEFINITION 5.2. Thereduction of the partial vector fieldt : G x (g ® g*) —
(G x g") x (g g*) is defined by the quotient off by G as
X g@g - g x (@@ g,
which will be written as

X0 ) = (p6 i) €9 x (@@ ), (5.2)

where & and i are functions of(n, ).

Euler—Poincaré—Dirac reduction

Now we have the needed basic ingredients to define what we retfat to as the
Euler-Poincaé-Dirac reductionprocedure. This will make use of the-dependent

reduced Dirac structur®, on V = g g*; together with the reduced Lagrangian,
this will induce the implicit Euler—Poincar equations.

DEFINITION 5.3. Let (L, TG, X) be a standard implicit Lagrangian system and
let, for fixed 1 € g*, D.° be the reduced Dirac structure dh= g® g*, which is
given by Eq. (4.6), or equivalently, (4.8).

The reduction of a standard implicit Lagrangian systefh, TG, X) is a triple
(I, g, X/9), wherel = L|g: g — R is the reduced Lagrangian and a reduced partial
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vector field X/¢ : g g* — g* x (gD g*) that satisfies, for each € g, the condition
(X%, 1), D'C1(n)) € DIF. (5.3)

Notice that for this to make sense, the base points must aticicle with w; that
is, the conditionu = FI(n) € g* must hold.

DEFINITION 5.4. A solution curveof the reduced standard implicit Lagrangian
systems(l, g, X/%) is a curve(n(t), u(t)) in g®g* such that the time derivative of
w(t) is equal tog and we also have base point equality, namegly,) = Fi(n(¢)) € g*.

PROPOSITION 5.5. Let (I, g, X/%) be the reduction of a standard implicit
Lagrangian system of'G @ T*G; that is, it satisfies Eq(5.3). Let (n(¢), u(¢)) be
an integral curve ofX/¢. Then theimplicit Euler—Poincaré equationshold, namely,

8l
n=—, &=, n=adpu. (5.4)

én
Proof: Substituting Egs. (5.1) and (5.2) into the condition of E§.3), namely,
(X%, w), D'l () € DI°

for eachn € g and with u = 81/6n € g*, it follows, at fixed u € g*,
(€ m.0.m)eD)e,

where X/%(n, n) = (u, &, 1) and /61 () = (81/8n, 0, n) together withu = 81/8n.
In view of Eq. (4.8), it immediately yields Eq. (5.4).

Thus, we can formulatémplicit Euler—Poincaé equationson V = g@® g* in the

context of the reduced Dirac structuf®,®, which are quite equivalent with the
ones derived from theéeduced Hamilton—Pontryagin principlen Eq. (3.3). d

Implicit Euler—Poincar & reconstruction of dynamics

As shown in Eq. (5.4), implicit Euler—Poind@arequations consist of equations
of motion 4 = adu, the partial Legendre transformation = &//5n together
with the kinematic equatioré = 7. Noting that £(r) = T,L,14(t) € g and
n(t) = T,L,~1v(t) € g, the kinematic equatiort(r) = n(r) is the reduction of
the second-order conditiop(r) = v(r) in the implicit Euler—Lagrange equations in
Eqg. (3.2). This is the context of implicit Euler—Poineareconstruction of dynamics
given by the following theorem.

THEOREM 5.6. Let G be a Lie group, letL be a left invariant Lagrangian
(possibly degenerate) oG and [ = L|g be the reduced Lagrangian. Lep € G,
vo € TgG and no = TgOLg_lvo €g. Let (n(®), u(®)) € g® g* be a solution curve

0

of the implicit Euler—Poinca® equations with initial conditiong;(0) = no and let
po € Tg’;G be such thatu(0) = T L,,(po); that is, assume that the equations

u(r) = ad, u(t),
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and the reduced Legendre transformation

(8
n(t) = (E) (),

together with the kinematic equatiorgss) = n(¢) hold.
Then, the solution curveg(t), v(¢), p(t)) € TG ® T*G of the implicit Euler—
Lagrange equations
oL . oL
T P= 0g

with initial condition (go, vo, po) is given as follows; letg(z) be the solution of the
equation7,L,-1¢ = §, namely,

g=v, P

dg(t)
i—t = T, L, (1)

with initial condition g(0) = go. Then,v(#) = g(t)n(¢) and p(t) = g(t)u(2); that is,
v(t) = TeLgoyn(@)  and  p(t) = Ty Liggpyy-114(0).-

Proof: By construction, the curvev(r) satisfies the given initial conditions,
and the conditiong = v. Also, by construction,p(r) is given by the Legendre
transformation and satisfies the given initial conditiols. check that it satisfies the
equationsp = dL/dg, note that by construction,

Mp@) = (g(t), TS Leyp (1)) = (g(1), (1))

and that the evolution equation fqr(r) is, by construction, the reduction of the
equation for p(z). a

6. Lie—Poisson—-Dirac reduction

If a given Lagrangian is regular, we can define a regular Hami&n on7*G
via the Legendre transform. In this section, we make a Hamidn analogue of the
Euler-Poinca—Dirac reduction, namely, a reduction procedure calles-Poisson—
Dirac reductionfor the standard implicit Hamiltonian system diG, which yields
implicit Lie—Poisson equationsn g & g*.

Implicit Hamiltonian systems

Before going into details, let us briefly review implicit Hétonian systems
associated with an induced Dirac structure along Yoshimamd Marsden [51].

Let O be a configuration manifold. Given a Lagrangidn on 7Q and the
Legendre transforn¥L : TQ — T*Q is locally given by, for eachlg,v) € T Q,

oL
FL(C]» U) = <q’ %) .
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When L is regular, we can define a regular Hamiltonidh on 7*Q by using the
Legendre transformatioffL : TQ — T*Q such that
H=EoFL™,

where E(gq, v) = (FL(g, v), vy) — L(gq,v) is an energy onl Q.

The definition of an implicit Hamiltonian system associateith an induced
Dirac structure onT*Q is given as follows: LetA, be a distribution onQ and
X be a vector field onT*Q. Let Dr, CTT*QT*T*Q be an induced Dirac
structure on7*Q. Then, animplicit Hamiltonian systemis a triple (H, Agp, X),
which satisfies, for eachig, p) € T*Q,

(X(q.p).dH(q, p)) € Day(q, p).

Standard implicit Hamiltonian systems on T*G

Let us consider a standard implicit Hamiltonian system BhG; the case in
which A, = TQ and Q = G, namely, a configuration space is given by a Lie
group G and Ag = TG there exits no kinematic constraints. Letbe a regular left
invariant Lagrangian o7’ G. Define a Hamiltoniand on T*G by H = E o (FL)™},
whereFL : TG — T*G and E(g,v) = (FL(g, v), vy) — L(g, v). Since L being left
invariant on TG and FL : TG — T*G is diffeomorphism,H is also to be left
invariant on 7*G.

Recall from Eq. (4.1) that the canonical Dirac structupeon 7*G is given by,
for each p, € T*G,

D(pg) = {(Upg, Ol,,g) € TpgT*G X T;gT*G | apg(wpg) = Q(pg)(vpg’ wpg)
for all w,, € T,, T*G}.

Recall also that the canonical symplectic forfa on T*G is represented, using
local coordinates(g, p) for T*G, by

Q((g, p,u1, 1), (g, p, uz, az)) = (az, u) — (o1, uz) .
Let X be a left invariant vector field off*G, which is denoted, in coordinates, by
X = (g, P, gv p)
and the differential of the Hamiltonian may be written in wdioates as
dH O0H
dH =(g,p,—,— ).
dg  dp
Then, the condition for the standard implicit Hamiltoniaystem (H, A¢=TG, X)
is given by, for each(g, p),

(X(g,p),dH(g, p)) € D(g. p)

dH oH . .
<a—7u>+<a7 —> = <Ol7 g) - <p7 M)
g ap

and hence we obtain
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for all ¥ and all «. Thus, it follows

dH ) oH

ap’ dg

which implies that(H, TG, X) naturally induces Hamilton's equations.

g=

Reduction of the differential operator for Hamiltonians
Since H is left invariant, we have
H(T; Ly-1- p) = H(p)
for all g,h € G and p € T;/G. Hence, we can define the reduced Hamiltonian by
H/¢:T*G/G — R.
The differential of H is the one-form onT*G that is the map
dH : T*G — T*T*G,
which is denoted, in local coordinateg, p) for T*G, as
dH = (g,p,a—H,a—H).
ag dp
Then, the naive quotient oflH : T*G — T*T*G may be defined as
d’°H : (T*G)/G — (T*T*G)/G.

Left trivialized expressions
Employing the trivializing diffeomorphism
LiT*G — G x g*; pyt> (g, 10 =T} Lg(py)),
the differential of the left invariant Hamiltonia# = H o A~* induced onG x g*

is the map ~
dH : G xg" — (G xg") x (g" D g),

which is expressed, using coordinates 1) € G x g*, by
o o)
o9g o)’
IgEFINITION 6.1. The induced Hamiltoniaf on G x g* is G-invariant, and it
reads

dH = (g, w, T L

H(g, 1) = h(p),

whereh : g* — R is the reduced Hamiltonian. Define theduction of the differential
operator for 1 by the map

d/Ch:g" — g* x (g" D g).
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which is locally given by
Sh
d/Ch = (M, 0, —) . (6.1)
S

REMARKS. The differential of the reduced Hamiltonian: g* — R is given by
dh:g* —> g" x g,
which is locally expressed by, for € g*,

()
So, needless to sayh is not equivalent with the map
d°h:g" > g" x (g @9,
which we will utilize to reduce the standard implicit Haroiian systems.

DEFINITION 6.2. SinceX is left invariant and by equivariance of : 7*G —

G x g*, we can define thenduced vector field orG x g* by X = A, X, which is
written, at each pointg, u) € G x g*, by

X(g, n) = (g, n, & 1), (6.2)

where (g, ¢) is a partial vector field onG smoothly depending o € g* and
hence we write

Yu = (g’ g)
Since the vector fieldr, is left invariant, we have, for allf, g € G,
TrLgYu(f) = Yu(8f),

which reads
Yu(g) = TeLgY/L(e)-

Then, we can define partial vector field
X/C: gt — g x (g®g")

by the quotient of the mapt’ : G x g* — g* x (g ® g*) by G, which is given, in
coordinates, by
X0 = (1, E(w), ), (6.3)

where §(u) = T,L,18.

Lie—Poisson—Dirac reduction
Let us definereduction of the standard implicit Hamiltonian systeémthe context
of the reduced Dirac structu@,/f; onV=g®g*

DEFINITION 6.3. Let (H,TG, X) be the standard implicit Hamiltonian system
associated with the canonical Dirac structube on T*G. Let D = A,.D be the



410 H. YOSHIMURA and J. E. MARSDEN

canonical Dirac structure o6 x g* given in Eq. (4.3). LetX/¢ be the partial vector
field defined in Eq. (6.3) and,® be the reduced Dirac structure dn= g & g*
fixed at u € g*, given in Eq. (4.6) or (4.8).

Then, thereduction of a standard implicit Hamiltonian systeffl, TG, X) may
be given by a triple(h, g, X/%) that satisfies, at fixeds € g*,

(X%, d“h(u)) € DI°. (6.4)

DEFINITION 6.4. A solution curveof the reduced standard implicit Hamiltonian
system(h, g, X/¢) is a curveu(t) in g*, which is an integral curve of the partial
vector field X/¢ = (u, £(u), 1) such that&(z) = Fa(u(t)).

PROPOSITION 6.5. The reduction of the standard implicit Hamiltonian system
given in Eg.(6.4) induces implicit Lie—Poisson equations @nd g* as
Sh
= —, 1 = a . 65
3 5 p=adu (6.5)
Proof: Substituting Egs. (6.1) and (6.3) into the condition of E§4), namely,
X/ (w), d’“h()) € DY,

where X/¢ = (u,&(n), 1) and d/“h = (u, 0,8h/8). In view of Eq. (4.8), we
obtain Eg. (6.5). O

Thus, we obtain implicit Lie—Poisson equations g g* in the context of the
reduced Dirac structure, which are quite equivalent with ¢imes previously derived
from the Lie—Poisson variational principlen Eqg. (3.8).

Reconstruction of dynamics

The implicit Lie—Poisson equations in Eqg. (6.5) consist gua&ions of motion
p = adu and the partial Legendre transformatidn= 6h/5u. Here, we shall
show how the reconstruction of dynamics can be done from igihgdlie—Poisson
equations. Implicit Lie—Poisson reconstruction of dynesnican be given by the
following theorem.

THEOREM 6.6. Let H be a left invariant Hamiltonian onT*G and & be the
reduced Hamiltonian ong*. Let u(r) € g* be a solution curve of the implicit
Lie—Poisson equations

fu(r) = ad) u(t)
with the initial condition ;.(0) = 7, L, (et,,), Which are accompanied with

Sh
£(1) = <3—) ().
n
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Then, the integral curvep(r) € T .G of a vector fieldX on T*G with initial

8(1)
condition p(0) = pg, is given by
p(t) = Ty L g-11(0),
where g(7) is the solution of the equatiof,L,-1¢ = &, namely,

dg(t)
TE =T Lgr§(1)
with initial condition g(0) = go.
Proof: The curve p(¢) is the unique integral curve ok with initial condition
p(0) = pg(o if and only if

Mp @) = (g(0), T Lgy Pginy (1)) =: ((1), (1))

is the integral curve of the induced vector field = A, X on G x g*, which is
given in Eq. (6.2), together with initial condition

M(p(0)) = (go, T Ly po)- O

7. Dirac reduction with constraints

In this section, we shall investigate the reduction of anugetl Dirac structure
on the cotangent bundle, for the case in which a configurat@mifold is given
by a Lie group and with a left invariant constraint distribat It will be shown
that this Dirac reduction plays a key role in the reductionimplicit Lagrangian
and Hamiltonian systems oG & T*G for the so-called Suslov problems in
nonholonomic mechanics.

The induced Dirac structure on T*G

Let A¢ C TG be a constraint distribution oz, where we assume that the
distribution is regular. Assume also that the distributiag is left invariant under
the group actionL, : G — G : g+ hg such that the subspactg(g) C 7,G is
mapped by the tangent of the group action to the subspapég) C 7,,G. Define
the distribution on7*G by

Arsg = (Trg) HAc),

where g : T*G — G is the cotangent projection. Recall that an induced Dirac
structure D5, on T*G is defined, for eactp, € T*G, by

Dpg(pg) = {(vpg, ap,) € T,,gT*G X T;‘gT*G | vy, € Ar+G(Py), and
o:,,g(w,,g) = Q(pg)(v,,g, w,,g) for all Wy, € Ar=g(pg)},
where Q is the canonical two-form orf *G.
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Trivialized expressions

Let us choose local coordinates for G so that G is locally represented by
an open setU C R". The constraint setA; defines a subspace df,G at each
point ¢ € G, which we locally denote byA(g) c R" at each pointg € U. If
we let the dimension of the constraint space be- m, then we can choose a
basise,,11(g), emi2(g), ..., e,(g) of A(g). It is also common to represent constraint
sets as the simultaneous kernel of a number of constraintfornmes, namely, the
annihilator of A(g), denoted byA°(g), is spanned by such one-forms, which we
write as o!, w?, ..., ®". Hence, the local expression &; Cc TG is given by, for
eachg e U,

Ac(g) ={v e T,G|veA(}.
The distribution A is left invariant, and it reads
Ag(hg) = Ag(g)
for all h, g € G, where
Ag(hg) = {TyLyv € TyoG | TyLyv € A(hg)}.
We can define the distributiolg, g+ on G x g by
Agxg: = (T76) 1 (Ag) C T(G x g").

In the above,7s : G x g — G is defined such thatrg = ng o A, where
e : T*G — G is the canonical projection and: 7*G — G x g*. Employing local
coordinates(g, u) for G xg* and (v, p) for T(, ,)(G xg*) = T,G x g*, the distribution
Agxgr C T(G x g*) can be locally represented by, for eath ) € G x g*,

Agxg (8. ) ={(v,p) € T,G x g* | v e Ag)}.

Since Ag is left-invariant, it is easily verified that the distriboti Ag. g is also
left-invariant, namely,

Agxge(hg, 1) = Agxg (g, )
for all h,g € G and u € g*, where
AGxg(hg, 1) = {(TeLyv, p) € TigG x g* | TyLyv € A(hg)} .
Now, we can define an induced Dirac structure Gnx g* by
Dag = MDag.

which is locally given by, for eachg, u) € G x g*,
Dag (g, ) ={(v, p), (B, m) € (TzG x g*) x (T, G x g°) | (v, p) € Agxg+(g, 1),

and (B, w)+ (o, n) = w(g, W((v, p), (w,0)) forall (w,o) € Agxg(g, )},

where w = A,Q is the canonical symplectic structure @hx g* given in Eq. (4.2).
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Invariance of induced Dirac structures

Let A be a left G—action onG x g* and henceA,(g, u) = (hg, n). Since the
canonical symplectic structure and the distributionAg. 4« are G-invariant, an
induced Dirac structuréD,, on G x g* is G-invariant as

(A X, (A ta) € Da,

for all (X, a) € Dp,. Namely, the left-invariance of an induced Dirac structiirg,
is locally represented by

Dpg(hg, ) = Dag (g, 1),
for all h,g € G and u € g*, where

Dag(hg, n) = {((TgLpv, p), (Ty,Ly-1B8,m) € (ThgG x g*) x (T,;,G x 9) |
(TthU, 10) € AGXQ* (hg9 /“L)’ and (Tthh_lﬁ’ Tthw> + (Gv T))
:(!)(hg, M)((TthU, ,0), (Tthw,G)) for a” (Tthw’G) € AGXQ*(hgv IU/)}

Reduction of induced distributions

Recall the induced distributiomg. g+ C T(G x g*) from As can be locally
given by
Agxg ={(g, v, p) [ g €U, veAlg)}.

Since Ag g+ is left-invariant, it follows
Agxgr(hg, 1) = Agxg+(8, 1)
and taking quotients byG at each(e, u) € G x g* yields
Agxg+(e, /G =g* @ ¢,

where A
g-=1{€gl|&eAl))}

is a constraint subspace @f= 7,G.

Dirac reduction
Because of theG-invariance of D, ., an induced Dirac structure oG x g*

Dr, CT(G xg") @ T*(G x g")
may be identified with
Dpg C(G x g") x (Vo VY,
which is uniquely determined by its value at the identity as

Dagle, ) = {((, p), v, M) eV V*| (§,p) €g® D7,
and (v, ¢) + (o, n) = w(e, W((E, p), (,0)) for all (¢,0)€g® ®g*).
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In view of the invariance of the induced Dirac structure, maudure, which we
write D/A(C;;(M), may be induced, for each € g*, on the quotient space as

D () ={(. p). ) VAV | (E.p) g’ Dy,

and (v,¢) 4 (o, n) = @/ p), (£, 0)) forall (Z,0)eg*@g’), (7.1)

Wherea),/f; is the u-dependent symplectic structuoe V = gdg* given in Eq. (4.7).

PROPOSITION 7.1. For fixed 1 € g*, D)0 (1) in Eq. (7.1) is given by

D () = (€. p), . E) eVOV  |Eegh, vip—adpe @)} (7.2
Proof: Suppose that the condition (7.1) holds, namely, that
(v, 8) + (0. 0) = W[ C(G, p). (§,0))
for all (¢,0) € g @ g*. First, using (4.7) and setting = 0, gives
w+p,0)=(n ad ) for all ¢ e g”.
So, one gets
v+p—adu e (g*)°.
Second, set =0 and then
(o,n—&y=0 for all o € g*.
Hence, we have
n==¢§eg"
The converse is shown in the same way. 0

The induced Dirac structure on V =g ® g*

As in Section 4, we have the following important theorem sihgwthat the
reduction of the induced Dirac structure @G gives au-dependent Dirac structure
on V =g g* induced fromg”® C g.

THEOREM 7.2. For fixed u € g*, the induced structureD)’ (1) given by (7.1)
or equivalently,(7.2), is a Dirac structure onV = g & g*.

Proof: One can simply prove that for fixed, Eqg. (7.1) is a special case of the
construction of a Dirac structure on a symplectic maniféldgiven by Eq. (2.1),

with P =V, with the symplectic structura),/f; and with g @ g* C V.

We shall give another direct proof of this theorem as followwting that the
symmetric paring onV & V* is given by

€ ((w,y), 6, w), (&, p), (v.5) )= (v, w)+(y,8) +(5,8) + (p,u),
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the orthogonal space dD/A(; (w) is given by, for eachu € g*,

(DA (W) = {(w,y), G w)eVadV"|
(v, )+ (v, 6) +(5,€) +(p,u) =0, &eg® v+p—adue (@)
What we want to prove is thaD\’ (1) = (Dyo)*(u). Let us first check that
DL (1) € (DLE)E(w). Let ((w,y), (6, w) € D)7 (1), wherew € g* and y +8 —
ad, 1 € (g*)°. Since& € g* and v+ p —ad i € (g%)°, we have
(v, w) +(y, &) +(5,8) + (o, w) = (v+p, w)+(y +46,§)
= (@ +adu, w) + (B +ad,u, §)
= (u, adw) + (u, ad, &)
=0,
wherea =v+p—adp and g =y +45—ad, u. Therefore,D/A% (n) C (D/AC;)L(M).

Conversely, let us check thatD\’)“(u) C Di> (u). Let ((w.y). (8. u)) €
(Do)t (w). Settingg =0 and v + p = ad; iz, one has
(v, w) +(p,u) = (@d n — p, w) + (o, u)
= (p,u —w)
=0
for all p. So, one obtains: = w. Next, let¢ be arbitrary and leb + p = ad: .
Noting w = u, one has
(v+p, w)+(y+35,§ =(@du, w)+(y+34,§)
= (n, adw) + (y +46,§)
= —(u,ad,§) +(y +9,§)
ad,u+y +34,8)

(—
0

for all £ € g®. So, we havey +5 —ad;u € (g*)°. Hence (D.%)* c D,°.

Finally, (D{LG)l = D,/f and thus,D/A(:;(u) is a u-dependent Dirac structure on
V =g@®g* induced fromg” C g. O

8. Euler—Poincare—Suslov reduction

In this section, making use of the Dirac reduction, we willglep the reduction
of an implicit Lagrangian system(L, Ag, X), where a left invariant constraint
distribution Ag C TG is given. In particular, we will show how a reduced implicit
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Lagrangian system can be obtained in an implicit form of tlecalled Euler—
Poincaé—Suslov equations and we also illustrate an example of tts0®% problem
of rigid body systems with nonholonomic constraints.

Implicit Lagrangian systems on TG & T*G

Let L be aG-invariant Lagrangian (possibly degenerate) B6. Let (L, Ag, X)
be an implicit Lagrangian system, which satisfies

(X,DL) € Day,

where X : TG T*G — TT*G is a partial vector field orT*G, ®L is the Dirac
differential of L and D, is the induced Dirac structure.

Coordinate representations
The canonical two-form2 is given in coordinates by
Q (g, p,u1, 01), (g, p, u2, 2)) = (o2, ua) — (o, u2),
and the induced Dirac structure may be expressed, in caus$in by
Day(g.p) =1{((g p. &, P) (g P, w)) | g € A(g), w=¢g, and o+ p € A°(g)}.

Writing X(q,v, p) = (g, p,&,p) and ©L = (g,dL/dv, —dL/dg,v) together
with p = 9L/dv, and using the local expressions for the canonical symiplect
form and the Dirac differential, the condition for an impid_agrangian system
(X,DL) € Dy, reads that

oL . .
L + (o, v) = (a, &) — (p, u)
8

for all u € A(g) and all «, where (1, «) are the local representatives of a point in
T, »nT*G. Since this holds for alu € A(g) and all «, it follows

oL _ 9L .
=—, g=veA), p—— €A°(g), (8.1)
dv 0g

which are the local expressions for the implicit Lagrang&stem on7TG & T*G.

p

Euler—Poincarée—Suslov reduction

Let us give the definition of reduction of an implicit Lagréag system associated
with the induced Dirac structure ofi*G.

DerFINITION 8.1 (Euler—Poinc@&-Suslov reduction). LetL, Ag, X) be an implicit
Lagrangian system, which is associated with the Dirac 8iracD, induced from
Ag C TG. Let D)’ (1) be the u-dependent reduced Dirac structure Un= g & g*
associated with a constraint spag® C g, which is given in Eq. (7.1), or equivalently
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(7.2). The reduced partial vector fielkl’¢ : g®g* — g* x (g®g*) is locally written
as in Eq. (5.2). Let = L|g: g — R denote the reduced Lagrangian.

Then, thereduction of the implicit Lagrangian systefid., Ag, X) is given by a
triple (I, g®, X/%) that satisfies

(X%, ), D°1(n)) € DY (), (8.2)
where ©/¢] is the reduced Dirac differential far given in Eq. (5.1) for ally € g;
again note that equality of base points requires that, intiadd u = Fi(n).

DEFINITION 8.2. A solution curveof (I, g®, X/%) is a curve (n(t), u(t)) in
g% @ g* such that it is an integral curve of the partial vector field¢, where

wu() =Fl(n()).

PrROPOSITION 8.3. An integral curve (n(¢), u(t)) of the reduced implicit La-
grangian system(/, g®, X/¢) satisfies the following equations:

6l
=5
where (g#)° C g* is the annihilator of the constraint subspagé.

Proof: Substituting X/ (n, u) = (u, &, ) and ©/C1(n) = (81/8n, 0, n) into the
condition of Eq. (8.2), for each € g* and with fixed u = 8//8n € g* in view of
Eq. (7.2), it immediately reads

(€ . ©0.m) e DL .

0 g=neg®  p—adue (@), (8.3)

and hence
E=neg®  p—adue @),
Thus, we obtain Eq. (8.3). O

The set of equations of motion in Eq. (8.3) is the local exgims for the
reduction of the implicit Lagrangian system given in Eq.1§8.which is an implicit
analog of Euler—Poincaé—Suslov equationgsee Bloch [7]). Then, we shall call
Eg. (8.3) implicit Euler—Poincare—Suslov equationsn g @ g*.

Energy conservation of implicit Lagrangian systems

Let (L, Ag, X) be an implicit Lagrangian system, where is a Lie group,L
is a left invariant Lagrangian oG and X : TG ® T*G — TT*G is a partial
vector field onT*G. Let Ag be a left invariant distribution orG and define the
constraint momentum space Cc T*G by P =FL(As). Define an energy function
E onTG&®T*G by, for (g,v,p) e TG & T*G,

E(ga v, P) = (P, U) - L(g» U).

Let (g(®),v(@), p(t)) iIn AP C TG ®T*G be a solution curve ofL, Ag, X),
where p(t) = (0L/9v)(t).
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Recall from Yoshimura and Marsden [50] that for the implicéigrangian system
(L, Ag, X), energy conservation holds along the solution culg€r), v(r), p(t));
that is, the energy (¢ (¢), v(¢), p(t)) is constant in time. This is shown as follows:

E=(pv) +ip. o) — g — Ok,
—E =(p,v ,U)— —g&— —70
a0 P 92°  dv

. OdL
- - V),
p dg

which vanishes sincg = v € A(g) and sincep — dL/dg € A°(q).

Energy conservation of reduced implicit Lagrangian systers

Recall that the groupG acts on curves(g(t), v(t), p(¢)) in TG & T*G, by
simultaneously left translating on each factor by the &fion and the tangent and
cotangent lifts. Explicitly, the action of an elemehte G is given on a curve
g(t) € G, v(t) € T,(»G and p(r) € TG, by

h-(g@), v(1), p(@) = (hg(t), TgwyLp - v(t), Ty Ly-1 - p(1)),

where Ty Ly : TG — TheyG is the tangent of the left translation mal, :
G — G; g(t) — hg(r) at the pointg(s) and Tyewy Ly = TG = T,y G is the
dual of the mapT,L,-1 : TheyG — T¢)G. The energyE is invariant under

the action of G since L is G-invariant and one easily checks that the momentum
function (p(¢), v(¢)) is also G-invariant. Hence one can define the reduced energy

e on g@g* by, for (n,un) € g& g*,

e(n, u) = (u, n) —L(n),

wherel = L|g is the reduced Lagrangian gnand (u, n) is the reduced momentum
function on g @ g*. Let g® C g be the reduction ofA; ¢ TG and let X/ :
gP gt — g* x (g g*) be the reduction of the partial vector field.

We have the following proposition of energy conservatiom feduced implicit
Lagrangian systems.

PROPOSITION 8.4. Let (I, g*, X/%) be the reduced implicit Lagrangian system,
which is the reduction of a given implicit Lagrangian systdih, Ag, X). Let
(n(t), u(t)) be a solution curve ing® @& g* C g ® g* of (I, g”, X/%), where
w(@) = (81/6n)(r). Then conservation of energy holds along the solution curve
(n(@®), u(@)); that is, the (reduced) energy(n(z), u(z)) is constant in time.

Proof: By the definition of the reduced energy it follows, by noting u(t) =



REDUCTION OF DIRAC STRUCTURES AND THE HAMILTON-PONTRYAGIN PRICIPLE 419

(81/8m)(1),

d ) . oL,
2760 ) = (e, m) + (s ) — 5y
= <M — % f7> + (adt e, n)
= (adp. &),
which vanishes since) = ¢ € g* and sinceir —adiu € (g%)°. Thus, the (reduced)
energy e is constant in time. O

Examples of implicit Euler—Poincaré—-Suslov equations

Let us illustrate the Euler—Poin&+fSuslov reduction theory with an example of
the Suslov problemfor the caseG = SO(3). As to the Suslov problem, refer to,
for instance, [34, 53, 7, 10].

Now, we consider the Suslov problem, which is an Euler tofhwithonholonomic
constraint, which represents a rigid body rotating with edixpoint such that at
each moment of time the projection of the angular velocitysinme direction fixed
in the body is equal to zero.

Let L : TSO3) — R be a left invariant Lagrangian (the kinetic energy), i.e.,
L(g,v) = (T;L,-1v), where [ : s0(3) — R is the reduced Lagrangian, which is
locally given by

1

where ¥ = T,L,-1v € 50(3) and I denotes the inertia tensor of a rigid body. The
Suslov problem is a class of nonholonomic systems with atcaing distribution

50(3)2 ={= €50(3) | (A, ) =0}, (8.4)

where X is the body angular velocity and\ is a fixed element of the dual
Lie algebraso(3)*. Here, (-,-) stands for the natural paring between the Lie
algebra and its dual. Since the subspae)® is not necessarily a subalgebra, the
constraint is nonholonomic. Then, the Suslov problem mayrdmesented by the
reduced implicit Lagrangian systert, so(3)*, X/¢) as in equation (8.2). Namely,
the system equations for the Suslov problem can be exprelgethe implicit
Euler—Poinca—-Suslov equations, which are given in this example by

al

I, =—, Q =3, 1, — CX.QITI; = AA;, i,j k=123
%! Ji

In the aboveCfi are the structure constants @f(3) and A is the Lagrange multiplier.
Further, ¥ = Y'g, Q@ = Q'e € s50(3)2, A = A;€ € s0(3)*, andI1 = I1;€ € s0(3)*
denotes the body angular momentum, wherei = 1,2, 3 form a basis forso(3)
and € form a basis forso(3)*.
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As demonstrated in [53], let us choosg = A/|A| as the third vector of the
body frame and let us pick up two independent vecterse, that are orthogonal
to e3 in the kinetic energy metric. Then, one has the constraint

Q3 =0.
Note thate;, e, and e3 are not necessarily orthogonal relative to the standardienet
in so(3) = R unlesse; spans an eigenspace of the inertia tenbet lij& ® €.
This implies that the structure constarﬂ#i are not equal to zero. Noting that the
components of the inertia tensdis and I,3 are zero, hence, it follows
My = I 2+ 11, 5% My = I 2+ [ 22 M3 = I3 25
The implicit Euler—Poinc@&-Suslov equations are given in matrix form by

I C3,Q2I1; + C2,Q%11, 0

M| = CLQMI; + CLQMT, +1 0

I3 CLQMI; + C2,QMT, + C2,Q%11; + C2,Q211, LA
and with

Qr=23%1, Q=X Q3=233=0.

Notice thatIlz = 0 since Q3 = X3 = 0. By eliminating the Lagrange multiplier, we
finally obtain

M) [ 32N+ C5Q%T,
)\ cLalm + c2,elm,
and with
Q=3%1, Q=32 My =IuS'+1,%% Tp=I1 M+ T2

The above implicit Euler—Poinca+Suslov equations are equivalent with the equations
in [53].

For the case in which we choosg as an eigenvector of the inertia tensor such that
Ie; = Iz3e3 and in which we also choos® ande, as the two remaining eigenvectors,
the basises, e;, €3 in s0(3) is orthogonal with respect to both the standard and
the kinetic energy metrics, wher€3,=C3,=C3 =-C3 =—-C},=-C%=1 and
C’;i = 0 otherwise. Then, we get

I1; =0, 1, =0.
Thus, all the solutions of the reduced system are relativdglibga.

9. Lie—Poisson-Suslov reduction

For the case in which a given Lagrangian is regular, or when amilionian
is given, we can develop a Hamiltonian analogue of Eulemé&®—Suslov reduc-
tion. This section, gives a reduction procedure for an ioiplHamiltonian system
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(X,dH) € D, associated with an induced Dirac structure DR, which we shall
call Lie—Poisson-Suslov reductiont is also shown that this reduction procedure may
be also useful in the analysis of the Suslov problem in nayimhic mechanics.

The implicit Hamiltonian system on a Lie group

Let H be a G-invariant Hamiltonian onT*G. Let (H, Ag, X) be an implicit
Hamiltonian system, which satisfies

(X,dH) € Dag,

where X is a vector field onT*G, dH is the differential of H and D, is the
induced Dirac structure.

Coordinate representations
Recall that the canonical two-forr is given, in coordinates, by

Q((g, p,u1, 1), (g, p, uz, az)) = (a2, uz) — {1, uz),
and the induced Dirac structure may be expressed, in cauedin by

Dps (g, p) ={((g, p. & P (g P, w)) | £ € A(g), w=¢g, and a+ p € A°(g)}.

Writing X = (g, p, ¢, p) and dH = (g, p,dH/dg, dH/dp), and using the local
expressions for the canonical symplectic form and the wfféal of H, the condition
for an implicit Hamiltonian systemX,dH) € D5, reads

0H 0H
<—,u>+<a, —> = <a9 g) - <l.7,u>
g ap

for all u € A(g) and all @, where (u, ®) are the local representatives of a point
in T, ,»T*G. Since this holds for allu € A(g) and all «, we obtain the local
expressions for the implicit Hamiltonian system as

. O0H . 0H .
g=——¢€A(), P+ —— €A°(g).
op g

Lie—Poisson-Suslov reduction

Let us developthe reduced implicit Hamiltonian systenassociated with the
reduction of an induced Dirac structure g@mb g*, which we shall callLie—Poisson-
Suslov reduction

Let (H, Ag, X) be an implicit Hamiltonian system, which satisfi¢X,dH) €
Dy, Where H is a left invariant Hamiltonian onT*G, Ag C TG is a given
distribution andX is a vector field onT*G.

DEFINITION 9.1 (Lie—Poisson-Suslov reduction). LéH, Ag, X) be an implicit
Hamiltonian system, which is associated with the Dirac cdtme D,, on T*G
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induced from Ag C TG. Let h : g* — R be the reduced Hamiltonian defined
by h = H|g* and let g® C g be a constraint space. Denote By/¢ the partial
vector field defined in Eq. (6.3), an®,’ (1) denote the reduction of the induced
Dirac structure onV = g & g*, which is defined at eaclx € g*, by Eq. (7.1), or
equivalently Eq. (7.2).

Then, thereduction of the implicit Hamiltonian systeliH, Ag, X) is given by
a triple (h, g*, X/9) that satisfies, at each < g*,

(/9 (w), & h(w) € DY (W), (9.)

where d’“h is the reduction of the differential off, which is locally given in
Eq. (6.1).

DEFINITION 9.2. A solution curveof (h, g®, X/%) is a curve u(t) in g*,
which is an integral curve of the partial vector fiekd/¢ = (i, £(u), 1) such that
£() =Fh(u() € g*.

PrRoOPOSITION9.3. The reduced implicit Hamiltonian systerfis, g®, X/¢) induces
the local expressions

Sh , ]
S = ﬁ € gA7 u— acgﬂ € (gA) ) (92)

where (g*)° C g* is the annihilator of the constraint subspagé.

Proof: Substituting Egs. (6.1) and Eq. (6.3) into the condition Ed. (9.1),
namely,

(X9 (), d/h(w) € DT (),
it immediately reads, in view of Eq. (7.2), Eq. (9.2). a

We shall call the set of equations in Eq. (9.Bpplicit Lie—Poisson-Suslov
equationson g* @ g*.

Examples of implicit Lie—Poisson-Suslov equations

For the case in which a given Lagrangian is regular, we castoact the reduced
implicit Hamiltonian system associated with the reduceglicit Lagrangian system
in the context of the Lie—Poisson-Suslov reduction. Heet, Us demonstrate the
Lie—Poisson-Suslov reduction together with the same elamipthe Suslov problem
of nonholonomic rigid body systems for the caGe= SO(3) as we showed in the
Euler—Poinca&—Suslov reduction.

Let H : T*SO3) — R be a left invariant Hamiltonian, that isH(g, p) =
h(T;L,p), whereh :s0(3)* — R is the reduced Hamiltonian locally given by

h(IT) = :—2L(1‘I,]I‘11‘I>,
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where IT = T L, p € s0(3)*.

Associated with the nonholonomic constraint distributign(3)2 C s0(3) given
in Eq. (8.4), the rigid body system can be represented in dmegt of the reduced
implicit Hamiltonian systen(i, so(3)2, X/%). Then, the reduced implicit Hamiltonian
system for the Suslov problem may be expressed by the impliei-Poisson-Suslov
equations given in Eq. (9.2), which are locally given, instl@xample, by

Qleﬂ, I1; — CKQITI; = AA;, i, j k=123,
oT1; It

where Q = Q'e; € s0(3)2.

Let us choosee; = A/|A| as the third vector of the body frame. Then, we
have the constraint2; = 0, and hence the implicit Lie—Poisson-Suslov equations
are finally given in matrix by

M) [ €3RI+ C5Q%M,
I, CLQMI; + CZ,QMI,

and with
Ql — 111H1+ 121 1—[2’ QZ — 112Hl+122 HZ,

which are equivalent with the equations of motion given i3][5

10. Conclusions

In this paper, we have presented a reduction theory for eduG-invariant
Dirac structures on the cotangent bundl&G of a Lie group G along with
its associated reduced implicit Lagrangian and Hamiltorsgistems. First, we have
shown how an implicit analogue of the Euler—Poircauations, namely, the implicit
Euler—Poinca equations, can be developed as the reduction of the imidier—
Lagrange equations in the context of reduction of the Ham#Pontryagin variational
principle. Second, we have developed a Lie-Dirac reductimeory for reducing
the canonical Dirac structure ofi*G; namely, we have constructed ;adependent
reduced Dirac structuré),ﬁG on g @ g*, which includes both the coadjoint orbit

symplectic structure and the Lie—Poisson structure. Thenhave incorporateGD{LG
into the reduction of standard implicit Lagrangian systémslevelop Euler—Poincar
Dirac reduction, which eventually induces the implicit &wPoincaé equations. We
have also investigated the Hamiltonian analogue of Eut@ndaé—Dirac reduction,
namely, Lie—Poisson—-Dirac reduction for the case of a gregular Lagrangian, or
Hamiltonian, which is the reduction of the standard implielamiltonian system,
consistent with the Lie—Poisson variational principle.rtRar, we have established
reduction of an induced Dirac structure @G for the general casé\g C T*G,
and we have demonstrated how it can be incorporated into tso problem in
nonholonomic mechanics. We have constructed-@pendent reduced Dirac structure
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D/A‘; (n) on g@®g*, which has been incorporated into the context of Euler-¢oin-
Suslov reduction for reducing an implicit Lagrangian sgstas well as into the
context of Lie—Poisson-Suslov reduction for reducing aplioit Hamiltonian system.
Lastly, we have demonstrated that the implicit Euler—PaimeSuslov equations as
well as the implicit Lie—Poisson-Suslov equations can baunally obtained from

this reduction theory.

Some interesting topics for future work that may be relewaith this paper are

as follows:

e Reduction of an induced Dirac structure on the cotangentleuof a manifold
Q for the case of principal bundle with a Lie grou@ acting freely and
properly on Q; especially, how it is relevant with an implicit analogue of
Lagrangian reduction and Lagrange-Poigcaquations (see, for instance, [18]).

e The relationship with Lie algebroids and associated Lagjean reduction that
were noted in Weinstein [49]; how implicit Euler—Poineaequations can be
related with Lie algebroids; the link with Lie bialgebroidkat are relevant
with Drinfel'd [26].

e The Courant algebroid in relation with Dirac bundle redoctiand its asso-
ciated reduced implicit Lagrangian and Hamiltonian systemith a nontrivial
(nonintegrable) distribution orQ.

e The formal variational analysis for integrable systemse (§28]) in relation
with, for instance, Hamiltonian structures in infinite LCaismission lines.

e Applications to rigid body problems, ideal fluid dynamicsdaso on; for
instance, how implicit Euler—-Poindarequations can be applied to degenerate
cases, such as the Maxwell-Vlasov equations, as in [17].

e Development of Dirac reductions in discrete mechanics applications to
numerical integration and Hamilton—Pontryagin variasibrintegrators, both
unreduced and reduced in particular (see, for instance, §8d Bou-Rabee
and Marsden [11]).
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