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This paper develops a reduction theory for Dirac structuresthat includes in a unified way,
reduction of both Lagrangian and Hamiltonian systems. It includes the reduction of variational
principles and in particular, the Hamilton–Pontryagin variational principle. It also includes
reduction theory for implicit Lagrangian systems that could be degenerate and have constraints.

In this paper we focus on the special case in which the configuration manifold is a Lie group
G. In our earlier papers we established the link between the Hamilton–Pontryagin principle and
Dirac structures. We begin the paper with the reduction of this principle. The traditional view
of Poisson reduction in this case is to reduceT ∗G with its natural Poisson structure tog∗ with
its Lie–Poisson structure. However, the basic step of reducing Hamilton’s phase space principle
already shows that it is important to useg⊕ g

∗ for the reduced space, rather than justg
∗. In

this way, our construction includes both Euler–Poincaré as well as Lie–Poisson reduction. The
geometry behind this procedure, which we callLie–Dirac reductionstarts with the standard
(i.e., canonical) Dirac structure onT ∗G (which can be viewed either symplectically or from the
Poisson viewpoint) and for eachµ ∈ g

∗, produces a Dirac structure ong⊕ g
∗. This geometry

then simultaneously supports both Euler–Poincaré and Lie–Poisson reduction.
In the last part of the paper, we include nonholonomic constraints, and illustrate this

construction with Suslov systems in nonholonomic mechanics, both from the Euler–Poincaré and
Lie–Poisson viewpoints.

Keywords: reduced Hamilton–Pontryagin principle, Lie–Dirac reduction, implicit Lagrangian
systems, Suslov problems.

1. Introduction

Dirac structures aim to synthesize Poisson structures and pre-symplectic structures.
The idea was originally developed by Courant and Weinstein [25], taking some
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inspiration from Dirac’s theory of constraints for degenerate Lagrangians together with
associated Poisson brackets (see also Courant [23]). In mechanics, Dirac structures
fit fairly readily into the framework of Hamilton mechanics and, correspondingly,
the notion of an implicit Hamiltonian system associated with a Dirac structure on
a manifold was developed by van der Schaft and Maschke [47], where energy-
conserving systems such as L-C circuits and nonholonomic systems were put into
the context of Dirac structures (see also Bloch and Crouch [8]).

Recently, the notion of an implicit Lagrangian system, which is a Lagrangian
analogue of an implicit Hamiltonian system, was developed by Yoshimura and
Marsden [50], where it was shown that nonholonomic mechanical systems and L-C
circuits as degenerate Lagrangian systems can be formulated in this context.

Furthermore, the link between variational principles and Dirac structures was
established and for the case in which a given Lagrangian is regular, an implicit
Hamiltonian system can be derived, as in Yoshimura and Marsden [51]. This
was done, via a generalized Legendre transformation, for the case of degenerate
Lagrangian systems as well, in Yoshimura and Marsden [52].

Throughout this paper we shall draw on some developments in the papers of
Yoshimura and Marsden [50, 51]. These include the notion ofimplicit Euler-Lagrange
equations and how these equations are related to a Dirac structure and agiven
Lagrangian. We will also need to know how these equations arerelated to an
extended variational principle of Hamilton called theHamilton–Pontryagin principle.
In addition, we will need to draw on the notion of a Lagrangiansystem associated
with an induced Dirac structure in case one has a nontrivial constraint distribution
(perhaps nonholonomic) and how it is related to theLagrange–d’Alembert–Pontryagin
variational principle.

One approach to the reduction of Dirac structure was given byCourant [23],
consistent with Poisson reduction developed by Marsden andRatiu [39] and also by
Dorfman [28] in conjunction with infinite dimensional Hamiltonian systems. Along
similar lines, the symmetry reduction of Dirac structures and its associated implicit
Hamiltonian systems was developed by van der Schaft [48]; Blankenstein and van
der Schaft [5]. Those previous reduction procedures were basically related with the
symplectic reduction developed by Marsden and Weinstein [42] or the corresponding
Poisson reduction procedures. Later in this introduction,we shall briefly return to
this topic and give additional history and literature.

Goal

The overall purpose of this work is to establish a geometric reduction theory for
Dirac structures that supports the reduction of implicit Lagrangian systems as well
as reduction of implicit Hamiltonian systems and the variational structures associated
to each. As we shall see, the reduction method isnecessarily somewhat different
than those treated previously. The present paper is focusedon the case in which
the configuration manifold is a Lie groupG. Future papers will deal with more
general configuration manifolds with group actions.
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Specifically, the paper focuses on the reduction of the canonical Dirac structure
on the cotangent bundleT ∗G of a Lie groupG. Our construction supports both the
Lagrangian and Hamiltonian viewpoints, giving Euler–Poincaŕe–Dirac reduction when
one takes the Lagrangian view, and Lie–Poisson–Dirac reduction when one takes the
Hamiltonian view. As we mentioned, our treatment of implicit Lagrangian systems
via Dirac structures is consistent with the Hamilton–Pontryagin variational principle.
Consistent with the reduction of the Dirac structure itself, of implicit Lagrangian and
Hamiltonian systems, we also reduce the Hamilton–Pontryagin principle. Towards
the end of the paper, systems with nonholonomic constraintsare studied and an
example of nonholonomic rigid body mechanics is examined, which leads to a
reduction method associated with Suslov systems.

Key differences with other Dirac reduction schemes

Below we review some of the main literature on reduction of Dirac structures.
The key difference between the present work and those is, as we have mentioned, the
fact that our approach accommodates a Lagrangian, a Hamiltonian, and a variational
view simultaneously. To do so, one needs to work with slightly larger spaces, as
is already evident in the reduction of Hamilton’s phase space principle, to give a
variational principle for the Lie–Poisson equations, which was developed in Cendra,
Marsden, Pekarsky and Ratiu [18]. Specifically, many schemes in the literature take
the following view (or a variant of it): one starts with a manifold M, an (almost)
Dirac structure onM, and a groupG acting on M (consistent with the Dirac
structure). From these ingredients, one then constructs a Dirac structure onM/G.
For example, forM = T ∗G with G acting by group multiplication, one getsg∗

with the Dirac structure associated with the Lie–Poisson structure. However, this
construction is too limited for our purposes and does not allow one to include
variational principles or the Lagrangian view. In our case of mechanics on Lie
groups, the basic difference in our approach is that insteadof g∗, the resulting
reduced space isg ⊕ g∗.

Background on reduction

Reduction theory has a rich history in mechanics and there are a lot of research
developments, which may be found in, for instance, Marsden and Ratiu [40], Marsden,
Ratiu and Scheurle [41], Cendra, Marsden, and Ratiu [20], Marsden and Weinstein
[44], Marsden, Misiolek et. al. [38]. We next briefly review symplectic and Poisson
reduction with emphasis on the special case of the cotangentbundle of a Lie group,
which is the case most relevant for the present paper.

Let (P,�) be a symplectic manifold and letG be a Lie group that acts freely
and properly onP by symplectic maps. Suppose that the action has an equivariant
momentum mapJ : P → g∗ and letGµ := {g ∈ G | Ad∗

g−1 µ = µ} be the coadjoint
isotropy subgroup ofµ ∈ g∗. Then, one can obtain thesymplectic reduced space
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by the quotient spacePµ = J−1(µ)/Gµ and with the induced symplectic form�µ
uniquely defined by

π∗
µ�µ = i∗µ�,

where πµ : J−1(µ) → Pµ is the projection andiµ : J−1(µ) → P is the inclusion.
When one choosesP = T ∗G with G acting by left translation, it was shown in
Marsden and Weinstein [42] that the symplectic reduced space (T ∗G)µ = J−1(µ)/Gµ

is identified via left translation with the coadjoint orbitOµ := {Ad∗

g−1 µ|g ∈ G} = G·µ

through µ ∈ g∗ and also that the reduced symplectic form coincides with

�µ(ad∗
ξµ,ad∗

ηµ) = − 〈µ, [ξ, η]〉 .

On the other hand, it was shown by Marsden and Ratiu [39] that the Poisson
structure onPµ is related with that onP/G in the generalized context of Poisson
reduction. Let the Lie groupG act freely and properly on a Poisson manifoldP
by Poisson maps. Suppose thatP/G is a smooth manifold which is endowed with
the unique Poisson structure such that the canonical projection π : P → P/G is a
Poisson map. For two functionsf , h : P/G → R, let F = f ◦π andH = h◦π , so
F and H are f and h thought of asG-invariant functions onP . Then, {f, h}P/G
is defined by

{f, h}P/G ◦ π = {F,H }P .

It is shown that{f, h}P/G is well defined by proving that{F,H }P is G-invariant,
which follows from the fact thatF and H are G-invariant and the group action
of G on P consists of Poisson maps. Especially, whenP = T ∗G and the action
of G on T ∗G is by cotangent lift of left (or right) translation ofG on itself, the
quotient space(T ∗G)/G is naturally diffeomorphic tog∗, namely, the dual of the
Lie algebra g of G. Then, the quotient Poisson bracket is given by the plus (or
minus) Lie–Poisson bracket as

{f, h}±(µ) = ∓

〈

µ,

[

δf

δµ
,
δh

δµ

]〉

,

where f, h ∈ F(g∗) are arbitrary functions (see Marsden and Weinstein [43]). The
minus sign goes with left reduction and the plus sign with right reduction.

As in Marsden and Ratiu [40], it was shown that both Poisson reduction and the
symplectic reduction for the caseP = T ∗G in the above are naturally incorporated
into the reduction of Hamiltonian systems on a Lie group; namely, in the context
of Lie–Poisson reduction, Lie–Poisson equations can be developed as

µ̇ = ± ad∗
δh
δµ

µ,

where h := H |g∗ is the reduced Hamiltonian ong∗ = T ∗
e G ⊂ T ∗G.

On the Lagrangian side, the Lagrangian analogue of Lie–Poisson reduction called
Euler–Poincaŕe reduction can be given in the context of areduced constrained
variational principle (see [40]):

δ

∫ t2

t1

l(ξ(t)) dt = 0
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with variations restricted to be of the form

δξ = η̇ ± [v, η],

where l = L|g is the reduced Lagrangian defined by the restriction of aG-invariant
LagrangianL on TG to g = TeG ⊂ TG and η(t) is a curve in g such that
η(t1) = η(t2) = 0. Then, we can obtain Euler–Poincaré equations as

d

dt

δl

δξ
= ±ad∗

ξ

δl

δξ
.

History and literature

The development of reduction of Dirac structures is a natural outgrowth of
symplectic and Poisson reduction. In the context of Dirac structures, Courant [23]
showed that a reduced Dirac structure onJ−1(µ)/Gµ can be found that is consistent
with the Poisson reduction developed by Marsden and Ratiu [39]. In a similar
context, reduction of Dirac structures for Hamiltonian systems with symmetry was
given in Dorfman [28]. Reduction of implicit Hamiltonian systems was developed
by van der Schaft [48], Blankenstein [4], Blankenstein and van der Schaft [5] in a
way that is consistent with Courant [23]. Furthermore, singular reduction of Dirac
structures was developed by Blankenstein and Ratiu [6] in the context of implicit
Hamiltonian systems. In these constructions, it was shown that a reduced Dirac
structure fits naturally into the context of symplectic reduction as well as Poisson
reduction; if a Dirac structureD ⊂ T P ⊕ T ∗P on P is the graph of the bundle
map ω♭ : T P → T ∗P associated with a symplectic structureω, then a reduced
Dirac structureDµ on Pµ = J−1(µ)/Gµ may be given by the graph of the reduced
bundle map associated with the reduced symplectic structure on Pµ, while if D is
the graph of the bundle mapB♯ : T ∗P → T P associated with a Poisson structure
B on P , then the reduced Dirac structure can be given by the graph ofthe bundle
map associated with the reduced Poisson structure onPµ.

From the viewpoint of reduced variational principles, it was shown in [18] that
the Lie–Poisson equations can be formulated by a reduced constrained variational
principle called theLie–Poisson variational principle, which is a Hamiltonian analogue
of the reduced constrained variational principle for the Euler–Poincaŕe equations.
On the other hand, investigations have been lacking on the issue of how both
Euler–Poincaŕe and Lie–Poisson reductions can be linked with reduction ofa Dirac
structure and with reduction of implicit Lagrangian and Hamiltonian systems. As
we mentioned previously, one of our main goals is to fill this gap.

The applied viewpoint

Needless to say, from application points of view, Euler–Poincaŕe and Lie–Poisson
equations were made essential use in examples such as rigid body dynamics,
hydrodynamics, plasma physics, etc (various references may be found in Marsden
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[37], Marsden and Ratiu [40]), as well as in numerical simulations, such as Bou-
Rabee and Marsden [11] and references therein. Furthermore, it is worth noting
that the Euler–Poincaré equations with nonholonomic constraints (called theEuler–
Poincaŕe–Suslov equations) are essential in nonholonomic rigid body mechanics (see,
[29, 7]). In this paper, we will develop an implicit analogueof Euler–Poincaŕe–Suslov
equations in the context of Dirac reduction, together with the development of an
implicit Hamiltonian analogue which we call the Lie–Poisson-Suslov equations.

Groupoids and algebroids

One of other interesting issues relevant to this paper is concerned with Lie
algebroids in Lagrangian mechanics, which were introducedby Weinstein [49]. In
particular, a Dirac structure on a Lie algebroid was constructed in a way that is
dual to a Poisson structure on the dual bundle of the Lie algebroid; Lagrangian
reduction was thereby developed in the context of Lie algebroids. In relation with
Drinfel’d’s theory of Lie bialgebras and Poisson homogeneous spaces, Poisson
homogeneous spaces for Poisson groupoids were classified with the help of Dirac
structures by Liu, Weinstein and Xu [36]. A recent theoretical development in
Dirac structures may be found in, for instance, Bursztyn, Crainic, Weinstein and
Zhu [15], where twisted Dirac structures were investigatedin relation with twisted
presymplectic groupoids, and the generalized ideas of momentum maps in Dirac
geometry called Dirac realizations were developed together with associated reduction
procedures in Bursztyn and Crainic [14]. Some relevant works in this direction of
reduction of Courant algebroids and the Dirac structures therein can be found in,
for instance, [12, 13], where the authors mainly focused on the so-called “exact”
Courant algebroids.

Outline of the Paper. In Section 2, we give a brief review of induced Dirac
structures and their associated implicit Lagrangian systems. In Sextion 3, we show
how the reduction of the Hamilton–Pontryagin principle enables us to formulate
implicit Euler–Poincaŕe equations, which may be viewed as an implicit analogue
of Euler–Poincaŕe equations. When a given Lagrangian is regular, via the Legendre
transformation, we can also show thatimplicit Lie–Poisson equationscan be developed
by the reduction of Hamilton’s phase space principle, namely, the Lie–Poisson
variational principle. In Section 4, we develop a reductionprocedure calledLie–
Dirac reduction to investigate the reduction of thecanonical Dirac structureD on
T ∗G. In this case, the canonical Dirac structureD ⊂ T T ∗G⊕T ∗T ∗G can be thought
of as the graph of the canonical symplectic structure or the graph of the canonical
Poisson structure. Using the left trivializing diffeomorphism T ∗G → G× g∗, we set
up a reduction procedure of the canonical Dirac structure onT ∗G ∼= G × g∗ by
taking quotients byG; namely, the canonical Dirac structure can be reduced to a
Dirac structure ong⊕g∗ at each pointµ ∈ g∗ ∼= (T ∗G)/G, which naturally includes
the coadjoint orbit symplectic structureωµ, the Lie–Poisson structure as well as the
reduced canonical symplectic structure ong⊕g∗. In §5, by using the reduced Dirac
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structure ong ⊕ g∗, we establish a reduction procedure called Euler–Poincaré–Dirac
reduction to obtain implicit Euler–Poincaré equations. In Section 6, when a given
Lagrangian is regular, we develop a reduction procedure called Lie–Poisson–Dirac
reduction to obtain implicit Lie–Poisson equations in the dual context of Euler–
Poincaŕe–Dirac reduction. In Section 7, for the case in which one hasa constraint
distribution 1G ⊂ TG, we develop the reduction procedure for a Dirac structure
induced from a nontrivial distribution onG and then we construct the associated
Euler–Poincaŕe–Suslov and Lie–Poisson–Suslov reductions, together with the Suslov
problem in nonholonomic mechanics. In Section 10, concluding remarks are given
together with future work.

2. Review of implicit Lagrangian systems

In this paper, we shall investigate the reduction of a Dirac structure on the
cotangent bundle of a Lie group (which is induced from an invariant distribution
on a Lie group) and then we shall also explore reduction of associated implicit
Lagrangian systems.

Before going into the details of Dirac reduction, we shall briefly review how to
define an induced Dirac structure and, given a Lagrangian, anassociated implicit
Lagrangian system, following Courant [23] and Yoshimura and Marsden [50].

Dirac structures

We first recall the definition of a Dirac structure on a vector spaceV , say finite
dimensional for simplicity. LetV ∗ be the dual space ofV , and 〈· , ·〉 be the natural
paring betweenV ∗ and V . Define the symmetric paring〈〈·, ·〉〉 on V ⊕ V ∗ by

〈〈 (v, α), (v̄, ᾱ) 〉〉 = 〈α, v̄〉 + 〈ᾱ, v〉,

for (v, α), (v̄, ᾱ) ∈ V ⊕ V ∗. A Dirac structure on V is a subspaceD ⊂ V ⊕ V ∗

such thatD = D⊥, whereD⊥ is the orthogonal ofD relative to the pairing〈〈·, ·〉〉.

Now let P be a given manifold and letT P ⊕ T ∗P denote the Whitney sum
bundle overP , namely, the bundle over the baseP and with fiber over the point
x ∈ P equal toTxP ×T ∗

x P . In this paper, we shall call a subbundleD ⊂ T P ⊕T ∗P
a Dirac structure on P when it is a Dirac structure in the sense of vector spaces
at each pointx ∈ P . A given two-form� on P together with a distribution1 on
P determines a Dirac structure onP as follows: let x ∈ P , and define

D(x) = {(vx, αx) ∈ TxP × T ∗
x P | vx ∈ 1(x), and

αx(wx) = �1(vx, wx) for all wx ∈ 1(x)}, (2.1)

where�1 is the restriction of� to 1.
We call a Dirac structureD integrable if the condition

〈£X1α2, X3〉 + 〈£X2α3, X1〉 + 〈£X3α1, X2〉 = 0
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is satisfied for all pairs of vector fields and one-forms(X1, α1), (X2, α2), (X3, α3)
that take values inD, where £X denotes the Lie derivative along the vector field
X on P . In this paper, we are primarily interested in Dirac structures that need
not be integrable.

Induced Dirac structures

One of the most important and interesting Dirac structures in mechanics is
one that is induced from nonholonomic kinematic constraints. Such constraints are
generally given by a distribution on a configuration manifold.

Let Q be a configuration manifold. LetTQ be the tangent bundle andT ∗Q be
the cotangent bundle. Let1Q ⊂ TQ be a regular distribution onQ and define a
lifted distribution on T ∗Q by

1T ∗Q = (T πQ)
−1 (1Q) ⊂ T T ∗Q,

where πQ : T ∗Q → Q is the canonical projection so that its tangent is a map
T πQ : T T ∗Q → TQ. Let � be the canonical two-form onT ∗Q. The induced
Dirac structure D1Q on T ∗Q, is the subbundle ofT T ∗Q⊕ T ∗T ∗Q, whose fiber
is given for eachpq ∈ T ∗Q as

D1Q(pq) = {(vpq , αpq ) ∈ TpqT
∗Q× T ∗

pq
T ∗Q | vpq ∈ 1T ∗Q(pq), and

αpq (wpq ) = �(pq)(vpq , wpq ) for all wpq ∈ 1T ∗Q(pq)}.

This is, of course, a special instance of the construction (2.1).

Implicit Lagrangian systems

Let us recall the definition of implicit Lagrangian systems;once again, for further
details, see [50].

Let L : TQ → R be a Lagrangian, possibly degenerate. Recall that the differential
of L is a map dL : TQ → T ∗TQ, which is locally expressed by using local
coordinates(q, v) for TQ as

dL =

(

q, v,
∂L

∂q
,
∂L

∂v

)

.

The Dirac differential of the LagrangianL : TQ → R, namely, DL is defined by

DL = γQ ◦ dL : TQ → T ∗T ∗Q.

In the above, γQ : T ∗TQ → T ∗T ∗Q is the natural diffeomorphism given in
coordinates by

(q, δq, δp, p) → (q, p,−δp, δq),

where (q, δq, δp, p) are the local coordinates forT ∗TQ and (q, p,−δp, δq) for
T ∗T ∗Q. Consequently, one has the following local expression of the Dirac differential
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of L:
DL =

(

q,
∂L

∂v
,−
∂L

∂q
, v

)

, (2.2)

which is an element ofT ∗T ∗Q with base point

(q, p) =

(

q,
∂L

∂v

)

.

Let X : TQ⊕ T ∗Q → T T ∗Q be a partial vector field on T ∗Q; that is, a map
that assigns to each point(q, v, p) ∈ TQ⊕ T ∗Q, a vector in T T ∗Q at the point
(q, p) ∈ T ∗Q; we write X as

X(q, v, p) = (q, p, q̇, ṗ),

where q̇, ṗ are understood to be functions of(q, v, p). An implicit Lagrangian
systemis a triple (L,1Q, X), which satisfies, for eachv ∈ 1Q(q),

(X(q, v, p),DL(q, v)) ∈ D1Q(q, p),

where X is a partial vector field onT ∗Q defined at points(q, v, p) satisfying
p = FL(q, v) for v ∈ 1Q.

Coordinate representations

The canonical two-form� is given, in coordinates, by

�((q, p, u1, α1), (q, p, u2, α2)) = 〈α2, u1〉 − 〈α1, u2〉 ,

and the induced Dirac structure may be expressed, in coordinates, by

D1Q(q, p) = {((q, p, q̇, ṗ), (q, p, α,w)) | q̇ ∈ 1(q), w = q̇, and α + ṗ ∈ 1◦(q)} ,

where 1◦(q) ⊂ T ∗Q is the polar of1(q). Writing X(q, v, p) = (q, p, q̇, ṗ) and
with p = ∂L/∂v, and using the local expressions for the canonical symplectic
form and the Dirac differential, the condition for an implicit Lagrangian system
(X,DL) ∈ D1Q reads as follows:p = ∂L/∂v (equality of base points) and

〈

−
∂L

∂q
, u

〉

+ 〈v, α〉 = 〈α, q̇〉 − 〈ṗ, u〉

for all u ∈ 1(q) and all α, where (u, α) are the local representatives of a point in
T(q,p)T

∗Q. Since this holds for allu ∈ 1(q) and all α, we obtain the coordinate
representation of an implicit Lagrangian system as

p =
∂L

∂v
, q̇ = v ∈ 1(q), ṗ −

∂L

∂q
∈ 1◦(q).

Notice that if a partial vector fieldX(q, v, p) = (q, p, q̇, ṗ) satisfies the Dirac
condition (X,DL) ∈ D, then the Legendre transformationp = ∂L/∂v is consistent
with the equality of base points and that the Dirac conditionitself implies that q̇
is given by the second order conditioṅq = v.
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In this paper, we primarily focus on the caseQ = G; namely, our configuration
spaceQ is a Lie group G. At first, we shall investigate the reduction of the
canonical Dirac structure, and in the case1G = TG; namely, there is no constraint
imposed. Later, we shall return to the general case in which the Dirac structure
is induced from1G ⊂ TG and we shall develop a reduction method for implicit
Lagrangian systems. Then, we shall apply this to theSuslov problem(see Bloch
[7], Section 8.6).

3. The reduced Hamilton–Pontryagin principle

In this section, we begin by recalling an extended variational principle called
the Hamilton–Pontryagin principle, a principle first studied by Livens [35]. It is
called the Hamilton–Pontryagin principle because of its close relation with both
Hamilton’s principle and the Pontryagin principle in control theory (see Pontryagin,
Boltyanskĭı, Gamkrelidze and Mishchenko [45], Sussmann [46]). This principle has
as its associated equations, the implicit Euler–Lagrange equations, as was studied
in Yoshimura and Marsden [51].

Then, it is shown how the Hamilton–Pontryagin principle onTG ⊕ T ∗G can
be reduced, whereimplicit Euler–Poincaŕe equationscan be obtained by reducing
implicit Euler–Lagrange equations. Further, on the Hamiltonian side, it is shown
how Hamilton’s phase space principle onTG⊕ T ∗G can be reduced in the context
of Lie–Poisson variational principle, where implicit Lie–Poisson equationscan be
formulated by the reduction of Hamilton’s equations.

The Hamilton–Pontryagin principle

Let G be a Lie group,TG the tangent bundle andT ∗G the cotangent bundle.
Let g ∈ G, (g, v) ∈ TG and (g, p) ∈ T ∗G. Let (g, v, p) be local coordinates for
the Pontryagin bundleTG⊕ T ∗G. Let L : TG → R be a left invariant Lagrangian
(possibly, degenerate).

Define the associated action integral on the space of curves(g(t), v(t), p(t)), t1 ≤

t ≤ t2, in TG⊕ T ∗G by

F(g, v, p) =

∫ t2

t1

{L(g(t), v(t))+ 〈p(t), ġ(t)− v(t)〉} dt.

The Hamilton–Pontryagin principle is the condition of stationarity ofF;

δF = 0. (3.1)
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Explicitly, this principle is given by

δF(g, v, p) = δ

∫ t2

t1

{L(g(t), v(t))+ 〈p(t), ġ(t)− v(t)〉} dt

=

∫ t2

t1

{

(ġ − v) δp +

(

−ṗ +
∂L

∂g

)

δg +

(

−p +
∂L

∂v

)

δv

}

dt + p δg

∣

∣

∣

∣

t2

t1

= 0,

which is to be satisfied for allδg, δv and δp with appropriate boundary conditions.
Keeping the endpointsg(t1) and g(t2) of g(t) fixed, we obtain the coordinate
expression

p =
∂L

∂v
, ġ = v, ṗ =

∂L

∂g
, (3.2)

which we shall callimplicit Euler–Lagrange equationson TG⊕ T ∗G.

Note that the implicit Euler–Lagrange equations include the Euler–Lagrange
equationsṗ = ∂L/∂g, the Legendre transformationp = ∂L/∂v and the second-order
condition ġ = v.

Reduction of the Hamilton–Pontryagin principle

The groupG acts on curves in the action integralF, in the Hamilton–Pontryagin
principle, by simultaneously left translating on each factor by the left-action and
the tangent and cotangent lifts. Explicitly, the action of an elementh ∈ G is given
on a curveg(t) ∈ G, v(t) ∈ Tg(t)G and p(t) ∈ T ∗

g(t)G, by

h · (g(t), v(t), p(t)) = (hg(t), Tg(t)Lh · v(t), T ∗
hg(t)Lh−1 · p(t)),

whereTg(t)Lh : Tg(t)G → Thg(t)G is the tangent of the left translation mapLh : G →

G; g(t) 7→ hg(t) at the pointg(t) and T ∗
hg(t)Lh−1 : T ∗

g(t)G → T ∗
hg(t)G is the dual of

the mapThg(t)Lh−1 : Thg(t)G → Tg(t)G. The action integralF is invariant under the
action ofG sinceL is G-invariant and one easily checks that〈p(t), ġ(t)− v(t)〉 is
also G-invariant.

By the following diffeomorphisms, the cotangent bundleT ∗G is diffeomorphic
to G× g∗ as

λ̄ : T ∗G → G× g∗ : λ̄(pg) = (g, T ∗
e Lg(p)),

while the tangent bundleTG is diffeomorphic toG× g by

λ : TG → G× g : λ(vg) = (g, TgLg−1(v)).

Similarly, the Pontryagin bundleTG⊕ T ∗G is naturally diffeomorphic to its left
trivialization asG× (g ⊕ g∗).

Let L be a left-invariant Lagrangian onTG and let l : g → R be the reduced
Lagrangian given byl := L|g, where we regardg = TeG ⊂ TG. Thus, by left
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invariance, we haveL(g, ġ) = l(ξ), where ξ = g−1ġ and the notationg−1ġ stands
for TgLg−1ġ.

The reduction of the Hamilton–Pontryagin principleis given by

δ

∫ t2

t1

{l(η(t))+ 〈µ(t), ξ(t)− η(t)〉} dt = 0, (3.3)

where, again,ξ = g−1ġ. Taking variations in (3.3) yields
∫ t2

t1

{

δl

δη
δη + δµ · (ξ − η)+ µ · (δξ − δη)

}

dt

=

∫ t2

t1

{(

δl

δη
− µ

)

δη + δµ · (ξ − η)+ µ · δξ

}

dt

=

∫ t2

t1

{(

δl

δη
− µ

)

δη + δµ · (ξ − η)+ µ · (ζ̇ + adξζ )

}

dt

=

∫ t2

t1

{(

δl

δη
− µ

)

δη + δµ · (ξ − η)+ (−µ̇+ ad∗
ξµ) · ζ

}

dt +
[

µ · ζ
]t2
t1
, (3.4)

where we utilize the relationξ = TgLg−1ġ and the variation ofξ is computed
exactly as in Euler–Poincaré theory to be given byδξ(t) = ζ̇ (t)+[ξ(t), ζ(t)], where
ζ = TgLg−1δg, so that ζ(t) is an arbitrary curve ing satisfying ζ(t1) = ζ(t2) = 0.
Then, Eq. (3.4) vanishes for anyδη ∈ g, ζ ∈ g and δµ ∈ g∗ if and only if

µ =
δl

δη
, ξ = η, µ̇ = ad∗

ξµ. (3.5)

We shall call the set of Eqs. (3.5)implicit Euler–Poincaŕe equationson g ⊕ g∗,
which may be thought of as thereduction of implicit Euler–Lagrange equationson
TG ⊕ T ∗G in Eq. (3.2). We remark that in this reduced variational principle for
implicit Euler–Poincaŕe equations, the reduced Lagrangianl on g may be degenerate.

Hamilton’s principle in phase space

For the case in which a given LagrangianL on TG is regular and left invariant,
we can define a Hamiltonian onT ∗G by the Legendre transformation. Recall
that we define the energyE : TG → R by E(g, v) = A(g, v) − L(g, v), where
A(v) = FL(v) ·v is the action ofL(v) for v ∈ TgG. Then, we define the Hamiltonian
H on T ∗G as

H = E ◦ (FL)−1,

where FL : TG → T ∗G. It is easily checked thatH is also left invariant (see
Marsden and Ratiu [40]).

Define thephase space action integralon the space of curves(g(t), p(t)), t1 ≤
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t ≤ t2 in T ∗G by

S(g(t), p(t)) =

∫ t2

t1

{〈p(t), ġ(t)〉 −H(g(t), p(t))} dt.

Hamilton’s phase space principlestates that this action is stationary with respect
to varying curves(q, p):

δS = 0 (3.6)

again, with appropriate boundary conditions on the variations. Explicitly, the variation
is

δS(g, p) = δ

∫ t2

t1

{〈p(t), ġ(t)〉 −H(g(t), p(t))} dt

=

∫ t2

t1

{(

−ṗ −
∂H

∂g

)

δg +

(

−ġ +
∂H

∂p

)

δp

}

dt + p δg

∣

∣

∣

∣

t2

t1

= 0,

which is satisfied for allδg and δp. Keeping the endpointsg(t1) and g(t2) of g(t)
fixed, we obtain Hamilton’s equations onT ∗G as

ġ =
∂H

∂p
, ṗ = −

∂H

∂g
. (3.7)

One can use the Hamilton–Pontryagin principle to derive Hamilton’s phase space
principle in the regular case as follows. In the principle (3.1), one first takes the
variation with respect tov; notice that (as in Yoshimura and Marsden [51]) the
Hamiltonian is given by making the quantity〈p, v〉 −L(q, v) stationary inv. Then
using the remaining variations inq and p, the principle (3.1) becomes (3.6).

The Lie–Poisson variational principle

The groupG acts on curves in phase space by simultaneously left translating
each ofq andp by the left-action. Then, it is easily checked that the action integral
is invariant under this action ofG since we assume the invariance ofH .

SinceH is left invariant onT ∗G, it defines a reduced Hamiltonianh : g∗ → R.
Clearly, the reduction of Hamilton’s phase space principleis given by

δ

∫ t2

t1

{µ(t) · ξ(t)− h(µ(t))} dt = 0, (3.8)

where ξ = g−1ġ, as in the reduced Hamilton–Pontryagin principle. This reduced
principle is called asLie–Poisson variational principle; see Cendra, Marsden,
Pekarsky and Ratiu [18].
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Taking variations the curve(ξ(t), µ(t)) ∈ g ⊕ g∗ of Eq. (3.8) yields

∫ t2

t1

(

δµ · ξ + µ · δξ −
δh

δµ
δµ

)

dt =

∫ t2

t1

{(

ξ −
δh

δµ

)

δµ+ µ · δξ

}

dt

=

∫ t2

t1

{(

ξ −
δh

δµ

)

δµ+ µ · (η̇ + [ξ, η])

}

dt

=

∫ t2

t1

{(

ξ −
δh

δµ

)

δµ+ µ · (η̇ + adξη)

}

dt

=

∫ t2

t1

{(

ξ −
δh

δµ

)

δµ+ (−µ̇+ ad∗
ξµ) · η

}

dt +
[

µ · η
]t2
t1
. (3.9)

In the above, the variation ofξ = TgLg−1 · ġ is given by δξ = η̇ + [ξ, η], where
η(t) = TgLg−1δg(t) satisfies the boundary conditionsη(t1) = η(t2) = 0. Therefore,
Eq. (3.9) vanishes for anyδµ ∈ g∗ and η ∈ g, if and only if

ξ =
δh

δµ
, µ̇ = ad∗

ξµ. (3.10)

We shall call the set of equations in Eq. (3.10)implicit Lie–Poisson equationson
g ⊕ g∗, which may be the reduction of Hamilton’s equations onT ∗G in Eq. (3.7),
which is consistent with theLie–Poisson variational principle.

4. Lie–Dirac reduction

In this section, we develop a reduction theory that we shall call Lie–Dirac
reduction, where reduction of the canonical Dirac structure onT ∗G is given by a
µ-dependent Dirac structure ong ⊕ g∗.

The canonical Dirac structure on T ∗G

Recall that a distribution1G induces a Dirac structureD1G on T ∗G. In the case
when 1G = TG, we get thecanonical Dirac structure on the cotangent bundle
T ∗G and denote it simply byD. As in the general case,D can be defined by either
of the canonical symplectic or the canonical Poisson structures; namely, by the graph
of the bundle map�♭ : T T ∗G → T ∗T ∗G associated with the canonical symplectic
structure� on T ∗G or by the graph of the bundle mapB♯ : T ∗T ∗G → T T ∗G
associated with the canonical Poisson structureB on T ∗G.

Using the canonical symplectic structure, the canonical Dirac structure is given
by, for eachpg ∈ T ∗G,

D(pg) = {(vpg , αpg ) ∈ TpgT
∗G× T ∗

pg
T ∗G | αpg (vpg ) = �(pg)(vpg , wpg )

for all wpg ∈ TpgT
∗G}. (4.1)
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In local coordinates, we write the canonical symplectic form as

�((g, p, u1, α1), (g, p, u2, α2)) = 〈α2, u1〉 − 〈α1, u2〉 .

The Dirac structure on G× g∗

Using the left trivializing diffeomorphismλ̄ : T ∗G → G × g∗, we define the
canonical one-formθ on G× g∗ and the canonical two-formω on G× g∗ as

θ = λ̄∗2 and ω = λ̄∗�,

where 2 is the canonical one-form onT ∗G and � = −d2. Then, the canonical
one-form θ on G× g∗ is locally represented at each(g, µ) ∈ G× g∗ and (v, ρ) ∈

T(g,µ)(G× g∗) ∼= TgG× g∗, as

θ(g, µ) · (v, ρ) = µ(TgLg−1 v),

and hence the symplectic structureω = −dθ on G×g∗ at each point(g, µ) ∈ G×g∗,
is given by

ω(g, µ)((v, ρ), (w, σ ))

= 〈σ, TgLg−1v〉 − 〈ρ, TgLg−1w〉 + 〈µ, [TgLg−1v, TgLg−1w]〉, (4.2)

where(w, σ ) ∈ T(g,µ)(G×g∗) ∼= TgG×g∗ and we utilized the formula (see Abraham,
Marsden, and Ratiu [2])

ω(X, Y ) = −dθ(X, Y ) = −X[θ(Y )] + Y [θ(X)] + θ([X, Y ]),

whereX(g,µ) = (v, ρ) and Y (g, µ) = (w, σ ).

Using the diffeomorphism̄λ : T ∗G → G× g∗, we can naturally define the Dirac
structureD on G× g∗, which is locally represented by, for each(g, µ) ∈ G× g∗,

D(g, µ) = {((v, ρ), (β, η)) ∈ (TgG× g∗)× (T ∗
gG× g) |

〈β,w〉 + 〈σ, η〉 = ω(g, µ)((v, ρ), (w, σ )) for all (w, σ ) ∈ TgG× g∗}. (4.3)

Dirac maps

We will show that the Dirac structureD on G×g∗ can also be obtained directly
by using Dirac maps (see, [16, 15]).

Let DV and DW be Dirac structures on vector spacesV and W . A linear map
ψ : V → W is a (forward) Dirac map if DV and DW are related by

DW = {(ψ(x), η) | x ∈ V, η ∈ W ∗, (x, ψ∗(η)) ∈ DV },

where ψ∗ : W ∗ → V ∗ is the dual ofψ , and we write

DW = ψ∗DV .
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For the case of manifolds, letM and N be manifolds and letDM and DN be
Dirac structures onM and N , respectively. A smooth mapψ : M → N is called
a (forward) Dirac map if, for all x ∈ M,

DN (ψ(x)) = {(Txψ(wx), αψ(x)) | wx ∈ TxM, αψ(x) ∈ T ∗
ψ(x)N,

(wx, (T ψ)
∗(αψ(x))) ∈ DM(x)},

where Txψ : TxM → Tψ(x)N is the tangent map ofψ : M → N at x ∈ M and we
write the relationship between the two Dirac structures as

DN = ψ∗DM .

Then, the Dirac structureD on G × g∗ can be defined using the Dirac map
λ̄ : T ∗G → G× g∗; that is, we have

D = λ̄∗D,

which is given by, for eachpg ∈ T ∗G,

D(λ̄(pg)) = {(Tpg λ̄(wpg ), αλ̄(pg)) | wpg ∈ TpgT
∗G, αλ̄(pg) ∈ T ∗

λ̄(pg)
(G× g∗),

(wpg , (T λ̄)
∗(αλ̄(pg))) ∈ D(pg)},

where λ̄(pg) = (g, µ) ∈ G× g∗.

Thus, we regard the Dirac structureD on G×g∗ as the left trivialized expression
for the canonical Dirac structureD on T ∗G.

Invariance of the canonical Dirac structure
Let us first recall the natural definition of invariant Dirac structures (see, for

instance, [28, 36, 5]).
Let P be a manifold andD be a Dirac structure onP with a Lie groupG

acting onP . We denote this action by8 : G× P → P and the action of a group
elementh ∈ G on a pointx ∈ P by h · x = 8(h, x) = 8h(x) for h ∈ G and x ∈ P ,
so that8h : P → P . Then, a Dirac structureD ⊂ T P ⊕ T ∗P is G-invariant if

(8h∗X, (8∗
h)

−1α) ∈ D

for all h ∈ G and (X, α) ∈ D.

Next, we show that the Dirac structure in Eq. (4.3) isG-invariant, whereG acts
on the first factor by left multiplication and it acts trivially on the second factor.
To do this, let3 : G× (G× g∗) → G× g∗ denote theG–action onG× g∗, so that
holding g fixed, 3g : G× g∗ → G× g∗ is given by

3h(g, µ) = (hg, µ),

whereh, g ∈ G andµ ∈ g∗. Since the action onT ∗G is canonical, the corresponding
symplectic structureω is G-invariant as well; that is,

3∗
h ω = ω,
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for all h ∈ G. It is easily verified that the Dirac structureD on G×g∗ is G-invariant
as

(3h∗X, (3∗
h)

−1α) ∈ D

for all (X, α) ∈ D.
In fact, in view of Eq. (4.3), the left-invariance of the Dirac structure in the

above can be restated as
D(hg, µ) = D(g, µ),

which holds for allh, g ∈ G and µ ∈ g∗, where

D(hg, µ) ={((TgLhv, ρ), (T
∗
hgLh−1β, η)) ∈ (ThgG× g∗)× (T ∗

hgG× g) |

〈T ∗
hgLh−1β, TgLhw〉 + 〈σ, η〉 = ω(hg,µ)((TgLhv, ρ), (TgLhw, σ))

for all (TgLhw, σ) ∈ ThgG× g∗}.

The quotient space of the Pontryagin bundle
Using the left trivialization diffeomorphisms̄λ : T ∗G → G×g∗ andλ : TG → G×

g, and the fact thatg ∼= TeG and g∗ ∼= T ∗
e G, the Pontryagin BundleT T ∗G⊕T ∗T ∗G

is trivialized as follows:

T T ∗G⊕ T ∗T ∗G ∼= T (G× g∗)⊕ T ∗(G × g∗)

∼= (G× g∗)× (V ⊕ V ∗), (4.4)

where we setV = g ⊕ g∗ and V ∗ = g∗ ⊕ g and identify (g∗)∗ with g. Thus, the
Pontryagin bundleT T ∗G⊕T ∗T ∗G is naturally diffeomorphic to(G×g∗)× (V ⊕V ∗)

The action of an elementh ∈ G on an element(g, µ, ξ, ρ, ν, η) ∈ (G × g∗) ×

(V ⊕ V ∗) is only on the first component; that is,

h · (g, µ, ξ, ρ, ν, η) = (h · g,µ, ξ, ρ, ν, η).

Thus, the quotient of the Pontryagin bundleT T ∗G⊕ T ∗T ∗G by the action ofG
is given by (

T T ∗G⊕ T ∗T ∗G
)

/G ∼= g∗ × (V ⊕ V ∗).

Lie–Dirac reduction
Because of theG-invariance ofD and the identification in Eq. (4.4), the canonical

Dirac structure onG× g∗

D ⊂ T (G× g∗)⊕ T ∗(G× g∗)

may be identified with

D ⊂ (G× g∗)× (V ⊕ V ∗),

which is uniquely determined by its value at the identity, namely,

D(e, µ) = {(ξ, ρ), (ν, η)) ∈ V ⊕ V ∗ |

〈ν, ζ 〉 + 〈σ, η〉 = ω(e, µ)
(

(ξ, ρ), (ζ, σ )
)

for all (ζ, σ ) ∈ V }. (4.5)
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In view of the invariance of the Dirac structure, it induces,for eachµ ∈ g∗, a
structure, which we denote byD/G

µ ⊂ V ⊕ V ∗ on the quotient space. From (4.5)
we see that

D/G
µ = {((ξ, ρ), (ν, η)) ∈ V ⊕ V ∗ |

〈ν, ζ 〉 + 〈σ, η〉 = ω/Gµ ((ξ, ρ), (ζ, σ )) for all (ζ, σ ) ∈ V }, (4.6)

where ω/Gµ is the µ-dependent bilinear form onV = g ⊕ g∗, which, in view of
(4.2), is given by

ω/Gµ ((ξ, ρ), (ζ, σ )) = 〈σ, ξ 〉 − 〈ρ, ζ 〉 + 〈µ, [ξ, ζ ]〉 . (4.7)

Notice thatω/Gµ is in fact a symplectic formon V because it is skew symmetric
and, as is easily checked, non-degenerate.

PROPOSITION 4.1. For fixed µ ∈ g∗, D
/G
µ in Eq. (4.6) is given by

D/G
µ = {((ξ, ρ), (ν, ξ)) ∈ V ⊕ V ∗ | ν + ρ = ad∗

ξ µ}. (4.8)

Proof: Suppose that the condition (4.6) holds, namely, that

〈ν, ζ 〉 + 〈σ, η〉 = ω/Gµ ((ξ, ρ), (ζ, σ ))

for all (ζ, σ ) ∈ V . First, using (4.7) and settingσ = 0, gives

〈ν + ρ, ζ 〉 =
〈

µ,adξ ζ
〉

for all ζ ∈ g.

It follows that ν + ρ = ad∗
ξ µ. Second, setζ = 0 and then

〈σ, η − ξ 〉 = 0 for all σ ∈ g∗.

Therefore,η = ξ and so (4.8) holds. The converse is shown in the same way.�

The Dirac structure on V = g ⊕ g∗

We have the following important theorem showing that the natural reduction
of the standard Dirac structure onT ∗G gives a µ-dependent Dirac structure on
V = g ⊕ g∗.

THEOREM 4.2. For fixed µ ∈ g∗, D
/G
µ given by (4.6), or equivalently,(4.8), is

a Dirac structure onV = g ⊕ g∗.

Proof: One proof is simply to note that for fixedµ, Eq. (4.6) is a special
case of the construction of a Dirac structure given by Eq. (2.1) on the symplectic
manifold P = V , with symplectic formω/Gµ and with 1 = V , the whole space.

We shall give another direct proof of this theorem as follows. Noting that the
symmetric paring onV ⊕ V ∗ is given by

〈〈 ((w, γ ), (δ, u)), ((ξ, ρ), (ν, ξ)) 〉〉 = 〈ν, w〉 + 〈γ, ξ 〉 + 〈δ, ξ 〉 + 〈ρ, u〉,
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the orthogonal space ofD/G
µ is given, for eachµ ∈ g∗, by

(D/G
µ )⊥ = {((w, γ ), (δ, u)) ∈ V ⊕ V ∗ |

〈ν, w〉 + 〈γ, ξ 〉 + 〈δ, ξ 〉 + 〈ρ, u〉 = 0, ν + ρ = ad∗
ξµ}.

What we want to prove is thatD/G
µ = (D

/G
µ )⊥. Let us first check thatD/G

µ ⊂ (D
/G
µ )⊥.

Let ((w, γ ), (δ, w)) ∈ D
/G
µ , where γ + δ = ad∗

wµ. Since ν + ρ = ad∗
ξ µ, we have

〈ν, w〉 + 〈γ, ξ 〉 + 〈δ, ξ 〉 + 〈ρ,w〉 = 〈ν + ρ, w〉 + 〈γ + δ, ξ 〉

= 〈ad∗
ξµ,w〉 + 〈ad∗

wµ, ξ 〉

= 〈µ,adξw〉 + 〈µ,adwξ 〉 = 0.

Therefore,D/G
µ ⊂ (D

/G
µ )⊥.

Conversely, let us check that(D/G
µ )⊥ ⊂ D

/G
µ . Let ((w, γ ), (δ, u)) ∈ (D

/G
µ )⊥.

Setting ξ = 0 and notingν + ρ = ad∗
ξ µ, one has

〈ν, w〉 + 〈ρ, u〉 = 〈ad∗
ξ µ− ρ, w〉 + 〈ρ, u〉 = 〈ρ, u− w〉 = 0

for all ρ. Therefore,u = w. Next, letting ξ be arbitrary and notingw = u, one has

〈ν + ρ, w〉 + 〈γ + δ, ξ 〉 = 〈ad∗
ξ µ, w〉 + 〈γ + δ, ξ 〉

= 〈µ,adξ w〉 + 〈γ + δ, ξ 〉

= −〈µ,adwξ 〉 + 〈γ + δ, ξ 〉

= 〈−ad∗
wµ+ γ + δ, ξ 〉 = 0

for all ξ . So, we haveγ + δ = ad∗
wµ. Hence (D/G

µ )⊥ ⊂ D
/G
µ .

Finally, (D/G
µ )⊥ = D

/G
µ and thus,D/G

µ is a Dirac structure onV = g ⊕ g∗. �

REMARKS. Note that the reduced symplectic structureω/Gµ includes the canonical
symplectic structure onV = g⊕g∗ as well as the Lie–Poisson structure ong∗. This
type of symplectic structure is related to symplectic and Poisson structures with
cocycles, as in Cendra, Marsden, and Ratiu [21].

It is possible that the reduced Dirac structureD/G
µ on V = g ⊕ g∗ has some

connection with Drinfel’d’s theory that uses thedouble g ⊕ g∗ of the Lie bialge-
bra (g, g∗) (see Drinfel’d [26]), where Lie bialgebra structures are developed for
Hamiltonian structures on Lie groups.

REMARKS. One of the reviewers of this paper made some helpful comments on
the relationship between Lie–Dirac reduction of the present paper and the reduction of
“Courant algebroids”. The point is that the Lie–Dirac reduction procedure, including
the case with a given distribution, could be understood in the general context of
the reduction of Courant algebroids. Below is an outline of those remarks. We
plan to explore this in more detail in a forthcoming paper dealing with a general
configuration spaceQ, rather than the special case ofQ = G of the present paper.
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Let P be a manifold which is aG-principal bundle overB = P/G. One can
consider the bundleE = (T P ⊕ T ∗P)/G over P/G = B. It is easily checked that
the natural lift of theG-action to T P ⊕ T ∗P preserves the natural paring (denoted
〈〈·, ·〉〉 in Section 2), as well as the Courant bracket, which were introduced in
Courant [23]. Thus,E is naturally a Courant algebroid overB in the general sense
of Liu, Weinstein and Xu [36]. While this Courant algebroid is not of the form
T B ⊕ T ∗B, one can still talk about Dirac structures inE. In fact, it is a general
fact that if D is a G-invariant Dirac structure inT P ⊕ T ∗P , thenD/G is a Dirac
subbundle ofE (and D/G is integrable ifD is, sinceG preserves the Courant
bracket). In the above general context, the reviewer suggested that an alternative
proof of Theorem 4.2 (as well as its generalization, Theorem7.2—which is the
case with a distribution that will be introduced in Section 7), can be given.

In fact, in the context of Theorem 4.2, withP = T ∗G and using the isomorphism
T ∗G = G×g∗, one gets a Courant algebroidE = g∗ × (V ⊕V ∗) viewed as a trivial
bundle overg∗. Let D be the canonical Dirac structure onP = T ∗G given by
Eq. (4.1). Then, the quotientD/G, viewed as a structure on the bundleE over
B = g∗, gives µ-dependent Dirac structures inV ⊕ V ∗, which is just a fiber ofE
over µ ∈ g∗. For the case of Dirac reduction with constraints in which a Dirac
structure onP = T ∗G induced from a nontrivial distribution onG is given, we
will develop Theorem 7.2 later in Section 7, which could be also understood in
the above context of reduction of Courant algebroids.

Note that the reduced Dirac structure in Theorem 4.2 is integrable with respect to
the natural Courant bracket inE, whereas the one in Theorem 7.2 of course might
not be. Some relevant works that deal with the reduction of Courant algebroids
and associated Dirac structures can be found in, for instance, [12, 13], where the
authors seem to focus mainly on so-called “exact” Courant algebroids (in the set
up above, their reduction would yieldT B ⊕ T ∗B, rather thanE/G).

In this paper, our main goal here is to show how Lie–Dirac reduction can
naturally provide the reduction procedures for the standard implicit Lagrangian
and Hamiltonian systems, which can directly give us the implicit analogue of the
Euler–Poincaŕe equations as well as the Lie–Poisson equations, together with their
generalization to the case with a nontrivial distribution,and with applications to the
Suslov problem in nonholonomic mechanics. In addition, we have made links with
variational structures through the use of the Hamilton–Pontryagin principle; it is not
clear to us if or how these principles fit into the context of Courant algebroids.
We will not further explore the context of Courant algebroids in this paper. It is of
course an interesting topic for future work, especially, for the case, which is planned
for a subsequent paper, of “Dirac bundle reduction” in whichone has a principal
bundle π : Q → Q/G with a Lie groupG acting freely and properly onQ and
where there can be a nontrivial distribution onQ. The goal in that case would be
to understand the general Dirac reduction of implicit Lagrangian and Hamiltonian
systems as well as their relation to a reduced Hamilton–Pontryagin principle.
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5. Euler–Poincaŕe–Dirac reduction

This section develops the reduction of implicit Lagrangiansystems in the context
of the reduced Dirac structureD/G

µ on V = g⊕g∗. In particular, it is shown that the
implicit Euler–Poincaŕe equations can be obtained by reducing thestandard implicit
Lagrangian systemon the Pontryagin bundleTG⊕ T ∗G.

Standard implicit Lagrangian systems on TG⊕ T ∗G

Let X : TG ⊕ T ∗G → T T ∗G be a partial vector field onT ∗G, L be a left
invariant Lagrangian (possibly degenerate) onTG, and D be the canonical Dirac
structure given in Eq. (4.1). Using local coordinates(g, v, p) for TG ⊕ T ∗G, X
will be written, at a point(g, v, p) ∈ TG⊕ T ∗G as

X(g, v, p) = (g, p, ġ, ṗ),

where, as in the general theory,ġ, ṗ are functions of(g, v, p). From (2.2), the
Dirac differential of L, namely, DL is locally given by

DL =

(

g,
∂L

∂v
,−
∂L

∂g
, v

)

.

A standard implicit Lagrangian system(L, TG,X) satisfies the condition

(X,DL) ∈ D,

which is locally denoted by, for each(g, v) ∈ TG,

(X(g, v, p),DL(g, v)) ∈ D(g, p).

Equality of base points gives

p =
∂L

∂v
,

and then the condition(X,DL) ∈ D gives
〈

−
∂L

∂g
, u

〉

+ 〈α, v〉 = 〈α, ġ〉 − 〈ṗ, u〉

for all u and all α. Thus, we obtain

p =
∂L

∂v
, ġ = v, ṗ =

∂L

∂g
,

which are equivalent with theimplicit Euler–Lagrange equationson TG⊕ T ∗G in
Eq. (3.2).

Reduction of the Dirac differential of Lagrangians

Since the LagrangianL : TG → R is left invariant onTG, we have

L(TgLh · v) = L(v)
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for all g, h ∈ G and v ∈ TgG.
Recall that the differential ofL is the mapdL : TG → T ∗TG, whose coordinate

expression is given, using local coordinates(g, v) ∈ TG, by

dL =

(

g, v,
∂L

∂g
,
∂L

∂v

)

.

Recall that there exists the natural diffeomorphismγG : T ∗TG → T ∗T ∗G and that
the Dirac differential ofL is the mapDL : TG → T ∗T ∗G that is represented in
coordinates by

DL =

(

g,
∂L

∂v
,−
∂L

∂g
, v

)

.

The naive quotient ofdL : TG → T ∗TG by G is the map

d/GL : TG/G → (T ∗TG)/G,

where d/G denotes the quotient of the differential operator byG. Since the
diffeomorphism γG : T ∗TG → T ∗T ∗G is G-equivariant, we can define a quotient
map

γ
/G

G : (T ∗TG)/G → (T ∗T ∗G)/G

and therefore, we may define the quotient of the Dirac differential of L as

D/GL = γ
/G

G ◦ d/GL : TG/G → (T ∗T ∗G)/G.

Left trivialized expressions

Utilizing the left trivializing diffeomorphism

λ : TG → G× g : vg 7→ (g, η = TgLg−1v),

one has the left invariant Lagrangian̄L = L ◦ λ−1 induced onG × g and its
differential may be represented by the map

dL̄ : G× g → (G× g)× (g∗ ⊕ g∗),

which is expressed in coordinates by

dL̄ =

(

g, η, T ∗
e Lg

∂L̄

∂g
,
∂L̄

∂η

)

.

Associated withγG : T ∗TG → T ∗T ∗G, we can naturally define the trivializing
diffeomorphism

γ̄G : (G× g)× (g∗ ⊕ g∗) → (G× g∗)× (g∗ ⊕ g),

which is given in coordinates as

(g, η, ν, µ) 7→ (g, µ,−ν, η).
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Then, the Dirac differential ofL̄ becomes

DL̄ = γ̄G ◦ dL̄,

which is locally given by

DL̄ =

(

g,
∂L̄

∂η
,−T ∗

e Lg
∂L̄

∂g
, η

)

.

DEFINITION 5.1. Since the Lagrangian̄L is G-invariant, we may write it as

L̄(g, η) = l(η)

and define thequotient of the mapdL̄ : G× g → (G× g)× (g∗ ⊕ g∗) by the map

d/Gl : g → g × (g∗ ⊕ g∗),

which is locally given by

d/Gl =

(

η,0,
δl

δη

)

.

Further, the trivializing diffeomorphism̄γG is G-equivariant, and so we can define
the quotient map

γ̄
/G

G : g × (g∗ ⊕ g∗) → g∗ × (g∗ ⊕ g),

which is given in coordinates as

(η, ν, µ) 7→ (µ,−ν, η).

The reduced Dirac differentialfor l is defined to be

D/Gl = γ̄
/G

G ◦ d/Gl : g → g∗ × (g∗ ⊕ g),

which is locally denoted by

D/Gl =

(

δl

δη
,0, η

)

, (5.1)

where D/G is the reduced Dirac differential operator forl.

REMARK . The differential of the reduced Lagrangianl : g → R is naturally
given by the map

dl : g → g × g∗,

which is locally expressed at a pointη ∈ g as

dl =

(

η,
δl

δη

)

.

Note that the mapdl : g → g×g∗ is not the same as the mapd/Gl : g → g×(g∗⊕g∗).
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Reduction of partial vector fields

Let X : TG ⊕ T ∗G → T T ∗G be a left invariant partial vector field onT ∗G,
which is locally written, at a point(g, v, p) ∈ TG⊕ T ∗G, as

X(g, v, p) = (g, p, ġ, ṗ).

SinceX is left invariant, one has

(TgLh)X(g, v, p) = X(hg, TgLh · v, T ∗
hgLh−1 · p).

By using the trivializing diffeomorphismsλ : TG → G× g and λ̄ : T ∗G → G× g∗,
which can be thought of together as a map3 : TG ⊕ T ∗G → G × (g ⊕ g∗), let
X : G× (g ⊕ g∗) → T (G× g∗) ∼= (G× g∗)× (g ⊕ g∗) be the trivialized expression
of X given by, for each(g, η, µ) ∈ G× (g ⊕ g∗),

X (g, η, µ) =

(

g,µ, ξ, µ̇
)

∈ (G× g∗)× (g ⊕ g∗),

where η = TgLg−1v, ξ = TgLg−1ġ and µ = T ∗
e Lg ·p such thatµ = Fl(η). The map

X is left invariant sinceX is left invariant andλ, λ̄ and 3 are equivariant. That
is,

(TgLh)X (g, η, µ) = X (hg, η, µ),

where
X (hg, η, µ) =

(

hg,µ, ξ, µ̇
)

∈ (G× g∗)× (g ⊕ g∗).

DEFINITION 5.2. The reduction of the partial vector fieldX : G× (g ⊕ g∗) →

(G× g∗)× (g ⊕ g∗) is defined by the quotient ofX by G as

X /G : g ⊕ g∗ → g∗ × (g ⊕ g∗),

which will be written as

X /G(η, µ) =
(

µ, ξ, µ̇
)

∈ g∗ × (g ⊕ g∗), (5.2)

where ξ and µ̇ are functions of(η, µ).

Euler–Poincaré–Dirac reduction

Now we have the needed basic ingredients to define what we shall refer to as the
Euler–Poincaŕe–Dirac reductionprocedure. This will make use of theµ-dependent
reduced Dirac structureD/G

µ on V = g ⊕ g∗; together with the reduced Lagrangian,
this will induce the implicit Euler–Poincaré equations.

DEFINITION 5.3. Let (L, TG,X) be a standard implicit Lagrangian system and
let, for fixed µ ∈ g∗, D

/G
µ be the reduced Dirac structure onV = g ⊕ g∗, which is

given by Eq. (4.6), or equivalently, (4.8).
The reduction of a standard implicit Lagrangian system(L, TG,X) is a triple

(l, g, X /G), where l = L|g : g → R is the reduced Lagrangian and a reduced partial
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vector fieldX /G : g⊕g∗ → g∗ × (g⊕g∗) that satisfies, for eachη ∈ g, the condition

(X /G(η, µ),D/Gl(η)) ∈ D/G
µ . (5.3)

Notice that for this to make sense, the base points must all coincide with µ; that
is, the conditionµ = Fl(η) ∈ g∗ must hold.

DEFINITION 5.4. A solution curveof the reduced standard implicit Lagrangian
systems(l, g,X /G) is a curve(η(t), µ(t)) in g⊕g∗ such that the time derivative of
µ(t) is equal toµ̇ and we also have base point equality, namely,µ(t) = Fl(η(t)) ∈ g∗.

PROPOSITION 5.5. Let (l, g, X /G) be the reduction of a standard implicit
Lagrangian system onTG⊕ T ∗G; that is, it satisfies Eq.(5.3). Let (η(t), µ(t)) be
an integral curve ofX /G. Then theimplicit Euler–Poincaŕe equationshold, namely,

µ =
δl

δη
, ξ = η, µ̇ = ad∗

ξµ. (5.4)

Proof: Substituting Eqs. (5.1) and (5.2) into the condition of Eq.(5.3), namely,

(X /G(η, µ),D/Gl (η)) ∈ D/G
µ

for each η ∈ g and with µ = δl/δη ∈ g∗, it follows, at fixed µ ∈ g∗,
(

(ξ, µ̇), (0, η)
)

∈ D/G
µ ,

where X /G(η, µ) = (µ, ξ, µ̇) and D/Gl (η) = (δl/δη,0, η) together withµ = δl/δη.
In view of Eq. (4.8), it immediately yields Eq. (5.4).

Thus, we can formulateimplicit Euler–Poincaŕe equationson V = g ⊕ g∗ in the
context of the reduced Dirac structureD/G

µ , which are quite equivalent with the
ones derived from thereduced Hamilton–Pontryagin principlein Eq. (3.3). �

Implicit Euler–Poincar é reconstruction of dynamics
As shown in Eq. (5.4), implicit Euler–Poincaré equations consist of equations

of motion µ̇ = ad∗
ξµ, the partial Legendre transformationµ = δl/δη together

with the kinematic equationξ = η. Noting that ξ(t) = TgLg−1 ġ(t) ∈ g and
η(t) = TgLg−1 v(t) ∈ g, the kinematic equationξ(t) = η(t) is the reduction of
the second-order conditioṅg(t) = v(t) in the implicit Euler–Lagrange equations in
Eq. (3.2). This is the context of implicit Euler–Poincaré reconstruction of dynamics
given by the following theorem.

THEOREM 5.6. Let G be a Lie group, letL be a left invariant Lagrangian
(possibly degenerate) onTG and l = L|g be the reduced Lagrangian. Letg0 ∈ G,
v0 ∈ Tg0G and η0 = Tg0Lg−1

0
v0 ∈ g. Let (η(t), µ(t)) ∈ g ⊕ g∗ be a solution curve

of the implicit Euler–Poincaŕe equations with initial conditionsη(0) = η0 and let
p0 ∈ T ∗

g0
G be such thatµ(0) = T ∗

e Lg0(p0); that is, assume that the equations

µ̇(t) = ad∗
ξ(t)µ(t),
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and the reduced Legendre transformation

µ(t) =

(

δl

δη

)

(t),

together with the kinematic equationsξ(t) = η(t) hold.
Then, the solution curve(g(t), v(t), p(t)) ∈ TG ⊕ T ∗G of the implicit Euler–

Lagrange equations

ġ = v, p =
∂L

∂v
, ṗ =

∂L

∂g

with initial condition (g0, v0, p0) is given as follows; letg(t) be the solution of the
equation TgLg−1ġ = ξ , namely,

dg(t)

dt
= TeLg(t)ξ(t)

with initial condition g(0) = g0. Then,v(t) = g(t)η(t) and p(t) = g(t)µ(t); that is,

v(t) = TeLg(t)η(t) and p(t) = T ∗
g(t)L(g(t))−1µ(t).

Proof: By construction, the curvev(t) satisfies the given initial conditions,
and the conditionġ = v. Also, by construction,p(t) is given by the Legendre
transformation and satisfies the given initial conditions.To check that it satisfies the
equationsṗ = ∂L/∂g, note that by construction,

λ̄(p(t)) = (g(t), T ∗
e Lg(t)p(t)) = (g(t), µ(t))

and that the evolution equation forµ(t) is, by construction, the reduction of the
equation forp(t). �

6. Lie–Poisson–Dirac reduction

If a given Lagrangian is regular, we can define a regular Hamiltonian on T ∗G
via the Legendre transform. In this section, we make a Hamiltonian analogue of the
Euler–Poincaŕe–Dirac reduction, namely, a reduction procedure calledLie–Poisson–
Dirac reduction for the standard implicit Hamiltonian system onT ∗G, which yields
implicit Lie–Poisson equationson g ⊕ g∗.

Implicit Hamiltonian systems

Before going into details, let us briefly review implicit Hamiltonian systems
associated with an induced Dirac structure along Yoshimuraand Marsden [51].

Let Q be a configuration manifold. Given a LagrangianL on TQ and the
Legendre transformFL : TQ → T ∗Q is locally given by, for each(q, v) ∈ TQ,

FL(q, v) =

(

q,
∂L

∂v

)

.
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When L is regular, we can define a regular HamiltonianH on T ∗Q by using the
Legendre transformationFL : TQ → T ∗Q such that

H = E ◦ FL−1,

where E(q, v) = 〈FL(q, v), vq〉 − L(q, v) is an energy onTQ.
The definition of an implicit Hamiltonian system associatedwith an induced

Dirac structure onT ∗Q is given as follows: Let1Q be a distribution onQ and
X be a vector field onT ∗Q. Let D1Q ⊂ T T ∗Q ⊕ T ∗T ∗Q be an induced Dirac
structure onT ∗Q. Then, an implicit Hamiltonian system is a triple (H,1Q, X),
which satisfies, for each(q, p) ∈ T ∗Q,

(X(q, p),dH(q, p)) ∈ D1Q(q, p).

Standard implicit Hamiltonian systems on T ∗G

Let us consider a standard implicit Hamiltonian system onT ∗G; the case in
which 1Q = TQ and Q = G, namely, a configuration space is given by a Lie
groupG and1G = TG there exits no kinematic constraints. LetL be a regular left
invariant Lagrangian onTG. Define a HamiltonianH on T ∗G by H = E ◦ (FL)−1,
where FL : TG → T ∗G and E(g, v) = 〈FL(g, v), vg〉 −L(g, v). SinceL being left
invariant on TG and FL : TG → T ∗G is diffeomorphism,H is also to be left
invariant on T ∗G.

Recall from Eq. (4.1) that the canonical Dirac structureD on T ∗G is given by,
for eachpg ∈ T ∗G,

D(pg) = {(vpg , αpg ) ∈ TpgT
∗G× T ∗

pg
T ∗G | αpg (wpg ) = �(pg)(vpg , wpg )

for all wpg ∈ TpgT
∗G}.

Recall also that the canonical symplectic form� on T ∗G is represented, using
local coordinates(g, p) for T ∗G, by

�((g, p, u1, α1), (g, p, u2, α2)) = 〈α2, u1〉 − 〈α1, u2〉 .

Let X be a left invariant vector field onT ∗G, which is denoted, in coordinates, by

X = (g, p, ġ, ṗ)

and the differential of the Hamiltonian may be written in coordinates as

dH =

(

g, p,
∂H

∂g
,
∂H

∂p

)

.

Then, the condition for the standard implicit Hamiltonian system (H,1G=TG,X)
is given by, for each(g, p),

(X(g, p),dH(g, p)) ∈ D(g, p)

and hence we obtain
〈

∂H

∂g
, u

〉

+

〈

α,
∂H

∂p

〉

= 〈α, ġ〉 − 〈ṗ, u〉
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for all u and all α. Thus, it follows

ġ =
∂H

∂p
, ṗ = −

∂H

∂g
,

which implies that(H, TG,X) naturally induces Hamilton’s equations.

Reduction of the differential operator for Hamiltonians

SinceH is left invariant, we have

H(T ∗
hgLh−1 · p) = H(p)

for all g, h ∈ G and p ∈ T ∗
gG. Hence, we can define the reduced Hamiltonian by

H /G : T ∗G/G → R.

The differential ofH is the one-form onT ∗G that is the map

dH : T ∗G → T ∗T ∗G,

which is denoted, in local coordinates(g, p) for T ∗G, as

dH =

(

g, p,
∂H

∂g
,
∂H

∂p

)

.

Then, the naive quotient ofdH : T ∗G → T ∗T ∗G may be defined as

d/GH : (T ∗G)/G → (T ∗T ∗G)/G.

Left trivialized expressions

Employing the trivializing diffeomorphism

λ̄ : T ∗G → G× g∗; pg 7→ (g, µ = T ∗
e Lg(pg)),

the differential of the left invariant Hamiltonian̄H = H ◦ λ̄−1 induced onG × g∗

is the map
dH̄ : G× g∗ → (G× g∗)× (g∗ ⊕ g),

which is expressed, using coordinates(g, µ) ∈ G× g∗, by

dH̄ =

(

g,µ, T ∗
e Lg

∂H̄

∂g
,
∂H̄

∂µ

)

.

DEFINITION 6.1. The induced HamiltonianH̄ on G× g∗ is G-invariant, and it
reads

H̄ (g, µ) = h(µ),

whereh : g∗ → R is the reduced Hamiltonian. Define thereduction of the differential
operator for h by the map

d/Gh : g∗ → g∗ × (g∗ ⊕ g),
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which is locally given by

d/Gh =

(

µ,0,
δh

δµ

)

. (6.1)

REMARKS. The differential of the reduced Hamiltonianh : g∗ → R is given by

dh : g∗ → g∗ × g,

which is locally expressed by, forµ ∈ g∗,

dh =

(

µ,
δh

δµ

)

.

So, needless to say,dh is not equivalent with the map

d/Gh : g∗ → g∗ × (g∗ ⊕ g),

which we will utilize to reduce the standard implicit Hamiltonian systems.

DEFINITION 6.2. SinceX is left invariant and by equivariance of̄λ : T ∗G →

G× g∗, we can define theinduced vector field onG× g∗ by X = λ̄∗X, which is
written, at each point(g, µ) ∈ G× g∗, by

X (g, µ) = (g, µ, ġ, µ̇), (6.2)

where (g, ġ) is a partial vector field onG smoothly depending onµ ∈ g∗ and
hence we write

Yµ = (g, ġ).

Since the vector fieldYµ is left invariant, we have, for allf, g ∈ G,

TfLgYµ(f ) = Yµ(gf ),

which reads
Yµ(g) = TeLgYµ(e).

Then, we can define apartial vector field

X /G : g∗ → g∗ × (g ⊕ g∗)

by the quotient of the mapX : G× g∗ → g∗ × (g ⊕ g∗) by G, which is given, in
coordinates, by

X /G = (µ, ξ(µ), µ̇), (6.3)

where ξ(µ) = TgLg−1ġ.

Lie–Poisson–Dirac reduction

Let us definereduction of the standard implicit Hamiltonian systemin the context
of the reduced Dirac structureD/G

µ on V = g ⊕ g∗.

DEFINITION 6.3. Let (H, TG,X) be the standard implicit Hamiltonian system
associated with the canonical Dirac structureD on T ∗G. Let D = λ̄∗D be the
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canonical Dirac structure onG×g∗ given in Eq. (4.3). LetX /G be the partial vector
field defined in Eq. (6.3) andD/G

µ be the reduced Dirac structure onV = g ⊕ g∗

fixed at µ ∈ g∗, given in Eq. (4.6) or (4.8).
Then, thereduction of a standard implicit Hamiltonian system(H, TG,X) may

be given by a triple(h, g, X /G) that satisfies, at fixedµ ∈ g∗,

(X /G(µ),d/Gh(µ)) ∈ D/G
µ . (6.4)

DEFINITION 6.4. A solution curveof the reduced standard implicit Hamiltonian
system(h, g, X /G) is a curveµ(t) in g∗, which is an integral curve of the partial
vector field X /G = (µ, ξ(µ), µ̇) such thatξ(t) = Fh(µ(t)).

PROPOSITION 6.5. The reduction of the standard implicit Hamiltonian system
given in Eq. (6.4) induces implicit Lie–Poisson equations ong ⊕ g∗ as

ξ =
δh

δµ
, µ̇ = ad∗

ξµ. (6.5)

Proof: Substituting Eqs. (6.1) and (6.3) into the condition of Eq.(6.4), namely,

(X /G(µ),d/Gh(µ)) ∈ D/G
µ ,

where X /G = (µ, ξ(µ), µ̇) and d/Gh = (µ,0, δh/δµ). In view of Eq. (4.8), we
obtain Eq. (6.5). �

Thus, we obtain implicit Lie–Poisson equations ong ⊕ g∗ in the context of the
reduced Dirac structure, which are quite equivalent with the ones previously derived
from the Lie–Poisson variational principlein Eq. (3.8).

Reconstruction of dynamics

The implicit Lie–Poisson equations in Eq. (6.5) consist of equations of motion
µ̇ = ad∗

ξµ and the partial Legendre transformationξ = δh/δµ. Here, we shall
show how the reconstruction of dynamics can be done from implicit Lie–Poisson
equations. Implicit Lie–Poisson reconstruction of dynamics can be given by the
following theorem.

THEOREM 6.6. Let H be a left invariant Hamiltonian onT ∗G and h be the
reduced Hamiltonian ong∗. Let µ(t) ∈ g∗ be a solution curve of the implicit
Lie–Poisson equations

µ̇(t) = ad∗
ξ(t)µ(t)

with the initial conditionµ(0) = T ∗
e Lg0(αg0), which are accompanied with

ξ(t) =

(

δh

δµ

)

(t).
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Then, the integral curvep(t) ∈ T ∗
g(t)G of a vector fieldX on T ∗G with initial

condition p(0) = pg0 is given by

p(t) = T ∗
g(t)L(g(t))−1µ(t),

where g(t) is the solution of the equationTgLg−1ġ = ξ , namely,

dg(t)

dt
= TeLg(t)ξ(t)

with initial condition g(0) = g0.

Proof: The curvep(t) is the unique integral curve ofX with initial condition
p(0) = pg(0) if and only if

λ̄(p(t)) = (g(t), T ∗
e Lg(t)pg(t)(t)) =: (g(t), µ(t))

is the integral curve of the induced vector fieldX = λ̄∗X on G × g∗, which is
given in Eq. (6.2), together with initial condition

λ̄(p(0)) = (g0, T
∗
e Lg0p0). �

7. Dirac reduction with constraints

In this section, we shall investigate the reduction of an induced Dirac structure
on the cotangent bundle, for the case in which a configurationmanifold is given
by a Lie group and with a left invariant constraint distribution. It will be shown
that this Dirac reduction plays a key role in the reduction ofimplicit Lagrangian
and Hamiltonian systems onTG ⊕ T ∗G for the so-called Suslov problems in
nonholonomic mechanics.

The induced Dirac structure on T ∗G

Let 1G ⊂ TG be a constraint distribution onG, where we assume that the
distribution is regular. Assume also that the distribution1G is left invariant under
the group actionLh : G → G : g 7→ hg such that the subspace1G(g) ⊂ TgG is
mapped by the tangent of the group action to the subspace1G(hg) ⊂ ThgG. Define
the distribution onT ∗G by

1T ∗G = (T πG)
−1(1G),

where πG : T ∗G → G is the cotangent projection. Recall that an induced Dirac
structureD1G on T ∗G is defined, for eachpg ∈ T ∗G, by

D1G(pg) = {(vpg , αpg ) ∈ TpgT
∗G× T ∗

pg
T ∗G | vpg ∈ 1T ∗G(pg), and

αpg (wpg ) = �(pg)(vpg , wpg ) for all wpg ∈ 1T ∗G(pg)},

where� is the canonical two-form onT ∗G.
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Trivialized expressions

Let us choose local coordinatesg for G so thatG is locally represented by
an open setU ⊂ R

n. The constraint set1G defines a subspace ofTgG at each
point g ∈ G, which we locally denote by1(g) ⊂ R

n at each pointg ∈ U . If
we let the dimension of the constraint space ben − m, then we can choose a
basisem+1(g), em+2(g), . . . , en(g) of 1(g). It is also common to represent constraint
sets as the simultaneous kernel of a number of constraint one-forms, namely, the
annihilator of 1(g), denoted by1◦(g), is spanned by such one-forms, which we
write as ω1, ω2, . . . , ωm. Hence, the local expression of1G ⊂ TG is given by, for
each g ∈ U ,

1G(g) =
{

v ∈ TgG | v ∈ 1(g)
}

.

The distribution1G is left invariant, and it reads

1G(hg) = 1G(g)

for all h, g ∈ G, where

1G(hg) =
{

TgLhv ∈ ThgG | TgLhv ∈ 1(hg)
}

.

We can define the distribution1G×g∗ on G× g by

1G×g∗ = (T π̄G)
−1(1G) ⊂ T (G× g∗).

In the above, π̄G : G × g∗ → G is defined such thatπG = π̄G ◦ λ̄, where
πG : T ∗G → G is the canonical projection and̄λ : T ∗G → G× g∗. Employing local
coordinates(g, µ) for G×g∗ and (v, ρ) for T(g,µ)(G×g∗) ∼= TgG×g∗, the distribution
1G×g∗ ⊂ T (G× g∗) can be locally represented by, for each(g, µ) ∈ G× g∗,

1G×g∗(g, µ) =
{

(v, ρ) ∈ TgG× g∗ | v ∈ 1(g)
}

.

Since 1G is left-invariant, it is easily verified that the distribution 1G×g∗ is also
left-invariant, namely,

1G×g∗(hg, µ) = 1G×g∗(g, µ)

for all h, g ∈ G and µ ∈ g∗, where

1G×g∗(hg, µ) =
{

(TgLhv, ρ) ∈ ThgG× g∗ | TgLhv ∈ 1(hg)
}

.

Now, we can define an induced Dirac structure onG× g∗ by

D1G = λ̄∗D1G,

which is locally given by, for each(g, µ) ∈ G× g∗,

D1G(g, µ) = {(v, ρ), (β, η) ∈ (TgG× g∗)× (T ∗
gG× g∗) | (v, ρ) ∈ 1G×g∗(g, µ),

and 〈β,w〉 + 〈σ, η〉 = ω(g, µ)((v, ρ), (w, σ )) for all (w, σ ) ∈ 1G×g∗(g, µ)},

whereω = λ̄∗� is the canonical symplectic structure onG× g∗ given in Eq. (4.2).
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Invariance of induced Dirac structures

Let 3 be a leftG–action onG× g∗ and hence3h(g, µ) = (hg, µ). Since the
canonical symplectic structureω and the distribution1G×g∗ are G-invariant, an
induced Dirac structureD1G on G× g∗ is G-invariant as

(3h∗X, (3∗
h)

−1α) ∈ D1G

for all (X, α) ∈ D1G . Namely, the left-invariance of an induced Dirac structureD1G

is locally represented by

D1G(hg, µ) = D1G(g, µ),

for all h, g ∈ G and µ ∈ g∗, where

D1G(hg, µ) = {((TgLhv, ρ), (T
∗
hgLh−1β, η)) ∈ (ThgG× g∗)× (T ∗

hgG× g) |

(TgLhv, ρ) ∈ 1G×g∗(hg, µ), and 〈T ∗
hgLh−1β, TgLhw〉 + 〈σ, η〉

= ω(hg,µ)((TgLhv, ρ), (TgLhw, σ)) for all (TgLhw, σ) ∈ 1G×g∗(hg, µ)}.

Reduction of induced distributions

Recall the induced distribution1G×g∗ ⊂ T (G × g∗) from 1G can be locally
given by

1G×g∗ = {(g, µ, v, ρ) | g ∈ U, v ∈ 1(g)} .

Since1G×g∗ is left-invariant, it follows

1G×g∗(hg, µ) = 1G×g∗(g, µ)

and taking quotients byG at each(e, µ) ∈ G× g∗ yields

1G×g∗(e, µ)/G = g1 ⊕ g∗,

where
g1 = {ξ ∈ g | ξ ∈ 1(e)}

is a constraint subspace ofg ∼= TeG.

Dirac reduction

Because of theG-invariance ofD1G , an induced Dirac structure onG× g∗

D1G ⊂ T (G× g∗)⊕ T ∗(G× g∗)

may be identified with

D1G ⊂ (G× g∗)× (V ⊕ V ∗),

which is uniquely determined by its value at the identity as

D1G(e, µ) = {((ξ, ρ), (ν, η)) ∈ V ⊕ V ∗ | (ξ, ρ) ∈ g1 ⊕ g∗,

and 〈ν, ζ 〉 + 〈σ, η〉 = ω(e, µ)((ξ, ρ), (ζ, σ )) for all (ζ, σ ) ∈ g1 ⊕ g∗}.



414 H. YOSHIMURA and J. E. MARSDEN

In view of the invariance of the induced Dirac structure, a structure, which we
write D

/G

1G
(µ), may be induced, for eachµ ∈ g∗, on the quotient space as

D
/G

1G
(µ) = {((ξ, ρ), (ν, η)) ∈ V ⊕ V ∗ | (ξ, ρ) ∈ g1 ⊕ g∗,

and 〈ν, ζ 〉 + 〈σ, η〉 = ω/Gµ ((ξ, ρ), (ζ, σ )) for all (ζ, σ ) ∈ g1 ⊕ g∗}, (7.1)

whereω/Gµ is theµ-dependent symplectic structureon V = g⊕g∗ given in Eq. (4.7).

PROPOSITION 7.1. For fixed µ ∈ g∗, D
/G

1G
(µ) in Eq. (7.1) is given by

D
/G

1G
(µ) = {((ξ, ρ), (ν, ξ)) ∈ V ⊕ V ∗ | ξ ∈ g1, ν + ρ − ad∗

ξ µ ∈ (g1)◦}. (7.2)

Proof: Suppose that the condition (7.1) holds, namely, that

〈ν, ζ 〉 + 〈σ, η〉 = ω/Gµ ((ξ, ρ), (ζ, σ ))

for all (ζ, σ ) ∈ g1 ⊕ g∗. First, using (4.7) and settingσ = 0, gives

〈ν + ρ, ζ 〉 =
〈

µ,adξ ζ
〉

for all ζ ∈ g1.

So, one gets
ν + ρ − ad∗

ξ µ ∈ (g1)◦.

Second, setζ = 0 and then

〈σ, η − ξ 〉 = 0 for all σ ∈ g∗.

Hence, we have
η = ξ ∈ g1.

The converse is shown in the same way. �

The induced Dirac structure on V = g ⊕ g∗

As in Section 4, we have the following important theorem showing that the
reduction of the induced Dirac structure onT ∗G gives aµ-dependent Dirac structure
on V = g ⊕ g∗ induced fromg1 ⊂ g.

THEOREM 7.2. For fixed µ ∈ g∗, the induced structureD/G

1G
(µ) given by (7.1),

or equivalently,(7.2), is a Dirac structure onV = g ⊕ g∗.

Proof: One can simply prove that for fixedµ, Eq. (7.1) is a special case of the
construction of a Dirac structure on a symplectic manifoldP given by Eq. (2.1),
with P = V , with the symplectic structureω/Gµ and with g1 ⊕ g∗ ⊂ V .

We shall give another direct proof of this theorem as follows. Noting that the
symmetric paring onV ⊕ V ∗ is given by

〈〈 ((w, γ ), (δ, u)), ((ξ, ρ), (ν, ξ)) 〉〉 = 〈ν, w〉 + 〈γ, ξ 〉 + 〈δ, ξ 〉 + 〈ρ, u〉,
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the orthogonal space ofD/G

1G
(µ) is given by, for eachµ ∈ g∗,

(D
/G

1G
)⊥(µ) = {((w, γ ), (δ, u)) ∈ V ⊕ V ∗ |

〈ν, w〉 + 〈γ, ξ 〉 + 〈δ, ξ 〉 + 〈ρ, u〉 = 0, ξ ∈ g1, ν + ρ − ad∗
ξµ ∈ (g1)◦}.

What we want to prove is thatD/G

1G
(µ) = (D

/G

1G
)⊥(µ). Let us first check that

D
/G

1G
(µ) ⊂ (D

/G

1G
)⊥(µ). Let ((w, γ ), (δ, w)) ∈ D

/G

1G
(µ), wherew ∈ g1 and γ + δ −

ad∗
wµ ∈ (g1)◦. Since ξ ∈ g1 and ν + ρ − ad∗

ξ µ ∈ (g1)◦, we have

〈ν, w〉 + 〈γ, ξ 〉 + 〈δ, ξ 〉 + 〈ρ,w〉 = 〈ν + ρ, w〉 + 〈γ + δ, ξ 〉

= 〈α + ad∗
ξµ,w〉 + 〈β + ad∗

wµ, ξ 〉

= 〈µ,adξw〉 + 〈µ,adwξ 〉

= 0,

whereα = ν+ρ−ad∗
ξ µ and β = γ + δ−ad∗

wµ. Therefore,D/G

1G
(µ) ⊂ (D

/G

1G
)⊥(µ).

Conversely, let us check that(D/G

1G
)⊥(µ) ⊂ D

/G

1G
(µ). Let ((w, γ ), (δ, u)) ∈

(D
/G

1G
)⊥(µ). Setting ξ = 0 and ν + ρ = ad∗

ξ µ, one has

〈ν, w〉 + 〈ρ, u〉 = 〈ad∗
ξ µ− ρ, w〉 + 〈ρ, u〉

= 〈ρ, u− w〉

= 0

for all ρ. So, one obtainsu = w. Next, let ξ be arbitrary and letν + ρ = ad∗
ξ µ.

Noting w = u, one has

〈ν + ρ, w〉 + 〈γ + δ, ξ 〉 = 〈ad∗
ξ µ, w〉 + 〈γ + δ, ξ 〉

= 〈µ,adξ w〉 + 〈γ + δ, ξ 〉

= −〈µ,adwξ 〉 + 〈γ + δ, ξ 〉

= 〈−ad∗
wµ+ γ + δ, ξ 〉

= 0

for all ξ ∈ g1. So, we haveγ + δ − ad∗
wµ ∈ (g1)◦. Hence (D/G

µ )⊥ ⊂ D
/G
µ .

Finally, (D/G
µ )⊥ = D

/G
µ and thus,D/G

1G
(µ) is a µ-dependent Dirac structure on

V = g ⊕ g∗ induced fromg1 ⊂ g. �

8. Euler–Poincaŕe–Suslov reduction

In this section, making use of the Dirac reduction, we will develop the reduction
of an implicit Lagrangian system(L,1G, X), where a left invariant constraint
distribution 1G ⊂ TG is given. In particular, we will show how a reduced implicit
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Lagrangian system can be obtained in an implicit form of the so-called Euler–
Poincaŕe–Suslov equations and we also illustrate an example of the Suslov problem
of rigid body systems with nonholonomic constraints.

Implicit Lagrangian systems on TG⊕ T ∗G

Let L be aG-invariant Lagrangian (possibly degenerate) onTG. Let (L,1G, X)
be an implicit Lagrangian system, which satisfies

(X,DL) ∈ D1G,

whereX : TG⊕ T ∗G → T T ∗G is a partial vector field onT ∗G, DL is the Dirac
differential of L and D1G is the induced Dirac structure.

Coordinate representations

The canonical two-form� is given in coordinates by

�((g, p, u1, α1), (g, p, u2, α2)) = 〈α2, u1〉 − 〈α1, u2〉 ,

and the induced Dirac structure may be expressed, in coordinates, by

D1Q(g, p) = {((g, p, ġ, ṗ), (g, p, α,w)) | ġ ∈ 1(g), w = ġ, and α + ṗ ∈ 1◦(g)} .

Writing X(q, v, p) = (g, p, ġ, ṗ) and DL = (g, ∂L/∂v,−∂L/∂g, v) together
with p = ∂L/∂v, and using the local expressions for the canonical symplectic
form and the Dirac differential, the condition for an implicit Lagrangian system
(X,DL) ∈ D1G reads that

〈

−
∂L

∂g
, u

〉

+ 〈α, v〉 = 〈α, ġ〉 − 〈ṗ, u〉

for all u ∈ 1(g) and all α, where (u, α) are the local representatives of a point in
T(g,p)T

∗G. Since this holds for allu ∈ 1(g) and all α, it follows

p =
∂L

∂v
, ġ = v ∈ 1(g), ṗ −

∂L

∂g
∈ 1◦(g), (8.1)

which are the local expressions for the implicit Lagrangiansystem onTG⊕ T ∗G.

Euler–Poincaré–Suslov reduction

Let us give the definition of reduction of an implicit Lagrangian system associated
with the induced Dirac structure onT ∗G.

DEFINITION 8.1 (Euler–Poincaré–Suslov reduction). Let(L,1G, X) be an implicit
Lagrangian system, which is associated with the Dirac structure D1G induced from

1G ⊂ TG. Let D/G

1G
(µ) be theµ-dependent reduced Dirac structure onV = g ⊕ g∗

associated with a constraint spaceg1 ⊂ g, which is given in Eq. (7.1), or equivalently
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(7.2). The reduced partial vector fieldX /G : g⊕g∗ → g∗ × (g⊕g∗) is locally written
as in Eq. (5.2). Letl = L|g : g → R denote the reduced Lagrangian.

Then, thereduction of the implicit Lagrangian system(L,1G, X) is given by a
triple (l, g1, X /G) that satisfies

(X /G(η, µ),D/Gl(η)) ∈ D
/G

1G
(µ), (8.2)

where D/Gl is the reduced Dirac differential forl given in Eq. (5.1) for allη ∈ g;
again note that equality of base points requires that, in addition, µ = Fl(η).

DEFINITION 8.2. A solution curve of (l, g1,X /G) is a curve (η(t), µ(t)) in
g1 ⊕ g∗ such that it is an integral curve of the partial vector fieldX /G, where
µ(t) = Fl(η(t)).

PROPOSITION 8.3. An integral curve (η(t), µ(t)) of the reduced implicit La-
grangian system(l, g1, X /G) satisfies the following equations:

µ =
δl

δη
, ξ = η ∈ g1, µ̇− ad∗

ξµ ∈ (g1)◦, (8.3)

where (g1)◦ ⊂ g∗ is the annihilator of the constraint subspaceg1.

Proof: SubstitutingX /G(η, µ) = (µ, ξ, µ̇) and D/Gl(η) = (δl/δη,0, η) into the
condition of Eq. (8.2), for eachη ∈ g1 and with fixedµ = δl/δη ∈ g∗ in view of
Eq. (7.2), it immediately reads

(

(ξ, µ̇), (0, η)
)

∈ D
/G

1G
(µ),

and hence
ξ = η ∈ g1, µ̇− ad∗

ξµ ∈ (g1)◦,

Thus, we obtain Eq. (8.3). �

The set of equations of motion in Eq. (8.3) is the local expression for the
reduction of the implicit Lagrangian system given in Eq. (8.1), which is an implicit
analog of Euler–Poincaŕe–Suslov equations(see Bloch [7]). Then, we shall call
Eq. (8.3) implicit Euler–Poincaŕe–Suslov equationson g1 ⊕ g∗.

Energy conservation of implicit Lagrangian systems

Let (L,1G, X) be an implicit Lagrangian system, whereG is a Lie group,L
is a left invariant Lagrangian onTG and X : TG ⊕ T ∗G → T T ∗G is a partial
vector field onT ∗G. Let 1G be a left invariant distribution onG and define the
constraint momentum spaceP ⊂ T ∗G by P = FL(1G). Define an energy function
E on TG⊕ T ∗G by, for (g, v, p) ∈ TG⊕ T ∗G,

E(g, v, p) = 〈p, v〉 − L(g, v).

Let (g(t), v(t), p(t)) in 1G ⊕ P ⊂ TG⊕ T ∗G be a solution curve of(L,1G, X),
where p(t) = (∂L/∂v)(t).
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Recall from Yoshimura and Marsden [50] that for the implicitLagrangian system
(L,1G, X), energy conservation holds along the solution curve(g(t), v(t), p(t));
that is, the energyE(q(t), v(t), p(t)) is constant in time. This is shown as follows:

d

dt
E = 〈ṗ, v〉 + 〈p, v̇〉 −

∂L

∂g
ġ −

∂L

∂v
v̇

=

〈

ṗ −
∂L

∂g
, v

〉

,

which vanishes sincėg = v ∈ 1(g) and sinceṗ − ∂L/∂g ∈ 1◦(q).

Energy conservation of reduced implicit Lagrangian systems

Recall that the groupG acts on curves(g(t), v(t), p(t)) in TG ⊕ T ∗G, by
simultaneously left translating on each factor by the left-action and the tangent and
cotangent lifts. Explicitly, the action of an elementh ∈ G is given on a curve
g(t) ∈ G, v(t) ∈ Tg(t)G and p(t) ∈ T ∗

g(t)G, by

h · (g(t), v(t), p(t)) = (hg(t), Tg(t)Lh · v(t), T ∗
hg(t)Lh−1 · p(t)),

where Tg(t)Lh : Tg(t)G → Thg(t)G is the tangent of the left translation mapLh :

G → G; g(t) 7→ hg(t) at the point g(t) and T ∗
hg(t)Lh−1 : T ∗

g(t)G → T ∗
hg(t)G is the

dual of the mapThg(t)Lh−1 : Thg(t)G → Tg(t)G. The energyE is invariant under
the action ofG since L is G-invariant and one easily checks that the momentum
function 〈p(t), v(t)〉 is alsoG-invariant. Hence one can define the reduced energy
e on g ⊕ g∗ by, for (η, µ) ∈ g ⊕ g∗,

e(η, µ) = 〈µ, η〉 − l(η),

where l = L|g is the reduced Lagrangian ong and 〈µ, η〉 is the reduced momentum
function on g ⊕ g∗. Let g1 ⊂ g be the reduction of1G ⊂ TG and let X /G :

g ⊕ g∗ → g∗ × (g ⊕ g∗) be the reduction of the partial vector fieldX.

We have the following proposition of energy conservation for reduced implicit
Lagrangian systems.

PROPOSITION 8.4. Let (l, g1,X /G) be the reduced implicit Lagrangian system,
which is the reduction of a given implicit Lagrangian system(L,1G, X). Let
(η(t), µ(t)) be a solution curve ing1 ⊕ g∗ ⊂ g ⊕ g∗ of (l, g1,X /G), where
µ(t) = (δl/δη)(t). Then conservation of energy holds along the solution curve
(η(t), µ(t)); that is, the (reduced) energye(η(t), µ(t)) is constant in time.

Proof: By the definition of the reduced energye, it follows, by noting µ(t) =
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(δl/δη)(t),

d

dt
e(η, µ) = 〈µ̇, η〉 + 〈µ, η̇〉 −

δl

δη
η̇

=

〈

µ−
δl

δη
, η̇

〉

+
〈

ad∗
ξµ, η

〉

=
〈

ad∗
ξµ, ξ

〉

,

which vanishes sinceη = ξ ∈ g1 and sinceµ̇− ad∗
ξµ ∈ (g1)◦. Thus, the (reduced)

energy e is constant in time. �

Examples of implicit Euler–Poincaré–Suslov equations

Let us illustrate the Euler–Poincaré–Suslov reduction theory with an example of
the Suslov problemfor the caseG = SO(3). As to the Suslov problem, refer to,
for instance, [34, 53, 7, 10].

Now, we consider the Suslov problem, which is an Euler top with a nonholonomic
constraint, which represents a rigid body rotating with a fixed point such that at
each moment of time the projection of the angular velocity insome direction fixed
in the body is equal to zero.

Let L : TSO(3) → R be a left invariant Lagrangian (the kinetic energy), i.e.,
L(g, v) = l(TgLg−1v), where l : so(3) → R is the reduced Lagrangian, which is
locally given by

l(6) =
1

2
〈6, I6〉 ,

where 6 = TgLg−1v ∈ so(3) and I denotes the inertia tensor of a rigid body. The
Suslov problem is a class of nonholonomic systems with a constraint distribution

so(3)1 = {6 ∈ so(3) | 〈A, 6〉 = 0} , (8.4)

where 6 is the body angular velocity andA is a fixed element of the dual
Lie algebra so(3)∗. Here, 〈·, ·〉 stands for the natural paring between the Lie
algebra and its dual. Since the subspaceso(3)1 is not necessarily a subalgebra, the
constraint is nonholonomic. Then, the Suslov problem may berepresented by the
reduced implicit Lagrangian system(l, so(3)1,X /G) as in equation (8.2). Namely,
the system equations for the Suslov problem can be expressedby the implicit
Euler–Poincaŕe–Suslov equations, which are given in this example by

5i =
∂l

∂6i
, �i = 6i, 5̇i − Ckji�

j5k = λAi, i, j, k = 1,2,3.

In the above,Ckji are the structure constants ofso(3) andλ is the Lagrange multiplier.
Further,6 = 6iei, � = �iei ∈ so(3)1, A = Aiei ∈ so(3)∗, and 5 = 5iei ∈ so(3)∗

denotes the body angular momentum, whereei, i = 1,2,3 form a basis forso(3)
and ei form a basis forso(3)∗.
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As demonstrated in [53], let us choosee3 = A/ |A| as the third vector of the
body frame and let us pick up two independent vectorse1,e2 that are orthogonal
to e3 in the kinetic energy metric. Then, one has the constraint

�3 = 0.

Note thate1,e2 and e3 are not necessarily orthogonal relative to the standard metric
in so(3) ∼= R

3 unless e3 spans an eigenspace of the inertia tensorI = Iijei ⊗ ej .
This implies that the structure constantsCjj i are not equal to zero. Noting that the
components of the inertia tensorI13 and I23 are zero, hence, it follows

51 = I116
1 + I126

2, 52 = I216
1 + I226

2, 53 = I336
3.

The implicit Euler–Poincaré–Suslov equations are given in matrix form by








5̇1

5̇2

5̇3









=









C1
21�

251 + C2
21�

252

C1
12�

151 + C2
12�

152

C1
13�

151 + C2
13�

152 + C1
23�

251 + C2
23�

252









+









0

0

λ |A|









and with
�1 = 61, �2 = 62, �3 = 63 = 0.

Notice that53 = 0 since�3 = 63 = 0. By eliminating the Lagrange multiplier, we
finally obtain





5̇1

5̇2



 =





C1
21�

251 + C2
21�

252

C1
12�

151 + C2
12�

152





and with

�1 = 61, �2 = 62, 51 = I116
1 + I126

2, 52 = I216
1 + I226

2.

The above implicit Euler–Poincaré–Suslov equations are equivalent with the equations
in [53].

For the case in which we choosee3 as an eigenvector of the inertia tensor such that
Ie3 = I33e3 and in which we also choosee1 ande2 as the two remaining eigenvectors,
the basise1,e2,e3 in so(3) is orthogonal with respect to both the standard and
the kinetic energy metrics, whereC3

12 =C1
23 =C2

31 = −C3
21 = −C1

32 = −C2
13 = 1 and

Ckji = 0 otherwise. Then, we get

5̇1 = 0, 5̇2 = 0.

Thus, all the solutions of the reduced system are relative equilibria.

9. Lie–Poisson-Suslov reduction
For the case in which a given Lagrangian is regular, or when a Hamiltonian

is given, we can develop a Hamiltonian analogue of Euler–Poincaŕe–Suslov reduc-
tion. This section, gives a reduction procedure for an implicit Hamiltonian system
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(X,dH) ∈ D1G associated with an induced Dirac structure onD1G , which we shall
call Lie–Poisson-Suslov reduction. It is also shown that this reduction procedure may
be also useful in the analysis of the Suslov problem in nonholonomic mechanics.

The implicit Hamiltonian system on a Lie group

Let H be a G-invariant Hamiltonian onT ∗G. Let (H,1G, X) be an implicit
Hamiltonian system, which satisfies

(X,dH) ∈ D1G,

where X is a vector field onT ∗G, dH is the differential ofH and D1G is the
induced Dirac structure.

Coordinate representations

Recall that the canonical two-form� is given, in coordinates, by

�((g, p, u1, α1), (g, p, u2, α2)) = 〈α2, u1〉 − 〈α1, u2〉 ,

and the induced Dirac structure may be expressed, in coordinates, by

D1G(g, p) = {((g, p, ġ, ṗ), (g, p, α,w)) | ġ ∈ 1(g), w = ġ, and α + ṗ ∈ 1◦(g)} .

Writing X = (g, p, ġ, ṗ) and dH = (g, p, ∂H/∂g, ∂H/∂p), and using the local
expressions for the canonical symplectic form and the differential ofH , the condition
for an implicit Hamiltonian system(X,dH) ∈ D1G reads

〈

∂H

∂g
, u

〉

+

〈

α,
∂H

∂p

〉

= 〈α, ġ〉 − 〈ṗ, u〉

for all u ∈ 1(g) and all α, where (u, α) are the local representatives of a point
in T(g,p)T

∗G. Since this holds for allu ∈ 1(g) and all α, we obtain the local
expressions for the implicit Hamiltonian system as

ġ =
∂H

∂p
∈ 1(g), ṗ +

∂H

∂g
∈ 1◦(g).

Lie–Poisson-Suslov reduction

Let us developthe reduced implicit Hamiltonian systemsassociated with the
reduction of an induced Dirac structure ong⊕ g∗, which we shall callLie–Poisson-
Suslov reduction.

Let (H,1G, X) be an implicit Hamiltonian system, which satisfies(X,dH) ∈

D1G , where H is a left invariant Hamiltonian onT ∗G, 1G ⊂ TG is a given
distribution andX is a vector field onT ∗G.

DEFINITION 9.1 (Lie–Poisson-Suslov reduction). Let(H,1G, X) be an implicit
Hamiltonian system, which is associated with the Dirac structure D1G on T ∗G
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induced from 1G ⊂ TG. Let h : g∗ → R be the reduced Hamiltonian defined
by h = H |g∗ and let g1 ⊂ g be a constraint space. Denote byX /G the partial
vector field defined in Eq. (6.3), andD/G

1G
(µ) denote the reduction of the induced

Dirac structure onV = g ⊕ g∗, which is defined at eachµ ∈ g∗, by Eq. (7.1), or
equivalently Eq. (7.2).

Then, thereduction of the implicit Hamiltonian system(H,1G, X) is given by
a triple (h, g1,X /G) that satisfies, at eachµ ∈ g∗,

(X /G(µ),d/Gh(µ)) ∈ D
/G

1G
(µ), (9.1)

where d/Gh is the reduction of the differential ofH , which is locally given in
Eq. (6.1).

DEFINITION 9.2. A solution curve of (h, g1, X /G) is a curve µ(t) in g∗,
which is an integral curve of the partial vector fieldX /G = (µ, ξ(µ), µ̇) such that
ξ(t) = Fh(µ(t)) ∈ g1.

PROPOSITION9.3. The reduced implicit Hamiltonian systems(h, g1,X /G) induces
the local expressions

ξ =
δh

δµ
∈ g1, µ̇− ad∗

ξµ ∈ (g1)◦, (9.2)

where (g1)◦ ⊂ g∗ is the annihilator of the constraint subspaceg1.

Proof: Substituting Eqs. (6.1) and Eq. (6.3) into the condition ofEq. (9.1),
namely,

(X /G(µ),d/Gh(µ)) ∈ D
/G

1G
(µ),

it immediately reads, in view of Eq. (7.2), Eq. (9.2). �

We shall call the set of equations in Eq. (9.2)implicit Lie–Poisson-Suslov
equations on g1 ⊕ g∗.

Examples of implicit Lie–Poisson-Suslov equations

For the case in which a given Lagrangian is regular, we can construct the reduced
implicit Hamiltonian system associated with the reduced implicit Lagrangian system
in the context of the Lie–Poisson-Suslov reduction. Here, let us demonstrate the
Lie–Poisson-Suslov reduction together with the same example of the Suslov problem
of nonholonomic rigid body systems for the caseG = SO(3) as we showed in the
Euler–Poincaŕe–Suslov reduction.

Let H : T ∗SO(3) → R be a left invariant Hamiltonian, that is,H(g, p) =

h(T ∗
e Lgp), where h : so(3)∗ → R is the reduced Hamiltonian locally given by

h(5) =
1

2

〈

5, I−15
〉

,
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where5 = T ∗
e Lgp ∈ so(3)∗.

Associated with the nonholonomic constraint distributionso(3)1 ⊂ so(3) given
in Eq. (8.4), the rigid body system can be represented in the context of the reduced
implicit Hamiltonian system(h, so(3)1,X /G). Then, the reduced implicit Hamiltonian
system for the Suslov problem may be expressed by the implicit Lie–Poisson-Suslov
equations given in Eq. (9.2), which are locally given, in this example, by

�i =
∂h

∂5i

, 5̇i − Ckji�
j5k = λAi, i, j, k = 1,2,3,

where� = �iei ∈ so(3)1.
Let us choosee3 = A/ |A| as the third vector of the body frame. Then, we

have the constraint�3 = 0, and hence the implicit Lie–Poisson-Suslov equations
are finally given in matrix by





5̇1

5̇2



 =





C1
21�

251 + C2
21�

252

C1
12�

151 + C2
12�

152





and with
�1 = I 1151 + I 2152, �2 = I 1251 + I 2252,

which are equivalent with the equations of motion given in [53].

10. Conclusions

In this paper, we have presented a reduction theory for induced G-invariant
Dirac structures on the cotangent bundleT ∗G of a Lie group G along with
its associated reduced implicit Lagrangian and Hamiltonian systems. First, we have
shown how an implicit analogue of the Euler–Poincaré equations, namely, the implicit
Euler–Poincaŕe equations, can be developed as the reduction of the implicit Euler–
Lagrange equations in the context of reduction of the Hamilton–Pontryagin variational
principle. Second, we have developed a Lie–Dirac reductiontheory for reducing
the canonical Dirac structure onT ∗G; namely, we have constructed aµ-dependent
reduced Dirac structureD/G

µ on g ⊕ g∗, which includes both the coadjoint orbit
symplectic structure and the Lie–Poisson structure. Then,we have incorporatedD/G

µ

into the reduction of standard implicit Lagrangian systemsto develop Euler–Poincaré–
Dirac reduction, which eventually induces the implicit Euler–Poincaŕe equations. We
have also investigated the Hamiltonian analogue of Euler–Poincaŕe–Dirac reduction,
namely, Lie–Poisson–Dirac reduction for the case of a givenregular Lagrangian, or
Hamiltonian, which is the reduction of the standard implicit Hamiltonian system,
consistent with the Lie–Poisson variational principle. Further, we have established
reduction of an induced Dirac structure onT ∗G for the general case1G ⊂ T ∗G,
and we have demonstrated how it can be incorporated into the Suslov problem in
nonholonomic mechanics. We have constructed aµ-dependent reduced Dirac structure
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D
/G

1G
(µ) on g⊕g∗, which has been incorporated into the context of Euler–Poincaŕe–

Suslov reduction for reducing an implicit Lagrangian system as well as into the
context of Lie–Poisson-Suslov reduction for reducing an implicit Hamiltonian system.
Lastly, we have demonstrated that the implicit Euler–Poincaŕe–Suslov equations as
well as the implicit Lie–Poisson-Suslov equations can be naturally obtained from
this reduction theory.

Some interesting topics for future work that may be relevantwith this paper are
as follows:

• Reduction of an induced Dirac structure on the cotangent bundle of a manifold
Q for the case of principal bundle with a Lie groupG acting freely and
properly on Q; especially, how it is relevant with an implicit analogue of
Lagrangian reduction and Lagrange-Poincaré equations (see, for instance, [18]).

• The relationship with Lie algebroids and associated Lagrangian reduction that
were noted in Weinstein [49]; how implicit Euler–Poincaré equations can be
related with Lie algebroids; the link with Lie bialgebroidsthat are relevant
with Drinfel’d [26].

• The Courant algebroid in relation with Dirac bundle reduction and its asso-
ciated reduced implicit Lagrangian and Hamiltonian systems with a nontrivial
(nonintegrable) distribution onQ.

• The formal variational analysis for integrable systems (see [28]) in relation
with, for instance, Hamiltonian structures in infinite LC transmission lines.

• Applications to rigid body problems, ideal fluid dynamics and so on; for
instance, how implicit Euler–Poincaré equations can be applied to degenerate
cases, such as the Maxwell–Vlasov equations, as in [17].

• Development of Dirac reductions in discrete mechanics and applications to
numerical integration and Hamilton–Pontryagin variational integrators, both
unreduced and reduced in particular (see, for instance, [30] and Bou-Rabee
and Marsden [11]).

Acknowledgement

We are very grateful to Tudor Ratiu, Alan Weinstein and Troy Smith for
providing useful remarks and suggestions. We also thank thereviewers for their
helpful suggestions and comments.

REFERENCES

[1] R. Abraham and J. E. Marsden:Foundations of Mechanics. Benjamin-Cummings Publ. Co, 1978,
Updated 1985 version, reprinted by Persius Publishing, second edition.

[2] R. Abraham, J. E. Marsden, and T. S. Ratiu:Manifolds, Tensor Analysis and Applications, volume 75
of Applied Mathematical Sciences, second edition, Springer, New York, 1988.

[3] L. Bates and J. Sniatycki: Nonholonomic reduction,Rep. Math. Phys.32 (1993), 99–115.
[4] G. Blankenstein: Implicit Hamiltonian Systems: Symmetry and Interconnection, Ph.D. Dissertation.

University of Twente, 2000.
[5] G. Blankenstein and A. J. van der Schaft: Symmetry and reduction in implicit generalized Hamiltonian

systems.Rep. Math. Phys.47 (1) (2001), 57–100.



REDUCTION OF DIRAC STRUCTURES AND THE HAMILTON-PONTRYAGIN PRINCIPLE 425

[6] G. Blankenstein and T. S. Ratiu: Singular reduction of implicit Hamiltonian systems,Rep. Math. Phys.
53 (2004), 211–260.

[7] A. M. Bloch: Nonholonomic Mechanics and Control, volume 24 ofInterdisciplinary Applied Mathematics.
Springer, New York, 2003, with the collaboration of J. Baillieul, P. Crouch and J. Marsden, and with
scientific input from P. S. Krishnaprasad, R. M. Murray and D. Zenkov.

[8] A. M. Bloch and P. E. Crouch: Representations of Dirac structures on vector spaces and nonlinear
L-C circuits. In Differential Geometry and Control(Boulder, CO, 1997),Proc. Sympos. Pure Math.64
(1997), 103–117, Amer. Math. Soc., Providence, RI, 1997.

[9] A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and R. Murray: Nonholonomic mechanical systems
with symmetry,Arch. Rational Mech. Anal.136 (1996), 21–99.

[10] A. M., J. Bloch E. Marsden and D. V. Zenkov: Nonholonomicdynamics,Notices of the AMS. 52 (2006),
302–329.

[11] N. Bou-Rabee and J. E. Marsden: Reduced Hamilton–Pontryagin variational integrators, submitted for
publication, 2007.

[12] H. Bursztyn, M. Cavalcanti, R. Gil and M. Gualtieri: Reduction of Courant algebroids and generalized
complex structures,math. DG/0509640, 2006.

[13] H. Bursztyn, M. Cavalcanti, R. Gil and M. Gualtieri: Generalized K̈ahler and hyper-K̈ahler quotients,
math. DG/0702104, 2007.

[14] H. Bursztyn and M. Crainic: Dirac structures, momentummaps, and quasi-Poisson manifolds. In
J. E. Marsden and T. S. Ratiu, editors.The Breath of Symplectic and Poisson Geometry, pages 1–40.
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