Lagrangian coherent structures in n-dimensional systems

Lekien, F., S. C. Shadden and J. E. Marsden

J. Math. Phys., 48, (2007), 065404, 1-19

Abstract:

Numerical simulations and experimental observations reveal that unsteady fluid systems can be divided into regions of qualitatively different dynamics. The key to understanding transport and stirring is to identify the dynamic boundaries between these almost-invariant regions. Recently, ridges in finite-time Lyapunov exponent fields have been used to define such hyperbolic, almost material, Lagrangian coherent structures in two-dimensional systems. The objective of this paper is to develop and apply a similar theory in higher dimensional spaces. While the separatrix nature of these structures is their most important property, a necessary condition is their almost material nature. This property is addressed in this paper. These results are applied to a model of Rayleigh-BĂ©nard convection based on a three-dimensional extension of the model of Solomon and Gollub.

pdf.gif