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Abstract— This paper introduces a hierarchical, decentral-
ized, and parallelizable method for dealing with optimization
problems with many agents. It is theoretically based on a hier-
archical optimization theorem that establishes the equivalence
of two forms of the problem, and this idea is implemented using
DMOC (Discrete Mechanics and Optimal Control). The result
is a method that is scalable to certain optimization problems
for large numbers of agents, whereas the usual “monolithic”
approach can only deal with systems with a rather small
number of degrees of freedom. The method is illustrated with
the example of deployment of spacecraft, motivated by the
Darwin (ESA) and Terrestrial Planet Finder (NASA) missions.

I. INTRODUCTION

For upcoming space missions like Darwin1 and Terrestrial
Planet Finder (TPF)2 control strategies have to be devised

that enable precise formation flying of a group of spacecraft.

In light of the tight mass budget of these missions it is

of great interest to minimize the propellant consumption in

performing the associated maneuvers.

In [9], an optimal control problem relevant to this problem

was formulated and solved by means of a recently developed

numerical method DMOC (Discrete Mechanics and Optimal

Control), which relies on a direct discretization of the varia-

tional principle [8] that underlies the dynamical model of the

system. The focus was on the concrete setting of the Darwin

and TPF missions: a group of six spacecraft, viewed as one

large mechanical system, was placed in the vicinity of an L2-

Halo orbit and was required to adopt a certain configuration

of the satellites relative to each other.

The monolithic approach in [9] does not easily scale to

larger groups of vehicles. In fact, it does not exploit the

structure of the given system, which is in fact composed

of many identical subsystems. For each of them, a similar

(sub)problem has to be solved.

In this paper we develop a decentralized approach for

solving the given (large) optimal control problem. The basic

idea is that if one temporarily neglects collision avoidance

concerns, in a reconfiguration maneuver, the only coupling
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between the subsystems enters through a constraint on the

final configuration. (As we argue later, collision avoidance

can be readily reinstated, so this is not a real restriction.) We

show how to derive a hierarchical formulation of the optimal

control problem by exploiting this structure. The hierachical

formulation is naturally suited for a solution of the associated

subproblems in parallel.

Related work that was inspirational for the present paper is

that of Tomlin [5], [13]: The members of the group are forced

to cooperate to achieve common goals, i.e., goals concerning

the entire group or subgroups, as well as independent goals,

i.e., goals concerning only one agent of the group, while

operating under both local and interconnection constraints.

A main challenge for formation flying is to define global

goals, such as to adopt a prescribed final configuration

autonomously, i.e. instead of preassigning the final positions

for each spacecraft one defines a target manifold and each

spacecraft is supposed to choose its final position in an

autonomous way. How et al. ([4], [14]) and Mueller ([12])

solve this decision of assigning special positions to the agents

by a so called “privileged method”, where the vehicle with

the highest minimum cost of all vehicles is assigned to the

target state corresponding to its minimum cost. This proce-

dure is repeated for all remaining members and target states.

Compared to a search over all possible final configurations,

this method requires less computational effort, yet it does

not guarantee that a globally optimal solution is found.

In this paper, we prescribe the relative final configuration

by an artificial potential. But instead of creating behavior-

based feedback control laws based on this which lead to

sub-optimal solutions for the formation (see Gazi ([3]) and

Izzo, Pettazzi ([6])), we derive interconnecting boundary

constraints for our optimal control problem.

We reformulate the resulting optimization problem as a hi-

erarchical problem with a sum of independent cost functions

and local dynamics. Our approach is similar to that of [13]

in the following sense: The interconnecting constraint can

be interpreted as a measure of ”deviation” from the desired

final configuration. Firstly, each agent optimizes its trajectory

ignoring the deviations from the common final configuration.

In [5], due to the linear interconnecting constraint the devia-

tions can be interpreted as the dual variables corresponding

to the dualization of the centralized problem. Therefore, an

update of the deviations corresponds to the solution of the

decomposed dual problem. Here, we update the initial guess

for the final position iteratively within a second optimization

problem including the nonlinear interconnecting constraint.

This optimization problem is put above the decentralized one
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such that a hierarchical optimization problem is obtained.

An outline of the paper is as follows: Based on the

model for the dynamics of the spacecraft that is introduced

in Section II we formalize the optimal control problem in

Section III. In Section IV we introduce the decentralized

approach and show equivalence of this formulation to the

monolithic one. We further show how to exploit this structure

in order to solve the problem in parallel. We recall the

numerical method that is used for its solution in Section V

and finally present our numerical results in Section VI.

II. MODEL

We are dealing with a group of n identical spacecraft,

where we use the same model as in [9]: Each spacecraft

is modeled as a rigid body with six degrees of freedom

(position and orientation), i.e., its configuration manifold is

SE(3). We assume that each spacecraft can be controlled in

this configuration space by a force-torque pair (F, τ), acting

on its center of mass.

For several reasons (consistent solar illumination charac-

teristics, lack of disturbing perturbations, relative ease of

sending and retrieving spacecraft), an attractive region in

space for missions like Darwin and TPF is in the vicinity of

a Libration orbit around the Earth-Sun L2 Lagrange point.

Correspondingly, for each spacecraft the dynamical model

for the motion of its center of mass is given by the circular

restricted three body problem (cf. [9]).

In Figure 1 we plot a family of L2-Halo orbits. This family

has been computed by a predictor corrector method on an

initial orbit found by a shooting technique (see [7]).

x

y

z

×10−3

E

L2

Fig. 1. Family of periodic orbits in the circular restricted three body
problem in the vicinity of the L2-Lagrange point.

In a normalized, rotating coordinate system, the potential

energy of a spacecraft at x = (x1, x2, x3) ∈ R
3 is

V (x) = − 1 − µ

|x − (1 − µ, 0, 0)| −
µ

|x − (−µ, 0, 0)| , (1)

where µ = m1/(m1 + m2). Its kinetic energy is the sum of

Ktrans(x, ẋ) =
1
2
((ẋ1 − ωx2)2 + (ẋ2 + ωx1)2 + ẋ2

3),

(assuming that its mass is equal to 1 for simplicity) and

Krot(Ω) = ΩT JΩ/2, where Ω ∈ R
3 is the angular velocity

and J is the spacecraft inertia tensor, which, for simplicity,

we choose to be the identity; because of the presense of

controls, this does not mean that the rotational dynamics is

trivial.

III. THE CONTROL PROBLEM

Our goal is to compute the force and torque

(F (i)(t), τ (i)(t)), i = 1, . . . , n, for each spacecraft,

such that the group moves from a given initial state

(x(i), p(i), ẋ(i), ṗ(i))n
i=1 into a prescribed target manifold

within a prescribed time interval [t0, tf ], where the unit

quaternion p(i) represents the orientation of the i-th
spacecraft. In our application context, the target manifold

will be defined by prescribing the relative positioning of

the spacecraft, their common velocity as well as a common

orientation. We additionally require the resulting controlled

trajectory to minimize a given cost functional—often related

to the associated fuel consumption of the spacecraft.

More precisely, for their target state, we require the

spacecraft to be located on a circle with center on a Halo

orbit and with equidistant relative distances on the circle.

Let ν ∈ R
3 be a given unit vector (the “line of sight” of the

spacecraft). The target manifold M ⊂ TSE(3)n is the set

of all states (x(i), p(i), ẋ(i), ṗ(i))n
i=1 such that:

1. all spacecraft lie in a plane with normal ν, i.e.

〈x(i) − x(j), ν〉 = 0, i, j = 1, . . . , n; (2)

2. within that plane, the spacecraft are located equidistantly

on a circle with prescribed radius and prescribed center on

a Halo orbit. Let r0 ∈ R be a given radius and x̄ ∈ R
3 a

certain point on a Halo orbit and let ν⊥
1 ⊥ ν⊥

2 ∈ R
3 be two

perpendicular unit vectors that are perpendicular to ν. For

i = 1, . . . , n we consider the vector

z(i) = [ν⊥
1 ν⊥

2 ]T (x(i) − x̄) ∈ R
2 (3)

and require that

h(z(i)) = ‖z(i)‖ − r0 = 0, i = 1, · · · , n (4)

and

k(z) = 0, z = (z(1), . . . , z(n)), (5)

with functions h : R
2 → R and k : R

2n → R
n, where the

constraint (4) forces each spacecraft to be a distance r0 from

the center and the constraint (5) guarantees an equidistant

arrangement. We describe the constraint (5) in more detail

in Section IV.

3. all spacecraft have their “line of sight” aligned with ν. For

simplicity we impose a more restrictive condition, namely

that each spacecraft is rotated according to a prescribed unit

quaternion p
(i)
0 , i.e. we require that

p(i) = p0, i = 1, . . . , n; (6)

4. all spacecraft have the same prescribed linear velocity,

ẋ(i) = ẋ0, i = 1, . . . , n, where ẋ0 is determined on basis

of the Halo orbit under consideration, and they have zero
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angular velocity, i.e., Ω(i) = 2ṗ(i)p̄(i) = 0, i = 1, . . . , n,

where p̄(i) is the conjugate quaternion to p(i).

As mentioned, in addition to controlling to the target

manifold, we would like to minimize the fuel consumption

of the spacecraft. Here we consider the cost function

J(F, τ) =
n∑

i=1

Ji(F (i), τ (i))

=
n∑

i=1

∫ tf

t0

|F (i)(t)|2 + |τ (i)(t)|2 dt, (7)

where Ji is the cost function for spacecraft i and F (t) =
(F (1)(t), . . . , F (n)(t)) and τ(t) = (τ (1)(t), . . . , τ (n)(t)) de-

note the force and torque functions for the system.

IV. DECENTRALIZATION

When one neglects collision avoidance concerns, the op-

timal control problem described in the previous section is

”almost” decoupled in the sense that the coupling only enters

through the constraints (5) on the final configuration. In this

section, we show how one can exploit this fact in order to

parallelize the associated computations.

A. Hierarchical Optimal Control Problem

The basic observation is that the problem can be for-

mulated as a hierarchical optimization problem, where the

outer problem relates to the correct arrangement of the

final configuration and the n inner problems determine the

optimal trajectory for one spacecraft with fixed initial and

final configuration, respectively.

We parameterize the final positions of the spacecraft

projected onto the prescribed plane by the vector ϕ =
(ϕ(1), . . . , ϕ(n)) via

z(i) =
(

r0 cos ϕ(i)

r0 sin ϕ(i)

)
, (8)

where ϕ(i) is the angle of spacecraft i, determining the final

position on a prescribed circle with prescribed center (cf.

Figure 2). First, we want to derive the final constraint (5)

with the help of this parameterization. We define the artificial

potential G : Sn → R by

G(ϕ) =
n∑

i,j=1,i �=j

1
‖z(i) − z(j)‖2

This artificial potential acts like a gravitational potential that

affects attraction or repulsion, respectively, between bodies.

For an equidistant arrangement on the circle the resulting

forces dG/dϕ acting on each spacecraft have to be zero.

Therefore, we obtain as final constraint

g(ϕ) =
dG

dϕ
(ϕ) = 0,

with a function g : Sn → R
n. With the parameterization (8)

it holds by defining a function G̃ : R
2n → R, G̃(z) := G(ϕ)

0 = g(ϕ) =
dG

dϕ
(ϕ) =

dG̃

dz
(z) · dz

dϕ
=: k(z), (9)

Inner problems

q(i) f (i),

a)
Outer problem

ϕ(i)

b)

Fig. 2. Hierarchical optimal control problem. a) inner problem; b) outer
problem.

which results in the final constraint (5).

With parameterization (8) the problem has the following

hierarchical form: Let q(i) =
(

x(i)

p(i)

)
∈ Q = SE(3) denote

the configuration and f (i) =
(

F (i)

τ (i)

)
the control force of

spacecraft i. By optimizing within a fixed time interval I =
[0, 1] we obtain the optimal control problem

min
ϕ

J(ϕ) = min
ϕ

n∑
i=1

min Ji(q(i), f (i))

where the minimization on the left is subject to g(ϕ) =
0 and in the minimum on the right hand side, q(i) :
[0, 1] → Q, f (i) : [0, 1] → T ∗Q, q(i)(0) = q

(i)
0 , q̇(i)(0) =

q̇
(i)
0 , A q(i)(1) = b(ϕ(i)), q̇(i)(1) = q̇

(i)
f , and (q(i), f (i)) have

to fulfill the dynamics of spacecraft i.

Here the matrix A is A =
(

[ν⊥
1 ν⊥

2 ]T 0
0 I4

)
∈ R

6,7,

where I4 is the unit 4 × 4 matrix and the vector b(ϕ(i)) =(
z(i) + [ν⊥

1 ν⊥
2 ]T x̄

p0

)
∈ R

6 is defined by equations (3)

and (6). Due to the parameterization (8) we don’t have to

incorporate the constraint (4).

The inner problems are uncoupled since each spacecraft

has to minimize its costs separately subject to fixed initial

and final states and its dynamics.
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The outer problem includes the constraint for the final

configuration, i.e. the coupling of the system. We use an

iterative method, namely sequential quadratic programming

(SQP), for the solution of both, the inner and the outer

problems. In each step of the solution of the outer problem

all n inner problems have to be solved anew with the new

boundary constraints.

In using SQP for solving the discretized system we have

to provide an initial guess for the optimal trajectory of

the group. This guess will typically determine to which

local optimum the optimizer converges. In particular, the

sequence of the spacecraft on the circle given by this initial

guess will have a strong influence on their sequence in the

computed solution. In particular, in this paper we do not

solve the associated combinatorial optimization problem of

determining the optimal sequence on the circle.

B. Equivalence of both optimal control problems

In order to show the equivalence of the “monolithic”

formulation of the optimal control problem in Section III to

the hierarchical one in this Section, we consider the following

abstract optimization problem:

min
(x,ϕ)∈X×Φ

J(x, ϕ) s.t. A(x, ϕ) = 0, g(ϕ) = 0, (10)

where X ⊂ R
dx , Φ ⊂ R

dy are compact and J : X×Φ → R,

A : X × Φ → R
a and g : Φ → R

g are continuous.

Defining X(ϕ) = {x ∈ X | A(x, ϕ) = 0}, we see that⋃
ϕ∈g−1(0)

X(ϕ) × {ϕ} = {(x, ϕ) | A(x, ϕ) = 0, g(ϕ) = 0}.

Thus,

min {J(x, ϕ) | A(x, ϕ) = 0, g(ϕ) = 0}

= min

⎧⎨
⎩J(x, ϕ) | (x, ϕ) ∈

⋃
ϕ∈g−1(0)

X(ϕ) × {ϕ}
⎫⎬
⎭

= min
⋃

ϕ∈g−1(0)

{J(x, ϕ) | (x, ϕ) ∈ X(ϕ) × {ϕ}}

= min
{
min {J(x, ϕ) | x ∈ X(ϕ)} | ϕ ∈ g−1(0)

}
= min{min{J(x, ϕ) | A(x, ϕ) = 0} | g(ϕ) = 0},

i.e., we arrive at a hierachical formulation of the problem.

The ”inner problem” is given by minimizing J(x, ϕ) subject

to A(x, ϕ) = 0 (for a fixed ϕ ∈ Φ), while the ”outer

problem” is given by minimizing

Ĵ(ϕ) = min{J(x, ϕ) | A(x, ϕ) = 0} s.t. g(ϕ) = 0.

Since in our specific application, the inner cost function,

J(x, φ) is given by the sum

n∑
i=1

min Ji(q(i), f (i))

and since all Ji are nonnegative, the inner problem decou-

ples into n independent subproblems which can be solved

independently.

C. Parallelization

The hierarchical structure of the problem enables a com-

putational solution in parallel, since we are faced with n
uncoupled inner problems in each step of the solution of the

outer problem. These n subproblems are solved in n different

tasks. Our implementation uses the software package PUB

(Paderborn University BSP-Library, [1]) developed within

the DFG research project CRC 376 “Massively Parallel

Computation” at the University of Paderborn. In the termi-

nology of PUB, each step of the iteration scheme for the

solution of the outer problem represents one superstep. After

each superstep, the tasks have to communicate during the

synchronization.

We use the software package PUB for several reasons:

Since our implementation involves more than one superstep

we rely on a frequent communication between the processes

(“coupled parallel processes”). Moreover, the computational

time of each subproblem of the inner problem depends on the

initial guess for the optimal trajectory. Therefore, it is of great

interest to change load on the machines for an appropriate

load balancing. These coupling and migration requirements

can be easily realized in PUB ([1]).

Remark 1: As noted at the beginning of §IV we neglected

collision avoidance concerns in our optimization progress.

The idea is to include collision avoidance maneuvers online

after finding the optimal trajectories, i.e. whenever two

spacecraft detect a possible collision between them, the

optimal control strategy is “switched off” and both spacecraft

will execute a maneuver to avoid the collision. After coming

back to their pre-computed optimal trajectories, the optimal

control strategy is “switched on” again. For such a scenario,

a question is how much the cost of an optimal trajectory

differs from the cost of the associated modified collision-

free trajectory. In many applications we expect the solution

to still be nearly optimal. An optimization strategy that is

compatible with the methods here is that given in [2].

V. NUMERICAL METHOD: DMOC

To solve the optimal control problem formulated above,

we use DMOC [8], a technique that relies on a direct

discretization of the variational formulation of the dynamics

of the system. For convenience, we briefly summarize the

basic idea.

A mechanical system with configuration space Q is to be

moved on a curve q(t) ∈ Q, t ∈ [0, 1], from a state (q0, q̇0)
to a state (q1, q̇1) under the influence of a force f . The curves

q and f shall minimize a given cost functional

J(q, f) =
∫ 1

0

C(q(t), q̇(t), f(t)) dt. (11)

If L : TQ → R denotes the Lagrangian of the system,

its motion q(t) satisfies the Lagrange-d’Alembert principle,

which requires that

δ

∫ 1

0

L(q(t), q̇(t)) dt +
∫ 1

0

f(t) · δq(t) dt = 0 (12)

for all variations δq with δq(0) = δq(1) = 0.
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Using a global discretization of the states and the con-

trols one obtains the discrete Lagrange-d’Alembert principle
which specifies equality constraints for the resulting finite

dimensional nonlinear optimization problem: We replace the

state space TQ by Q × Q and a path q : [0, 1] → Q by a

discrete path qd : {0, h, 2h, . . . , Nh = 1} → Q, where N
is a positive integer and where we view qk = qd(kh) as an

approximation to q(kh) [11]. Analogously, we approximate

the continuous force f : [0, 1] → T ∗Q by a discrete force

fd : {0, h, 2h, . . . , Nh = 1} → T ∗Q (writing fk = fd(kh)).
Based on this discretization we approximate the velocity q̇

by forward differences and approximate the Lagrangian, the

virtual force and the cost function by midpoint rule schemes.

After incorporating the boundary conditions, one obtains

a discrete constrained optimization problem: Minimize

Jd(qd, fd) =
N−1∑
k=0

Cd(qk, qk+1, fk, fk+1) (13)

subject to the constraints q0 = q0, qN = q1 and

D2L(q0, q̇0) + D1Ld(q0, q1) + f−
0 = 0,

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + f+
k−1 + f−

k = 0,

−D2L(qN , q̇N ) + D2Ld(qN−1, qN ) + f+
N−1 = 0,

k = 1, . . . , N − 1, with the discrete Lagrangian
Ld(qk, qk+1) := hL

(
qk+1+qk

2 , qk+1−qk

h

)
the left and

right discrete forces f−
k = f+

k = h
4 (fk+1 + fk) and

the discrete cost function Cd(qk, qk+1, fk, fk+1) :=
hC

(
qk+1+qk

2 , qk+1−qk

h , fk+1+fk

2

)
.

Remark 2: Since we are interested in the relative positions

of the spacecraft with respect to each other and the scales of

interest differ by a factor of around 1011, we performed our

computations in a local coordinate system by linearizing the

system around a Halo-orbit to avoid rounding errors.

VI. EXAMPLE COMPUTATIONS

As mentioned in the introduction we are particularly

interested in ensembles with a large number of spacecraft. In

all our computations we used N = 10 time intervals in the

time discretization of the trajectories and solved the resulting

finite-dimensional (nonlinear) optimization problem by the

SQP-method as implemented in the routine E04UEF of the

NAG-library – using numerical derivatives both for the cost

and for the constraint functions.

To show the efficiency of the parallelized implementa-

tion motivated by the hierarchical problem formulation, we

consider as a first example the reconfiguration of a group

of 60 point masses in the plane. The group initially is

located along a line, taken to be the x-axis, uniformly

distributed between x = −30 and x = 30, and is required to

adopt a circular, uniform formation with prescribed center at

(100, 100). Figure 3 shows the final positions and the final

segments of the corresponding optimal trajectories.

In Figure 4 and Table I, we compare the dependence of the

computation time on the number of processors. Note that the

85 90 95 100 105 110

85

90

95

100

105

110

x
1

x 2

Fig. 3. Final positions for a reconfiguration of 60 point masses in the
plane and the last portions of the corresponding optimal trajectories from
given initial positions on the x-axis.

speed-up is often slightly larger than the number of different

processors. We attribute this phenomenon to caching effects

in the processors.
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]

Fig. 4. Computation time in dependence on the number of processors for
the reconfiguration of 60 point masses in the plane.

TABLE I

SPEED UP DIAGRAM

# of processors 2 4 8 16 32 64

speed up 2.15 5.57 9.65 15.73 34.94 53.0

As a second, more realistic example we consider a group

of 30 spacecraft modeled as rigid bodies in 3-space, with

the circular restricted three body problem governing their

dynamics (cf. Section II).

Figure 5 shows (in normalized coordinates) the initial

positions (◦), the optimal trajectories as well as the final

positions (×). The group initially is located on a grid

lying in the x1-x2-plane with initial orientation p
(i)
0 =

(cos(π
2 ), sin(π

2 )·(1, 0, 0)) for each spacecraft i (i.e. a rotation

of θ = π around the x1-axis) and ends in a circle formation

in the plane with normal n = (1, 0, 1) and final orientation

p
(i)
f = (cos(π), sin(π) · (0, 1, 0)) for each spacecraft i (i.e.,

a rotation of θ = 2π around the x2-axis).
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Fig. 5. Initial positions (◦), optimal trajectories and final positions (×) for
a reconfiguration of 30 spacecraft in the CRTBP in x1-x2-x3-space.

TABLE II

SPEED UP DIAGRAM

number of processors 2 4 8 16 32

speed up 2.11 3.77 6.75 10.49 18.89

Figure 6 and Table II show the dependence of the compu-

tation time on the number of processors. The numbers are not

as good as in the point masses example; however, the speed-

up is still reasonably close to the optimal value, showing the

effectiveness of our decentralized approach.
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Fig. 6. Computation time in dependence on the number of processors for
the reconfiguration of 30 spacecraft in the CRTBP.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper develops a hierarchical and decentralized ap-

proach for the solution of optimal control problems with

many agents which are coupled through small numbers of

degrees of freedom. The method is based on a hierarchical

formulation of the associated optimization problem that

enables a parallelized implementation. The result was im-

plemented using DMOC and was demonstrated on a system

of 30 satellites which started in a rectangular array in a model

of the three body problem appropriate to the DARWIN and

TPF missions and were asked to assume a circular pattern,

with the satellites equally spaced around this circle. Our

numerical experiments show the computational efficiency of

the proposed approach, while a “monolithic” approach would

not be able to handle a problem of this size.

B. Future Work

As mentioned in Section IV all computations are done

without consideration of collision avoidance concerns. In

Remark 1 we gave a brief sketch about how we want to

incorporate collision avoidance strategies in our future work.

Another challenge for these kinds of optimal control prob-

lems is to find the globally optimal order of the spacecraft

within the target manifold. Since we use a local optimization

method, this order is dependent on the initial guess fed to

the method.
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