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Abstract: A new approach to the solution of optimal control problems for mechanical
systems is proposed. It is based on a direct discretization of the Lagrange-d’Alembert
principle for the system (as opposed to using, for example, collocation or multiple
shooting to enforce the equations of motion as constraints). The resulting forced discrete
Euler-Lagrange equations then serve as constraints for the optimization of a given cost
functional. We numerically illustrate the method by optimizing a low thrust satellite orbit
transfer as well as the reconfiguration of a group of hovercraft in the plane.

Keywords: discrete mechanics, variational analysis, optimal control

1. INTRODUCTION

Consider the following optimal control problem: a
mechanical system with configuration spaceQ is to
be moved on a curveq(t) ∈ Q during a time interval,
say[0, 1], from a state(q0, q̇0) to a state(q1, q̇1) under
the influence of a forcef chosen such that a givencost
functional

J(q, f) =
∫ 1

0

C(q(t), q̇(t), f(t)) dt (1)

is minimized. At the same time, the motionq(t) of the
system is to satisfy theLagrange-d’Alembert princi-
ple, which requires that

δ

∫ 1

0

L(q(t), q̇(t)) dt +
∫ 1

0

f(t) · δq(t) dt = 0 (2)

for all variationsδq with δq(0) = δq(1) = 0, where
L : TQ → R is the Lagrangian of the mechanical
system.

Abstractly, one is faced with an equality constrained
optimization problem: one seeks to minimize a func-
tional

f 7→ J(q, f), (3)

subject to a constraint of the form

L(q, f) = 0. (4)

In this paper, we propose to exploit the variational
structure directly, without first deriving the equations
of motions (the Euler-Lagrange equations) for the sys-
tem. This is in contrast to other methods like, e.g.,
shooting(Hicks and Ray, 1971; Kraft, 1985; Stoer and
Bulirsch, 2002),multiple shooting(Deuflhard, 1974;
Bock and Plitt, 1984; Leineweberet al., 2003) or
collocationmethods (Biegler, 1984; von Stryk, 1993),
which rely on a direct integration or a fulfillment at
certain grid points of the associated ordinary differ-
ential equations (see also (Binderet al., 2001) for
an overview of the current state of the art). Using a
global discretization of the states and the controls one
directly obtains, via thediscrete Lagrange-d’Alembert
principle, equality constraints for the resulting finite
dimensional nonlinear optimization problem, which is
solved by standard methods likesequential quadratic
programming(Schittkowski, 1980; Gillet al., 1999;
Gill et al., 2001).

Advantages of the Method.A full analysis of the
advantages of the proposed method over some of
the standard approaches is currently under investiga-
tion. However, we expect several specific benefits and
the examples indicate that this should be the case.
For example, in variational integrators (Marsden and



West, 2001), one respects the energy of forced and
damped systems much better than with standard algo-
rithms. Correspondingly, we expect the energy budget
of a control system to be more accurately computed
using the presented metho, and this will be especially
so for long duration simulations, such as for low thrust
spacecraft missions. In addition, one expects the pre-
sented method to be more robust to modeling errors.

2. DISCRETIZATION

Following (Marsden and West, 2001), we replace
the state spaceTQ of the system byQ × Q and
a path q : [0, 1] → Q by a discrete pathqd :
{0, h, 2h, . . . , Nh = 1} → Q, N ∈ N, where we
view qk = qd(kh) as an approximation toq(kh).
Analogously, the continuous forcef : [0, 1] →
T ∗Q is approximated by a discrete forcefd :
{0, h, 2h, . . . , Nh = 1} → T ∗Q (writing fk =
fd(kh)).

2.1 Discrete Lagrange-d’Alembert principle

Based on this discretization, the action integral in (2)
is approximated on a time slice[kh, (k + 1)h] by a
discrete LagrangianLd : Q×Q → R,

Ld(qk, qk+1) ≈
∫ (k+1)h

kh

L(q(t), q̇(t)) dt,

and likewise the virtual work by an expression of the
form

f−k · δqk + f+
k · δqk+1 ≈

∫ (k+1)h

kh

f(t) · δq(t) dt,

wheref−k , f+
k ∈ T ∗Q will be called theleft andright

discrete forces, respectively.

The discrete version of the Lagrange-d’Alembert prin-
ciple (2) requires one to find discrete paths{qk}N

k=0

such that for all variations{δqk}N
k=0 with δq0 =

δqN = 0, one has

δ
N−1∑
k=0

Ld(qk, qk+1)+
N−1∑
k=0

f−k · δqk + f+
k · δqk+1 = 0.

(5)
The discrete Lagrange-d’Alembert principle is equiv-
alent to the system

D2Ld(qk−1, qk)+D1Ld(qk, qk+1)+f+
k−1 +f−k = 0,

(6)
wherek = 1, . . . , N − 1, called theforced discrete
Euler-Lagrange equations.

2.2 Discrete Cost Function

We approximate the cost functional (1) on the time
slice[kh, (k + 1)h]

Cd(qk, qk+1, fk, fk+1) ≈
∫ (k+1)h

kh

C(q, q̇, f) dt,

yielding thediscrete cost functional

Jd(qd, fd) =
N−1∑
k=0

Cd(qk, qk+1, fk, fk+1).

2.3 Boundary Conditions

Finally, one needs to incorporate the boundary condi-
tionsq(0) = q0, q̇(0) = q̇0 andq(1) = q1, q̇(1) = q̇1

into the discrete description. To this end, the descrip-
tion in Q×Q is linked to one inTQ using thediscrete
Legendre transformsFf+Ld : Q × Q → T ∗Q and
Ff−Ld : Q × Q → T ∗Q for forced systems, defined
as follows:

Ff+Ld : (qk−1, qk) 7→ (qk, pk),
pk = D2Ld(qk−1, qk) + f+

k−1 and

Ff−Ld : (qk−1, qk) 7→ (qk−1, pk−1),
pk−1 = −D1Ld(qk−1, qk)− f−k−1.

Using thestandard Legendre transformFL : TQ →
T ∗Q

FL : (q, q̇) 7→ (q, p) = (q, D2L(q, q̇)),

this leads to the twodiscrete boundary conditions

D2L(q0, q̇0) + D1Ld(q0, q1) + f−0 = 0,

−D2L(qN , q̇N ) + D2Ld(qN−1, qN ) + f+
N−1 = 0.

2.4 The Discrete Constrained Optimization Problem

To summarize, after performing the above discretiza-
tion steps, one is faced with the following equal-
ity constrained nonlinear optimization problem: Min-
imize

Jd(qd, fd) =
N−1∑
k=0

Cd(qk, qk+1, fk, fk+1)

with respect tofd, subject to the constraintsq0 = q0,
qN = q1 and

D2L(q0, q̇0) + D1Ld(q0, q1) + f−0 = 0,

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + f+
k−1 + f−k = 0,

−D2L(qN , q̇N ) + D2Ld(qN−1, qN ) + f+
N−1 = 0,

k = 1, . . . , N − 1.

2.5 Implementation

In the example computation in the following section
we employ the Midpoint Rule for approximating the
relevant integrals, i.e., we set

Cd(qk, qk+1, fk, fk+1)

= hC
(

qk+1+qk

2 , qk+1−qk

h , fk+1+fk

2

)
,

Ld(qk, qk+1) = hL
(

qk+1+qk

2 , qk+1−qk

h

)
,



as well as∫ (k+1)h

kh

f(t) · δq(t) dt ≈ h
fk+1 + fk

2
· δqk+1 + δqk

2

=
h

4
(fk+1 + fk) · δqk +

h

4
(fk+1 + fk) · δqk+1,

i.e.,f−k = f+
k = h

4 (fk+1 + fk) were used as the left
and right discrete forces.

3. LOW THRUST ORBITAL TRANSFER

Since we expect our approach to be particularly useful
for systems which are nearly conservative, we investi-
gate as a first example the problem of optimally trans-
ferring a satellite with a continuously acting propul-
sion system from one circular orbit around the Earth
to another one.

3.1 The Problem

Consider a satellite with massm which moves in the
gravitational field of the Earth (massM ). The satellite
is to be transferred from one circular orbit to one in
the same plane with a larger radius, while the number
of revolutions around the Earth is fixed. In 2d-polar
coordinatesq = (r, ϕ), the Lagrangian of the system
has the form

L(q, q̇) =
1
2
m(ṙ2 + r2ϕ̇2) + γ

Mm

r
.

Assume that the propulsion system continuously ex-
hibits a forceu in the direction of motion of the satel-
lite, so that the corresponding term in (2) is given by

f =
(

0
r u

)
.

Assume further that the satellite initially moves on a
circular orbit of radiusr0. Let (r(0), ϕ(0)) = (r0, 0)
be its position att = 0, then its initial velocity is
given by ṙ(0) = 0 and ϕ̇(0) =

√
γM/r3

0. Using
its thruster, the satellite is required to reach the point
(r1, 0) at time T = p(T0 + T1)/2 and, without
any further control input, continue to move on the
circle with radiusr1. Herep is a prescribed number
of revolutions around the Earth andT0 and T1 are
the orbital periods of the initial and the final circle,
respectively. Thus, the boundary values att = T are
given by(r(T ), ϕ(T )) = (r1, 0) and(ṙ(T ), ϕ̇(T )) =
(0,

√
γM/r3

1).

During this transfer, our goal is to minimize the con-
trol effort, correspondingly the cost function is given
by

J(q, u) =
∫ T

0

u(t)2 dt.

The computations were performed with the following
parameter values:

m = 100, M = 6 · 1024,

γ = 6.673 · 10−26, r0 = 5, r1 = 6,

T0 = 2π
√

r3
0/(γM), T1 = 2π

√
r3
1/(γM).

3.2 Results

We compare our method to a simple finite difference
approach, where the dynamical constraints are dis-
cretized by applying a one-step method to the associ-
ated ordinary differential equations of the system (i.e.
the forced Euler-Lagrange equations). For demonstra-
tion purposes Euler’s scheme is used, in which case
the constraints read

xk+1 − xk − h F (xk) = 0, k = 0, . . . , N − 1,

(wherexk = (qk, q̇k) andF denotes the vector field
of the forced Euler-Lagrange equations), as well as the
Midpoint Rule, yielding the constraints

xk+1 − xk − h F

(
xk+1 + xk

2

)
= 0,

k = 0, . . . , N − 1.

We considerp = 1 andp = 2 revolutions around the
Earth and solve the problem for variousN . In Fig-
ure 1 the dependence of the resulting cost onN for all
methods as well as forp = 1 (top) andp = 2 (bottom)
is shown. It is intriguing to see that the cost is almost
constant for the variational method, even for very large
stepsizes, whereas the cost of the Euler-based method
seems to converge towards this “benchmark value” for
largerN . The Midpoint Rule performs, as one might
have expected, almost equally well as the variational
discretization. These results are consistent with the
well known conservation properties of variational in-
tegrators. However, note that for the variational dis-
cretization the resulting optimiziation problem is only
half as large as for the finite difference schemes.

As a second numerical test, we investigate how well
the computed open loop control performs for “the
real solution”. To this end, the forced Euler-Lagrange
equations were integrated using the classical fourth or-
der Runge-Kutta scheme with very small constant step
size h = 10−3, interpolating the computed control
values by a cubic spline. In Figure 2 the deviation of
the resulting final state (att = T ) from the requested
one is shown.

4. A GROUP OF HOVERCRAFT

As a more demanding application, we consider a
group of (identical) hovercraft which, starting from
an arbitrary initial state, are required to attain a given
final formationwith minimal control effort. The final
formation is defined by a set of equality constraints
on the final configurations of the individual hovercraft
and a fixed final velocity.
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Fig. 1. Variational approach vs. a finite difference
based discretization (Euler’s scheme and Mid-
point Rule): approximated cost of the orbital
transfer in dependence of the numberN of dis-
cretization points for one (top) and two (bottom)
revolutions around the Earth.
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Fig. 2. Comparison of the accuracy of the computed
open loop control for the variational, the Euler-
based approach and the Midpoint Rule: Devia-
tion of the actual final state of the satellite from
the requested one in dependence of the number
of discretization points.

4.1 The Problem
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Fig. 3. Hovercraft

The configuration of a hovercraft is described by three
degrees of freedom: its position(x, y) ∈ R2 and its
orientationθ ∈ S1, i.e., its configuration manifold is
Q = R2 × S1. It is actuated by two control forces
f1 andf2, applied at a distancer from the center of
mass (cf. Figure 3). The forcef1 acts in the direction
of motion of the body, whilef2 acts orthogonally to
it. The system is underactuated, but still configuration
controllable (Ober-Bl̈obaum, 2004), i.e. each point
in configuration space can be reached by applying
suitably chosen forcesf1(t) andf2(t).



The Lagrangian of the system consists only of its
kinetic energy,

L(q, q̇) =
1
2
(mẋ2 + mẏ2 + Jθ̇2),

whereq = (x, y, θ), m is the mass of the hovercraft
andJ its moment of inertia. The forces acting inx-,
y- andθ-direction resulting fromf1 andf2 are

f(t) =

 cos θ(t)f1(t)− sin θ(t)f2(t)
sin θ(t)f1(t) + cos θ(t)f2(t)

−rf2(t)

 .

The resulting forced discrete Euler-Lagrange equa-
tions read

1
h

M (−qk−1 + 2qk − qk+1) +
h

2

(
fk−1 + fk

2
+

fk + fk+1

2

)
= 0,

k = 1, ..., N − 1,

(7)

where M =

m 0 0
0 m 0
0 0 J

. We denote byqi =

(xi, yi, θi) the configuration of thei-th hovercraft and
by f i = (f i

1, f
i
2) the corresponding forces.

The goal is to minimize the control effort while, at the
same time, attaining the desired final formation. As
a suitable cost function for each hovercraft we again
choose a measure of the control effort

J(qi, f i) =
∫ 1

0

(
f i
1(t)

)2
+

(
f i
2(t)

)2
dt, (8)

while the cost function for the entire group is given by
the sum of these.

The final configuration of the group has certain de-
grees of freedom: In the case of more than one hov-
ercraft the final formation has an overall rotational
degree of freedom; it is determined by the following
conditions:

(a) a fixed final orientationϕi of each hovercraft:

θi(1) = ϕi, i = 1, 2, 3,

(b) equal distancesr between the final positions:

(xi(1)− xj(1))2 + (yi(1)− yj(1))2 = r2,

1 ≤ i, j ≤ 3, i 6= j;
(c) the centerM = (Mx,My) of the formation is

prescribed:

(x1(1) + x2(1) + x3(1))/3 = Mx,
(y1(1) + y2(1) + y3(1))/3 = My,

(d) fixed final velocities:

ẋi = vi
x, ẏi = vi

y, θ̇i = vi
θ, i = 1, 2, 3,

wherevi
x, vi

y andvi
θ are given.

The boundary conditions for the case of a group of six
hovercraft are determined analogously, i.e., the craft
are required to form a regular hexagon.

5. CONCLUSION

This paper proposes a new approach to the solution
of optimal control problems for mechanical systems:
The given cost functional is extremized subject to con-
straints defined via the discrete Lagrange-d’Alembert
principle. The numerical investigations support the
conjecture that this approach has some numerical ad-
vantages, in particular for systems which are nearly
conservative.

When applying a local solver to the resulting finite di-
mensional constrained optimization problem like, e.g.,
an SQP-method, one will typically only find a local
(and not the global) optimum. As with any other dis-
cretization scheme, the extremum found will strongly
depend on the initial guess that is provided to the
solver. This phenomenon is particularly important in
the hovercraft example, where the ordering of the craft
in the final configuration is not prescribed and one
would actually be interested in the global optimum.
These issues will be addressed in future investigations.
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