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The effect of the distribution of mass in triatomic reaction dynamics is analyzed using the geometry of the
associated internal space. Atomic masses are appropriately incorporated into internal coordinates as well as the
associated non-Euclidean internal space metric tensor after a separation of the rotational degrees of freedom.
Because of the non-Euclidean nature of the metric in the internal space, terms such as connection coefficients
arise in the internal equations of motion, which act as velocity-dependent forces in a coordinate chart. By
statistically averaging these terms, an effective force field is deduced, which accounts for the statistical ten-
dency of geodesics in the internal space. This force field is shown to play a crucial role in determining
mass-related branching ratios of isomerization and dissociation dynamics of a triatomic molecule. The meth-
odology presented can be useful for qualitatively predicting branching ratios in general triatomic reactions, and
may be applied to the study of isotope effects.
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I. INTRODUCTION

The configuration of atomic masses in a molecule is an
important factor in a determination of branching ratios and
rates of reactions of the molecule. In particular, the roles of
mass configuration are of great interest in isotopic reactions.
For example, branching ratios of the dissociation dynamics
of triatomic hydrogen ion H3

+ and its isotopomers, D2H+,
H2D+, and D3

+ is the subject of extensive studies, both ex-
perimentally and theoretically �see Refs. �1–4��. Another
challenging problem is the anomalous isotope effect in the
formation and exchange reactions of ozone O3 �see Refs.
�5–11��. Atomic masses are also found to play a crucial role
in intramolecular vibrational-energy redistribution �IVR� in
N2O reactions �see Ref. �12��. Even in these fundamental
reactions, there still exist many interesting and unknown is-
sues on the role of atomic masses, and a general framework
to understand the roles of atomic masses should serve many
purposes.

There is a useful framework that allows one to character-
ize the mass effect specifically for collinear triatomic reac-
tions such as A+BC→AB+C. This is the so-called skewed
coordinate system framework �13,14�, in which the two in-
terparticle distances �A-B distance and B-C distance� are
chosen as internal coordinates and are properly embedded in
a two-dimensional Euclidean space. As a result, the motion
of the three atoms is expressed as a motion of a point mass
�with constant mass� in this associated two-dimensional
space. In this formalism, the mass effect is effectively in-
cluded in the so-called skew angle between the two axes of
the interparticle distances. It is well known that the skew
angle plays an important role in determining energy conver-
sions �15� and tunneling probabilities �16�.

Mass effects are, without doubt, important in chemical
reactions with higher degrees of freedom. However, it is not

necessarily a trivial problem how to characterize the mass
effect for reaction dynamics with more than two degrees of
freedom. The reaction-path Hamiltonian formalism �see
Refs. �17,18�� may be useful for studying mass effects in
high-dimensional reaction dynamics. In this formalism, the
curvature of the reaction path can be the key to quantify the
mass effects. One matter for concern is that this formalism
employs the Eckart conditions �19,20� for a formal separa-
tion of overall rotation and internal motion, which may dis-
guise an important geometric properties of molecular internal
space by approximating the internal space as flat �Euclidean�
space �see Refs. �21,22��.

For an appropriate description of the mass effect in poly-
atomic molecules, correctly separating rotational and internal
motion is crucial already at the first stage. This is because
rotational and internal motion can couple dramatically, and a
change in the mass distribution in a molecule plays an im-
portant role in the coupling process simply due to conserva-
tion of total angular momentum. In this respect, reduction
theory from geometric mechanics �23,24� and the associated
gauge theory �21,25–30� for n-body dynamics with rotational
symmetry provides a quite universal basis for the study of
the mass effect in molecular reaction dynamics. According to
these theories, atomic masses are incorporated into the met-
ric tensor of internal space in a way that is independent of the
choice of body-fixed frame. Remarkably, the metric tensor is
non-Euclidean for general three- and more-atom systems so
that the internal space cannot be embedded into Euclidean
space as in the case of collinear triatomic reactions. There-
fore the characterization of the effect originating from the
non-Euclidean geometry of the internal space is quite impor-
tant for understanding the mass effect. It should also be
noted that the metric tensor of the internal space is indepen-
dent of the potential-energy surface, and is determined only
by mass and shape of the system. Therefore kinematic effects
arising from the non-Euclidean nature of internal space
should be of universal importance in a variety of reactions.

It is crucial to choose a good coordinate system for the
study of the geometry of the internal space. For triatomic
systems, the so-called symmetrical coordinates �21,30–32�
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and various hyperspherical coordinates �34–39� are useful
and have been extensively studied. An advantage of the sym-
metrical coordinates is that the metric tensor of internal
space becomes remarkably simple �conformally flat� �21,30�,
and thereby a fairly uniform treatment of the three internal
coordinates is possible. For these reasons, we focus on these
coordinates in this study. Its non-Euclidean nature indicates
that trajectories in the internal space intrinsically possess “di-
rectionality” even without the influence of the potential-
energy surface. This directionality will be shown to be im-
portant in the branching processes in multichannel reactions.
A heuristic way to characterize this directionality is to inves-
tigate the behavior of a cloud of geodesics, which are the
motion in the absence of potential-energy surface. By com-
paring the directionality of multiple reaction pathways of
interest in internal space with that of geodesics, one can
identify geometrically preferable pathways out of them. This
is a basic strategy of this study to characterize mass effect in
branching ratio problems.

It is more desirable to characterize the statistical tendency
of the geodesics analytically. A possible and concise way to
achieve this goal is to investigate the terms, including con-
nection coefficients, that originate from the non-Euclidean
nature of the metric in the equations of motion. These terms
serve as velocity-dependent forces in a coordinate chart,
which of course influence the behavior of geodesics. Re-
cently, this kind of velocity-dependent force, which is an
internal centrifugal force associated with hyperangular mo-
tion �kinematic rotation�, has been shown to induce a trapped
motion around saddle points of few-atom clusters �40,41�.
This trapped motion has also been accounted for from the
perspective of curvature tensor �42�. On the other hand, this
paper focuses on the problem of mass-related branching ra-
tios in triatomic reactions, which is very important from the
aspect of reaction rate theory. By statistically averaging the
velocity-dependent forces, an averaged force field is de-
duced, which accounts for the tendency of behavior of geo-
desics. It will be shown that this force field does dominate
mass-influenced branching ratios of isomerization and disso-
ciation reactions of a triatomic molecule.

In this paper, we introduce a prototypical model for the
study of the mass effect in Sec. II. The model is a triatomic
Morse cluster, which, along with the Lennard-Jones clusters
were extensively investigated by Berry and co-workers
�43–46�. These clusters are also of interest from the perspec-
tive of the effect of angular momentum �47�. We modify the
original Morse cluster by changing the mass parameters of
atoms in order to study mass effect from a rather general
view point. This system has two permutationally distinctive
isomers connected by three reaction pathways, along which
potential barrier height is the same while geometric proper-
ties of internal space are different as a result of the different
mass configurations. Despite the same potential-energy bar-
rier height, a significant difference arises in the probabilities
of occurrence of reactions through respective pathways. A
heuristic account for these mass-related branching ratios is
first given in Sec. III in terms of geodesics in the internal
space. We then deduce an averaged field of the velocity-
dependent force, which accounts for the statistical tendencies
of geodesics in a coordinate chart. It is shown that this force

field does dominate mass-influenced branching ratios of the
isomerization dynamics. A reaction-path potential is finally
introduced to quantify the effect of the averaged force. By a
methodology similar to that in Sec. III, a qualitative account
for the branching ratio of dissociation dynamics of the clus-
ter is given in Sec. IV. The paper concludes in Sec. V with
some remarks.

II. MODEL SYSTEM AND ISOMERIZATION DYNAMICS

A. Modified M3 cluster

The model system we study in this paper is a triatomic
cluster whose constituent particles interact through a pair-
wise Morse potential. The total angular momentum of the
system is assumed to be zero throughout the paper in order to
highlight the importance of the geometric structure of the
internal space. The dimensionless Hamiltonian of the system
is

H
�

=
1

2
m1ṙ1

2 +
1

2
m2ṙ2

2 +
1

2
m3ṙ3

2 + �
i�j

�e−2�dij−d0� − 2e−�dij−d0�� ,

�1�

where ri= �rix ,riy ,riz�T�i=1,2 ,3� is the three-dimensional po-
sition vector of each atom. The parameters �m1 ,m2 ,m3� are
the mass parameters of respective atoms. The triatomic
Morse and Lennard-Jones clusters with equal masses,
�m1 ,m2 ,m3�= �1,1 ,1�, are extensively studied by many au-
thors �43–47�. This study focuses on the system with
�m1 ,m2 ,m3�= �1,1 ,0.1�, two heavy atoms and one light
atom, for the study of the effect of different mass configura-
tions in multi-channel reactions. Because of the mass differ-
ence, we call this system “modified” M3 cluster. The param-
eter � represents the depth of the Morse potential and dij is
the interparticle distance between the ith and jth atoms. The
parameter d0, which corresponds to the equilibrium distance
of the pairwise Morse potential, controls the Hamiltonian
and we set this parameter to d0=6.0, which provides a po-
tential topography similar to that of the Lennard-Jones po-
tential. In what follows, our numerical results are presented
in the absolute units.

The isomerization scheme of the modified M3 cluster is
summarized in Fig. 1. This cluster has two local equilibrium
structures �isomers� that correspond to permutationally
distinctive equilateral triangles whose potential energy is
V=−3.00�. These two structures, �a� and �b� in Fig. 1, are
mutually distinctive since motion of the system is confined to
a plane because of the conditions of vanishing total angular
momentum. The system has three saddle points with poten-
tial energy V�−2.005�, which correspond to the collinear
configurations as in Fig. 1. These collinear saddle structures
are also permutationally distinctive. If the system has high
enough energy, the structural isomerization reactions can oc-
cur through the three reaction channels corresponding to the
three saddle points. These three channels are classified into
two equivalent channels �channel 1 and channel 2� and one
different kind of channel �channel 3�. Channels 1 and 2 have
the same mass configuration of heavy-heavy-light, while
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channel 3 has the mass configuration of heavy-light-heavy.
Note that the potential-barrier height for these three channels
are exactly the same since the three particles interact equally
through the Morse potential. The difference among the three
channels lies in the way of changing mass distribution during
the isomerization reactions.

B. A coordinate system for the study of triatomic reactions

Here, we introduce an internal coordinate system for the
study of reaction dynamics of the modified M3 cluster. In
order to eliminate the translational degrees of freedom, we
first define the mass-weighted Jacobi vectors as

�1 = ��1�r1 − r2�, �1 =
m1m2

m1 + m2
, �2�

�2 = ��2�m1r1 + m2r2

m1 + m2
− r3	, �2 =

�m1 + m2�m3

m1 + m2 + m3
, �3�

where �1 and �2 are the reduced masses. Then, the internal
coordinates that we focus on in this paper are defined as

w1 = 
�1
2 − 
�2
2, �4�

w2 = 2�1 · �2, �5�

w3 = ± 2
�1 � �2
 . �6�

Since the internal degree of freedom of the triatomic system
is three, there are three internal �shape� coordinates

�w1 ,w2 ,w3�. These coordinates are known as symmetrical
coordinates �21,30–32� since the kinetic-energy expression
in terms of these three variables becomes fairly symmetric as
will be shown in Sec. III. All the internal coordinates range
from −� to +�, and the sign of w3 specifies the permuta-
tional isomers �33�, �a� and �b� in Fig. 1.

In Fig. 2, the global structure of the internal space is
shown. The two equilibrium points �minima of the
potential energy� of the cluster are located at �w1 ,w2 ,w3�
= �15.429,0 , ±13.607� in these coordinates. Figure 2�a�
shows equipotential energy surfaces at V=−2.2�. There exist
two closed regions around the two equilibrium points. Clas-
sical trajectories with total energy E=−2.2� can move
around in the interior regions of the equipotential surfaces,
which are called Hill regions. Since the two Hill regions are
separated in Fig. 2�a�, isomerization reaction is impossible at
this energy. Figure 2�b� shows the equipotential surface �Hill
region� at total energy E=−1.4�. At this energy, the two iso-
mer regions are connected through the three “handlelike”
structures, and thereby isomerization reaction is possible.
Figure 3 shows the steepest descent paths connecting the two
equilibrium configurations via the three collinear saddle con-
figurations. These paths can be roughly regarded as the skel-

FIG. 1. �Color online� The isomerization scheme of the
modified M3 cluster. Atoms 1 and 2 have the same mass parameter
m1=m2=1, and atom 3 has the mass parameter m3=0.1. This cluster
has two locally equilibrium structures, �a� and �b�, which are equi-
lateral triangle and permutationally distinct. The potential energy of
these two structures is V=−3.00�. The cluster has three permuta-
tionally distinctive saddle structures, which are collinear, while the
potential energy of these saddle structures is V=−2.005�. The num-
ber of the reaction channel is defined by the number of the atom in
the middle at the saddle structure. Channel 1 and channel 2 are
essentially equivalent and channel 3 is qualitatively different from
other two channels.

FIG. 2. �Color online� Equipotential-energy surfaces �Hill re-
gions� in the internal space, at �a� V=−2.2� and �b� V=−1.4�. The
cross mark represents the origin, where �w1 ,w2 ,w3�= �0,0 ,0�.

FIG. 3. �Color online� The steepest descent paths of the poten-
tial energy in the internal space that connect saddle points and local
minima and the corresponding structures of the cluster are shown.
The two equilibrium points of the cluster are at �w1 ,w2 ,w3�
= �15.429,0 , ±13.607�. The saddle points for channels 1, 2, and 3
are located at �w1 ,w2 ,w3�= �10.277,−23.548,0�, �w1 ,w2 ,w3�
= �10.277,23.548,0�, and �w1 ,w2 ,w3�= �71.939,0 ,0� respectively.
The cross mark represents the origin, �w1 ,w2 ,w3�= �0,0 ,0�.
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eton of the reaction handles in Fig. 2. The saddle point for
channel 1 is located at �w1 ,w2 ,w3�= �10.277,−23.548,0�
while that for channel 2 is located at �w1 ,w2 ,w3�
= �10.277,23.548,0�. The saddle point for channel 3 is lo-
cated at �w1 ,w2 ,w3�= �71.939,0 ,0�. Since the potential en-
ergy of these three saddle points is the same, reaction
through these three channels becomes energetically possible
at the same energy.

The Hill regions in Fig. 2 and the paths in Fig. 3 have
reflection symmetry with respect to the w1-w2 plane and the
w1-w3 plane. The reflection symmetry with respect to the
w1-w2 plane is due to the permutational symmetry between
isomer �a� and isomer �b� in Fig. 1. The reflection symmetry
with respect to the w1-w3 plane is due to the symmetry with
respect to the permutation of atom 1 and atom 2. This prop-
erty is consistent with the fact that channel 1 and channel 2
are equivalent and only channel 3 is qualitatively different
from other two channels. It should be noted that if the three
atoms have the same mass, the three reaction pathways
�handlelike structures� in Fig. 2 have the symmetric structure
surrounding the origin �w1 ,w2 ,w3�= �0,0 ,0�. Specialty of
the mass of the third atom brings about the deformation of
Hill region as in Fig. 2. This deformed structure of Hill re-
gion will be the key in characterizing mass effect later.

C. Reaction frequencies of isomerization: Numerical study

This section summarizes the results of numerical experi-
ments on reaction frequencies of isomerization dynamics of
the modified M3 cluster, and raise an important issue to be
investigated in the following section.

As a measure of reaction frequency �branching ratio� of
each channel, one might want to count the frequency that the
system crosses each collinear configuration as dividing sur-
face per unit time. However, this definition of reaction fre-
quency is not necessarily appropriate since the system often
recrosses the collinear configurations before getting to the
vicinities of the equilibrium points. Therefore, in order to
avoid overcounting due to the recrossing as much as pos-
sible, we introduce more strict conditions for isomerization
as follows: We count the total number Ni that the system
passes through each “handle” in Fig. 2�b� corresponding to
each channel i �i=1,2 ,3� in many long time trajectories. In
this computation, we count only the event that the system
enters into one of the handles at one side and subsequently
gets out of the handle at the other side without returning to
the entering side. In other words, we count the total number
that the system completes reaction through each channel. Re-
gion of each handle in internal space is defined in terms of
the three inter particle distances, d12,d13,d23, as

handle 1: d23 � d12,d13, �7�

handle 2: d13 � d12,d23, �8�

handle 3: d12 � d13,d23, �9�

where the number of each handle is concomitant with that of
the reaction channel.

Table I shows the results of the total reaction frequency Ni
through each channel i �i=1,2 ,3� for the 3000 trajectories
whose initial conditions are randomly sampled. At the same
time, Fig. 4 shows the normalized reaction frequency �prob-
ability� computed by

f i =
Ni

N1 + N2 + N3
� 100 �i = 1,2,3� . �10�

Since channel 1 and channel 2 are equivalent, frequencies for
these two channels are almost the same. It is evident from
Fig. 4 and Table I that reaction through channel 3 is much
less frequent than those through channel 1 and channel 2. In
other words, the system prefers the reaction through heavy-
heavy-light configurations rather than heavy-light-heavy
configurations. Furthermore, we see that the reaction through
channel 3 becomes much less frequent as the energy of the
system increases.

The significant bias in the reaction frequency seen in Fig.
4 cannot be explained simply by the potential-energy barrier
height since the barrier height for the three channels are the
same. Instead, the bias must be related to the mass configu-
ration. This result indicates that there must be a certain

TABLE I. Reaction frequency through each channel for the
3000 trajectories whose initial conditions are randomly sampled and
whose integration time is 5000 absolute units.

Energy ��� Channel 1 Channel 2 Channel 3

−1.9 32668 32266 14725

−1.8 82527 81956 31061

−1.7 127671 128384 46004

−1.6 173037 172683 51657

−1.5 209088 208011 55604

−1.4 241208 241327 56061

−1.3 266156 266622 56778

−1.2 291007 290613 54459

−1.1 306109 306601 57081

FIG. 4. �Color online� Energy dependence of relative reaction
frequency for channel 1 �open squares�, channel 2 �open triangles�,
and channel 3 �open circles�. The frequencies are normalized
among the three channels based on Eq. �10�.
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mechanism that makes the reaction through channel 3 harder
than reactions through channel 1 and 2. Therefore we need to
look further into the geometric properties of the internal
space that are related to mass effects. In the next section, we
focus on those geometric issues to account for the bias found
in the reaction frequency in Fig 4. Extracting a mechanism
that makes the reaction through channel 3 difficult is the goal
of the next section.

III. GEOMETRIC CHARACTERIZATION OF MASS
EFFECT IN ISOMERIZATION DYNAMICS

A. Separation of rotation and internal motion

For a correct discussion of the mass effect in the dynam-
ics of polyatomic molecules, a correct separation of rotations
is crucial. This section summarizes the separation procedure
from a general point of view. The total kinetic energy of the
system is initially expressed as

K =
1

2�
i=1

2

�̇i · �̇i, �11�

where overall translational degrees of freedom are automati-
cally eliminated by using the Jacobi vectors ��i� defined in
Eq. �3�. According to reduction theory �23,24� or the associ-
ated gauge theoretic point of view �21,25–30�, the total ki-
netic energy Eq. �11� can be rewritten generally as

K =
1

2
JTM−1J +

1

2
g�	q̇�q̇	, �12�

where J is the total angular momentum, M is moment of
inertia tensor, �q�� are arbitrary internal coordinates, and g�	

is the gauge-invariant metric tensor of internal space that is
independent of the choice of body frame. In Eq. �12�, the
summation with respect to the Greek indices � and 	 over all
the internal degrees of freedom of the system is implicitly
assumed. The advantage of the expression Eq. �12� is that
both the first and the second terms in the right-hand side are
invariant under a change in the choice of body frame, and the
first term vanishes identically if the total angular momentum
is zero �J=0�, which is the case of the present study. There-
fore the Lagrangian for the system with zero total angular
momentum is

L =
1

2
g�	q̇�q̇	 − V��q��� , �13�

where we have restricted the potential function V to be a
function only of the internal coordinates �q��, which is the
case of our cluster. Since the metric tensor g�	 is generally
non-Euclidean for three-body and more-body systems, equa-
tions of motion derived from the Lagrangian Eq. �13� are in
the form

g�	�q̈	 + 
��
	 q̇�q̇�� = −

�V

�q� , �14�

where the connection coefficients �Christoffel symbols� 
��
	

are defined by


��
	 =

1

2
g	�� �g��

�q� +
�g��

�q� −
�g��

�q� 	 . �15�

Since the original atomic masses �mi� are incorporated into
the non-Euclidean metric tensor g�	 and the internal coordi-
nates, the terms including the Christoffel symbols in the left-
hand side of Eq. �14� are important to characterize the mass
effect. It should be noted that these terms play a role of
velocity-dependent forces in a coordinate chart like Fig. 2.
Therefore the next step is to analyze the properties of these
terms using the internal coordinate system �w1 ,w2 ,w3�.

B. Metric tensor of internal space
and equations of motion

It is shown in Refs. �21,30� that the representation of the
internal space metric tensor in the coordinates �w1 ,w2 ,w3� is
given by

�g�	� =
1

4w
0 0

0
1

4w
0

0 0
1

4w

� , w = �w1
2 + w2

2 + w3
2, �16�

which is a conformally flat metric. This conformally flat na-
ture of the metric, as revealed in the coordinates �w1 ,w2 ,w3�,
makes it possible to treat the coordinates in a symmetrical
manner. This is the advantage of this internal coordinate sys-
tem. According to Eq. �13�, the Lagrangian for the triatomic
system with zero-angular momentum is

L =
1

2
� 1

4w
	ẇ1

2 +
1

2
� 1

4w
	ẇ2

2 +
1

2
� 1

4w
	ẇ3

2 − V�w1,w2,w3� .

�17�

The classical equations of motion derived from this Lagrang-
ian are

1

4w
ẅ1 −

w1

8w3 ẇ1
2 +

w1

8w3 ẇ2
2 +

w1

8w3 ẇ3
2 −

w2

4w3 ẇ1ẇ2 −
w3

4w3 ẇ1ẇ3

= −
�V

�w1
, �18�

1

4w
ẅ2 +

w2

8w3 ẇ1
2 −

w2

8w3 ẇ2
2 +

w2

8w3 ẇ3
2 −

w1

4w3 ẇ2ẇ1 −
w3

4w3 ẇ2ẇ3

= −
�V

�w2
, �19�

1

4w
ẅ3 +

w3

8w3 ẇ1
2 +

w3

8w3 ẇ2
2 −

w3

8w3 ẇ3
2 −

w2

4w3 ẇ3ẇ2 −
w1

4w3 ẇ3ẇ1

= −
�V

�w3
. �20�

There are five terms quadratic in the velocity components
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�ẇi� on the left-hand sides of Eqs. �18�–�20� �from the sec-
ond to the sixth terms on the left-hand sides�. These terms
correspond to the terms involving the connection coefficients
in Eq. �14� and can be regarded as velocity-dependent
“forces” at each point in the coordinate chart. Therefore it is
important to extract essential properties of these terms that
have originated from the non-Euclidean nature of the metric.

C. Averaged force field and geodesics

In discussing statistical properties of reaction dynamics
such as the reaction frequency or the branching ratio, it is
important to characterize how the velocity-dependent terms
�forces� in Eqs. �18�–�20� affect the behavior of ensemble of
trajectories in the internal space. If the distribution of veloc-
ity vectors of the ensemble of trajectories can be assumed to
be sufficiently stochastic at each point in the internal space, it
is reasonable to evaluate microcanonical averages for the
quadratic factors of the velocity components at each point in
internal space such as �ẇiẇj�. Since the generalized momenta
conjugate to �w1 ,w2 ,w3� are

pi =
�L
�ẇi

=
ẇi

4w
�i = 1,2,3� , �21�

microcanonical averages for the quadratic factors ẇiẇj �i , j
=1,2 ,3� at each point in internal space are computed by

�ẇiẇj� =
�4w�2

�K� �−�

+�

pipj�„K − 2w�p1
2 + p2

2 + p3
2�…dp1dp2dp3,

�22�

where ��¯� is the delta function, K=K�w1 ,w2 ,w3� is the
kinetic energy at each point in the internal space, and �K�
is the normalization factor,

�K� = �
−�

+�

�„K − 2w�p1
2 + p2

2 + p3
2�…dp1dp2dp3. �23�

Equation �22� yields for the quadratic diagonal terms

�ẇ1
2� = �ẇ2

2� = �ẇ3
2� =

8wK

3
. �24�

These equalities reproduce the equipartition law for kinetic
energy at each point in internal space,

� 1

2
� 1

4w
	ẇ1

2� = � 1

2
� 1

4w
	ẇ2

2� = � 1

2
� 1

4w
	ẇ3

2� =
K

3
.

�25�

As for the cross terms, Eq. �22� yields

�ẇiẇj� = 0 �for i � j� . �26�

This is because the integrand in Eq. �22� is odd with respect
to pi and pj if i� j. Applying Eqs. �24� and �26� to the
velocity-dependent terms in Eqs. �18�–�20�, one finally ob-
tains an averaged field of the velocity dependent force as

�−
Kw1

3w2 ,−
Kw2

3w2 ,−
Kw3

3w2 	 . �27�

This force field should effectively influence the behavior of
ensemble of trajectories in the internal space.

In order to study the effects of the averaged force field of
Eq. �27�, we first analyze the behavior of the geodesics in the
internal space. Physically, the geodesics correspond to the
motions of three free particles with zero total angular mo-
mentum. They are the trajectories under no influence of
potential-energy surface in internal space, whose equations
of motion are obtained by setting the right-hand sides of Eqs.
�18�–�20� to zero. Since there is no potential-energy surface,
the kinetic energy K is constant over the internal space
for the ensemble of geodesic motions with the same energy
E=K. In Fig. 5�a�, the field of the averaged force of Eq. �27�
is shown by setting the kinetic energy K constant all over the
internal space. This averaged force field looks like a “central
force field” that points to the origin �w1 ,w2 ,w3�= �0,0 ,0�. In
the figure, length of each arrow represents the magnitude of
the force at each point. The averaged force field tends to be
significant in the vicinity of the origin of the space. Figure
5�b� shows the behavior of geodesics started at the three
points around the origin with random initial velocities. Ob-
serve that the geodesics tend to be curved to encircle the
origin. This behavior confirms that the central force field
should effectively exist in the internal space.

It is insightful to compare the directionality of geodesics
with that of the reaction pathways of our triatomic cluster.

FIG. 5. �Color online� �a� Averaged field of the velocity-
dependent force in the internal space �Eq. �27��. The kinetic energy
K is set to be constant over the internal space. Length of arrows
reflects the strength of the force at each point. �b� Geodesics in the
internal space started at the three points around the origin of the
space with random initial velocities. Cross marks in �a� and �b�
represent the origin, �w1 ,w2 ,w3�= �0,0 ,0�.
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Figures 6�a� and 6�b� show the geodesics started at the vi-
cinities of the two equilibrium points of the cluster, which
are �w1 ,w2 ,w3�= �15.429,0 , ±13.607�. The initial velocities
of the geodesics are prepared randomly. Figure 6�b� is a top
view of Fig. 6�a�. Because of the central force field men-
tioned above, geodesics have a constant tendency to be
curved to encircle the origin. As a result, geodesics are di-
verted from the direction of the reaction pathway of channel
3, and have preference to go in the direction of channel 1 and
channel 2. This fact means that the motion of the three free
particles with zero total angular momentum already have the
strong preference to channel 1 and channel 2 even without
the interaction force. This preference of motion of geodesics
is the geometric origin of the significant difference in reac-
tion frequencies observed in Fig. 4.

D. Dynamical barrier and reaction-path potential

We next discuss the full dynamics with potential-energy
surface. Under the influence of potential energy
V�w1 ,w2 ,w3�, the kinetic energy K in Eq. �27� is a function
of the internal coordinates as K=E−V�w1 ,w2 ,w3�. Figures
7�a� and 7�b� show the averaged field of the velocity-
dependent force in the Hill region at E=−1.4�. The averaged
force field tends to be strong in the vicinity of the equilib-
rium points �bottom of potential energy� since the kinetic
energy K in Eq. �27� becomes large there. Directionality of

the field in Fig. 7 is essentially the same as that in Fig. 5.
That is, the force field in the Hill region points to the origin
of the space. As a result, the averaged force field works to
block trajectories to get into the reaction pathway of channel
3 in the vicinity of the two equilibrium points. In this way,
the averaged field of the velocity-dependent force works as a
dynamical barrier for channel 3. On the other hand, the av-
eraged force field works rather perpendicularly to the path-
ways of channel 1 and 2. As a result, the force field does not
hinder the reactions through channel 1 and 2 as significantly.

To quantify the effect of the averaged force field, a
“reaction-path potential” is introduced next, which is defined
as the sum of the potential and the work necessary to bring
the system against the averaged force along the path. For
simplicity, the steepest descent path in Fig. 3 is chosen as the
reaction path. According to the metric Eq. �16�, arc length s
of the path is computed as

s =�� 1

4w
�dw1

d�
	2

+
1

4w
�dw2

d�
	2

+
1

4w
�dw3

d�
	2

d� ,

�28�

where � is a parameter of the path. Then the reaction-path
potential is defined as the sum of the original potential and
the line integral of the negative of the averaged force field:

Vpath�s� = V�s� + �
path

E − V�w1,w2,w3�
3w2

��w1
dw1

ds
+ w2

dw2

ds
+ w3

dw3

ds
	ds , �29�

where the integration is along a reaction path. Figures 8�a�
and 8�b� show the original potential and the reaction-path

FIG. 6. �Color online� �a� Geodesics in the internal space ran-
domly started at the two points, �w1 ,w2 ,w3�= �15.429,0 , ±13.607�,
which correspond to the equilibrium points of the modified M3

cluster. For comparison, the steepest descent paths in Fig. 3 are
shown with the bold curves in the same figure. �b� is a top view of
�a�. Cross marks in �a� and �b� represent the origin, �w1 ,w2 ,w3�
= �0,0 ,0�.

FIG. 7. �Color online� �a� Averaged field of the velocity-
dependent force in the Hill region at E=−1.4�. �b� The same field
as in �a� seen from a different view point.
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potential along the reaction paths for respective channels.
The height of the original potential energy barrier is the same
in �a� �channel 1 and channel 2� and �b� �channel 3�. In
channels 1 and 2, the energy dependence of the reaction-path
potential is very weak. On the other hand, in channel 3, the
reaction-path potential becomes much higher as the energy
increases. This explains why the reaction through channel 3
becomes much less frequent than the reactions through
channel 1 and channel 2 as the energy increases. In this way,
the influence of the averaged force field on the reaction dy-
namics of each channel is characterized by the reaction-path
potential.

IV. DISSOCIATION DYNAMICS

A. Dissociation channels and branching ratio

We next investigate the role of the averaged field of
velocity-dependent force in dissociation dynamics of the
modified M3 cluster with zero total angular momentum. All
the system parameters are the same as the ones defined in
Sec. II, and thereby mass parameters are �m1 ,m2 ,m3�
= �1,1 ,0.1�. If the total internal energy is higher than
E=−1.0� and lower than E=0.0�, the triatomic cluster can
break up into a single atom and a diatomic system. If the
energy is above E=0.0�, breaking up into three single atoms
is also energetically possible, but we do not consider this
energy range in this paper. In the dissociation reactions in
which the system breaks up into a single atom and a diatomic
system, there are three possible channels as depicted in Fig.
9. The dissociation channels are named by the labels of the
dissociating single atom. Since the mass of atom 1 and that
of atom 2 are the same, dissociation channels 1 and 2 are
essentially equivalent, and only the dissociation channel 3 is
different.

The main interest of this study is the branching ratio
among the three dissociation channels. This branching ratio
is of interest in view of the dissociation dynamics of one of
the isotopomers of triatomic hydrogen ion, D2H+ �2,4�. Note
that both our modified M3 cluster and D2H+ are composed of
the two relatively heavy atoms and one light atom. We ran-
domly prepared 50 000 initial conditions around the equilib-
rium point �equilateral triangle� of the modified M3 cluster
and ran respective trajectories until they dissociate, and
counted the branching ratio among the three dissociation

channels. At total energy E=−0.5�, the 50 000 trajectories
are branched into the three dissociation channels with the
ratio

Ch. 1:Ch. 2:Ch. 3

= 12581�25.162 % �:12489�24.978 % �:24930�49.86 % � .

�30�

Since the dissociation channels 1 and 2 are essentially
equivalent, the percentage for these two channels are almost
the same. It turned out that the dissociation channel 3 is
much favored compared with other two channels �roughly
twice�. This result is qualitatively consistent with the result
of the dissociation dynamics of D2H+ mentioned above,
where the dissociation to the H+ channel is favored rather
than that to one of the two D+ channels at zero total angular
momentum �4�.

B. Roles played by the averaged force
field and reaction path potential

The branching ratio of the dissociation dynamics of the
modified M3 cluster observed above is explained by the av-
eraged force field in Sec. III. First, the reaction paths for
dissociation are defined as the broken lines in Fig. 9 for
respective channels. That is, along each dissociation path, the
dissociating atom goes along the line perpendicular to the

FIG. 8. �Color online� The
reaction-path potential along the
steepest descent paths in Fig. 3.
�a� is for channels 1 and 2, and �b�
is for channel 3. Solid curves are
the original potential for the re-
spective channels. The broken
curves and the dotted curves are
the reaction-path potential at total
energy E=−1.8� and E=−1.4�,
respectively.

FIG. 9. �Color online� Classification of the dissociation channels
of the modified M3 cluster. The number of each channel is named
by the label of the dissociating atom. Channel 1 and channel 2 are
essentially equivalent, in which one of the heavy atoms dissociates.
In channel 3, the light atom dissociates. The broken lines represent
the dissociation paths of this study.
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remaining diatomic bond. Each reaction path starts at the
equilibrium configuration �equilateral triangle�. Reaction
paths thus defined can characterize overall directionality that
dissociating trajectories in respective channels have in the
internal space. �It should be noted that the diatomic system
after dissociation can rotate. However, since rotation can be
in either way, clockwise and counterclockwise, the above
defined reaction paths can be regarded as rough averages of
the dissociating trajectories.� Figure 10 shows the dissocia-
tion paths thus defined in the internal space. Since the cluster
has two permutational isomers, each channel has two copies
of dissociation path in the both sides of the w1−w2 plane.
Each dissociation path extends to infinity.

Since the central force field as in Fig. 5 is effectively
arising in the dynamics in the internal space, relationship
between the directionality of each dissociation path and that
of the central force field should be important in the branch-
ing process of the dissociation dynamics. It is evident that
the dissociation paths for channel 1 and 2 go against the
central force field since these paths get away from the origin.
Therefore it is expected that the central force field works to
prevent the dissociation reactions for channel 1 and channel
2. On the other hand, the path for dissociation channel 3 rolls
up the origin as can be seen from Fig. 10�a�. Therefore dis-
sociation reaction in channel 3 should not be hindered very
much compared with the reactions in channel 1 and 2. These
observations qualitatively explain the system’s preference to
dissociation channel 3 rather than channels 1 and 2.

In order to quantify the above inspections, we compute
the reaction-path potential in the same way as in Eq. �29�
along each dissociation path in Fig. 10. Figures 11�a� and

11�b� show the original potential and the reaction-path po-
tential along respective paths at total energy E=−0.5�.
Original potential has the same barrier height for the two
types of channels. On the other hand, it is now clear that the
central force field acts as barrier more intensively for disso-
ciation channel 1 and 2 making the barrier of the reaction-
path potential for these channels higher than that for channel
3. We confirmed essentially the similar tendency of effective
potential curves for other energy values. In this way, effect of
the central force field is characterized for each dissociation
channel.

V. CONCLUDING REMARKS

This paper has investigated, both numerically and analyti-
cally, how different atomic mass configurations affect
branching ratios of multichannel reactions of a triatomic
cluster. Atomic masses have been incorporated into internal
coordinates and the associated non-Euclidean metric tensor
after a correct separation of the rotational degrees of free-
dom. Because of the non-Euclidean nature of this metric ten-
sor, terms including connection coefficients arise in the in-
ternal equations of motion, which serve as velocity-
dependent forces that one sees explicitly in a coordinate
chart. By averaging these terms, we have deduced an aver-
aged force field, which is a central force field in the
�w1 ,w2 ,w3�-coordinate chart. This force field accounts for
statistical tendencies in the behavior of geodesics in the in-
ternal space and this plays a crucial role in determining the
branching ratio of isomerization and the dissociation dynam-
ics of the triatomic molecule. The effects of this averaged
force field have been quantified by a reaction-path potential,
which accounts for the mass-influenced branching ratios
fairly well.

As has been demonstrated, the mass configuration itself
can be an important factor to determine branching ratios of
multichannel reactions. For example, mass configurations
can even create a dynamical barrier as opposed to a potential
barrier for certain channels such as the isomerization channel
3 and the dissociation channels 1 and 2 in this study. This
kind of barrier related to the mass configurations may be
responsible for various isotope effects. Since these mass-
related barriers originate from the kinetic energy of the sys-
tem, their influence is expected to be significant, especially

FIG. 10. �Color online� �a� Dissociation paths of the modified
M3 cluster in the internal space. The number of each dissociation
channel is indicated in the figure. Cross mark represents the origin
�w1 ,w2 ,w3�= �0,0 ,0�. �b� is a top view of �a�.

FIG. 11. �Color online� Potential energy �solid lines� and the
reaction-path potential �broken lines� at E=−0.5� along the disso-
ciation paths in Fig. 10. �a� is for channels 1 and 2, and �b� is for
channel 3.
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in high-energy reactions. The result shown in Fig. 4 confirms
this tendency, in which the bias in the reaction frequency
becomes more significant in a higher energy range.

It is noteworthy that while the Born-Oppenheimer poten-
tial energy surface changes depending on molecule, the ex-
pression of the kinetic energy does not change if mass-
weighted coordinates are employed. Concretely, the left-hand
sides of Eqs. �18�–�20� are common to all triatomic systems
with zero total angular momentum, although the potential
function on right hand sides changes depending on the sys-
tem. Therefore the averaged force field Eq. �27� introduced
in the �w1 ,w2 ,w3�-coordinate chart should be of rather uni-
versal importance in a variety of triatomic reactions. By
comparing the directionality of an arbitrary reaction path and
that of the averaged force field, which is the central force
field pointing to the origin, one will be able to speculate
whether the reaction path is favorable or not.

Here are some important next steps of the present work.
For one thing, the use of microcanonical averaging of Eq.
�22� for velocity-dependent forces could be modified. In the
present study, the microcanonical averaging worked since the
energy range of interest has been high and the dynamics of
the system is expected to be sufficiently stochastic. Also, the
quantities of interest in this work such as the reaction fre-
quency and the branching ratio are the ones that are related
to the long-time or the statistical properties of the system. On
the other hand, in lower energy range or in a shorter time
scale, invariant manifold tubes �48–52� and their intersection
structures in phase space should be important in determining
branching ratios. These phase-space structures may induce
the breakdown of the equipartition law in short time dynam-
ics. In such a situation, another methodology to characterize

the phase space structure based on the breakdown of equi-
partition law may be useful �53�. Second, it might be ideal to
get rid of the coordinate dependence of the present study
along the lines of Ref. �42�. However, a good coordinate
chart is often useful for the analysis of molecular reactions
since it makes a “global” analysis of reaction dynamics pos-
sible, as in the present paper. Third, role of the mass configu-
ration in systems with nonzero angular momentum is also an
interesting issue. In a finite-angular-momentum system,
velocity-dependent fictitious forces such as the centrifugal
force and the Coriolis force also come into play in addition
to the velocity-dependent force in this paper. The former two
forces influence the internal dynamics of a molecule via the
gauge fields in internal space �21�, which are also closely
related to atomic masses. These gauge fields can affect
branching ratios and reaction rates.

To summarize, the key to elucidating the role of mass
configurations in molecular reaction dynamics lies in the
geometric structure of internal space. By analyzing those
geometric structures carefully, one will ultimately be able to
determine branching ratios of multichannel reactions at least
qualitatively before computing a number of trajectories. An
application of the present methodology to general molecular
reactions, especially to isotopic reactions will be an impor-
tant next step.
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